@@ -1,783 +1,819 | |||||
1 |
|
1 | |||
2 | import os |
|
2 | import os | |
3 | import time |
|
3 | import time | |
4 | import glob |
|
4 | import glob | |
5 | import datetime |
|
5 | import datetime | |
6 | from multiprocessing import Process |
|
6 | from multiprocessing import Process | |
7 |
|
7 | |||
8 | import zmq |
|
8 | import zmq | |
9 | import numpy |
|
9 | import numpy | |
10 | import matplotlib |
|
10 | import matplotlib | |
11 | import matplotlib.pyplot as plt |
|
11 | import matplotlib.pyplot as plt | |
12 | from mpl_toolkits.axes_grid1 import make_axes_locatable |
|
12 | from mpl_toolkits.axes_grid1 import make_axes_locatable | |
13 | from matplotlib.ticker import FuncFormatter, LinearLocator, MultipleLocator |
|
13 | from matplotlib.ticker import FuncFormatter, LinearLocator, MultipleLocator | |
14 |
|
14 | |||
15 | from schainpy.model.proc.jroproc_base import Operation |
|
15 | from schainpy.model.proc.jroproc_base import Operation | |
16 | from schainpy.utils import log |
|
16 | from schainpy.utils import log | |
17 |
|
17 | |||
18 | func = lambda x, pos: ('%s') %(datetime.datetime.fromtimestamp(x).strftime('%H:%M')) |
|
18 | jet_values = matplotlib.pyplot.get_cmap("jet", 100)(numpy.arange(100))[10:90] | |
|
19 | blu_values = matplotlib.pyplot.get_cmap("seismic_r", 20)(numpy.arange(20))[10:15] | |||
|
20 | ncmap = matplotlib.colors.LinearSegmentedColormap.from_list("jro", numpy.vstack((blu_values, jet_values))) | |||
|
21 | matplotlib.pyplot.register_cmap(cmap=ncmap) | |||
19 |
|
22 | |||
20 | d1970 = datetime.datetime(1970, 1, 1) |
|
23 | func = lambda x, pos: '{}'.format(datetime.datetime.fromtimestamp(x).strftime('%H:%M')) | |
21 |
|
24 | |||
|
25 | UT1970 = datetime.datetime(1970, 1, 1) - datetime.timedelta(seconds=time.timezone) | |||
|
26 | ||||
|
27 | CMAPS = [plt.get_cmap(s) for s in ('jro', 'jet', 'RdBu_r', 'seismic')] | |||
22 |
|
28 | |||
23 | class PlotData(Operation, Process): |
|
29 | class PlotData(Operation, Process): | |
24 | ''' |
|
30 | ''' | |
25 | Base class for Schain plotting operations |
|
31 | Base class for Schain plotting operations | |
26 | ''' |
|
32 | ''' | |
27 |
|
33 | |||
28 | CODE = 'Figure' |
|
34 | CODE = 'Figure' | |
29 | colormap = 'jro' |
|
35 | colormap = 'jro' | |
30 | bgcolor = 'white' |
|
36 | bgcolor = 'white' | |
31 | CONFLATE = False |
|
37 | CONFLATE = False | |
32 | __MAXNUMX = 80 |
|
38 | __MAXNUMX = 80 | |
33 | __missing = 1E30 |
|
39 | __missing = 1E30 | |
34 |
|
40 | |||
35 | def __init__(self, **kwargs): |
|
41 | def __init__(self, **kwargs): | |
36 |
|
42 | |||
37 | Operation.__init__(self, plot=True, **kwargs) |
|
43 | Operation.__init__(self, plot=True, **kwargs) | |
38 | Process.__init__(self) |
|
44 | Process.__init__(self) | |
39 | self.kwargs['code'] = self.CODE |
|
45 | self.kwargs['code'] = self.CODE | |
40 | self.mp = False |
|
46 | self.mp = False | |
41 | self.data = None |
|
47 | self.data = None | |
42 | self.isConfig = False |
|
48 | self.isConfig = False | |
43 | self.figures = [] |
|
49 | self.figures = [] | |
44 | self.axes = [] |
|
50 | self.axes = [] | |
45 | self.cb_axes = [] |
|
51 | self.cb_axes = [] | |
46 | self.localtime = kwargs.pop('localtime', True) |
|
52 | self.localtime = kwargs.pop('localtime', True) | |
47 | self.show = kwargs.get('show', True) |
|
53 | self.show = kwargs.get('show', True) | |
48 | self.save = kwargs.get('save', False) |
|
54 | self.save = kwargs.get('save', False) | |
49 | self.colormap = kwargs.get('colormap', self.colormap) |
|
55 | self.colormap = kwargs.get('colormap', self.colormap) | |
50 | self.colormap_coh = kwargs.get('colormap_coh', 'jet') |
|
56 | self.colormap_coh = kwargs.get('colormap_coh', 'jet') | |
51 | self.colormap_phase = kwargs.get('colormap_phase', 'RdBu_r') |
|
57 | self.colormap_phase = kwargs.get('colormap_phase', 'RdBu_r') | |
52 | self.colormaps = kwargs.get('colormaps', None) |
|
58 | self.colormaps = kwargs.get('colormaps', None) | |
53 | self.bgcolor = kwargs.get('bgcolor', self.bgcolor) |
|
59 | self.bgcolor = kwargs.get('bgcolor', self.bgcolor) | |
54 | self.showprofile = kwargs.get('showprofile', False) |
|
60 | self.showprofile = kwargs.get('showprofile', False) | |
55 | self.title = kwargs.get('wintitle', self.CODE.upper()) |
|
61 | self.title = kwargs.get('wintitle', self.CODE.upper()) | |
56 | self.cb_label = kwargs.get('cb_label', None) |
|
62 | self.cb_label = kwargs.get('cb_label', None) | |
57 | self.cb_labels = kwargs.get('cb_labels', None) |
|
63 | self.cb_labels = kwargs.get('cb_labels', None) | |
58 | self.xaxis = kwargs.get('xaxis', 'frequency') |
|
64 | self.xaxis = kwargs.get('xaxis', 'frequency') | |
59 | self.zmin = kwargs.get('zmin', None) |
|
65 | self.zmin = kwargs.get('zmin', None) | |
60 | self.zmax = kwargs.get('zmax', None) |
|
66 | self.zmax = kwargs.get('zmax', None) | |
61 | self.zlimits = kwargs.get('zlimits', None) |
|
67 | self.zlimits = kwargs.get('zlimits', None) | |
62 | self.xmin = kwargs.get('xmin', None) |
|
68 | self.xmin = kwargs.get('xmin', None) | |
63 | if self.xmin is not None: |
|
|||
64 | self.xmin += 5 |
|
|||
65 | self.xmax = kwargs.get('xmax', None) |
|
69 | self.xmax = kwargs.get('xmax', None) | |
66 | self.xrange = kwargs.get('xrange', 24) |
|
70 | self.xrange = kwargs.get('xrange', 24) | |
67 | self.ymin = kwargs.get('ymin', None) |
|
71 | self.ymin = kwargs.get('ymin', None) | |
68 | self.ymax = kwargs.get('ymax', None) |
|
72 | self.ymax = kwargs.get('ymax', None) | |
69 | self.xlabel = kwargs.get('xlabel', None) |
|
73 | self.xlabel = kwargs.get('xlabel', None) | |
70 | self.__MAXNUMY = kwargs.get('decimation', 100) |
|
74 | self.__MAXNUMY = kwargs.get('decimation', 100) | |
71 | self.showSNR = kwargs.get('showSNR', False) |
|
75 | self.showSNR = kwargs.get('showSNR', False) | |
72 | self.oneFigure = kwargs.get('oneFigure', True) |
|
76 | self.oneFigure = kwargs.get('oneFigure', True) | |
73 | self.width = kwargs.get('width', None) |
|
77 | self.width = kwargs.get('width', None) | |
74 | self.height = kwargs.get('height', None) |
|
78 | self.height = kwargs.get('height', None) | |
75 | self.colorbar = kwargs.get('colorbar', True) |
|
79 | self.colorbar = kwargs.get('colorbar', True) | |
76 | self.factors = kwargs.get('factors', [1, 1, 1, 1, 1, 1, 1, 1]) |
|
80 | self.factors = kwargs.get('factors', [1, 1, 1, 1, 1, 1, 1, 1]) | |
77 | self.titles = ['' for __ in range(16)] |
|
81 | self.titles = ['' for __ in range(16)] | |
78 |
|
82 | |||
79 | def __setup(self): |
|
83 | def __setup(self): | |
80 | ''' |
|
84 | ''' | |
81 | Common setup for all figures, here figures and axes are created |
|
85 | Common setup for all figures, here figures and axes are created | |
82 | ''' |
|
86 | ''' | |
83 |
|
87 | |||
84 | self.setup() |
|
88 | self.setup() | |
85 |
|
89 | |||
|
90 | self.time_label = 'LT' if self.localtime else 'UTC' | |||
|
91 | ||||
86 | if self.width is None: |
|
92 | if self.width is None: | |
87 | self.width = 8 |
|
93 | self.width = 8 | |
88 |
|
94 | |||
89 | self.figures = [] |
|
95 | self.figures = [] | |
90 | self.axes = [] |
|
96 | self.axes = [] | |
91 | self.cb_axes = [] |
|
97 | self.cb_axes = [] | |
92 | self.pf_axes = [] |
|
98 | self.pf_axes = [] | |
93 | self.cmaps = [] |
|
99 | self.cmaps = [] | |
94 |
|
100 | |||
95 | size = '15%' if self.ncols==1 else '30%' |
|
101 | size = '15%' if self.ncols==1 else '30%' | |
96 | pad = '4%' if self.ncols==1 else '8%' |
|
102 | pad = '4%' if self.ncols==1 else '8%' | |
97 |
|
103 | |||
98 | if self.oneFigure: |
|
104 | if self.oneFigure: | |
99 | if self.height is None: |
|
105 | if self.height is None: | |
100 | self.height = 1.4*self.nrows + 1 |
|
106 | self.height = 1.4*self.nrows + 1 | |
101 | fig = plt.figure(figsize=(self.width, self.height), |
|
107 | fig = plt.figure(figsize=(self.width, self.height), | |
102 | edgecolor='k', |
|
108 | edgecolor='k', | |
103 | facecolor='w') |
|
109 | facecolor='w') | |
104 | self.figures.append(fig) |
|
110 | self.figures.append(fig) | |
105 | for n in range(self.nplots): |
|
111 | for n in range(self.nplots): | |
106 | ax = fig.add_subplot(self.nrows, self.ncols, n+1) |
|
112 | ax = fig.add_subplot(self.nrows, self.ncols, n+1) | |
107 | ax.tick_params(labelsize=8) |
|
113 | ax.tick_params(labelsize=8) | |
108 | ax.firsttime = True |
|
114 | ax.firsttime = True | |
|
115 | ax.index = 0 | |||
109 | self.axes.append(ax) |
|
116 | self.axes.append(ax) | |
110 | if self.showprofile: |
|
117 | if self.showprofile: | |
111 | cax = self.__add_axes(ax, size=size, pad=pad) |
|
118 | cax = self.__add_axes(ax, size=size, pad=pad) | |
112 | cax.tick_params(labelsize=8) |
|
119 | cax.tick_params(labelsize=8) | |
113 | self.pf_axes.append(cax) |
|
120 | self.pf_axes.append(cax) | |
114 | else: |
|
121 | else: | |
115 | if self.height is None: |
|
122 | if self.height is None: | |
116 | self.height = 3 |
|
123 | self.height = 3 | |
117 | for n in range(self.nplots): |
|
124 | for n in range(self.nplots): | |
118 | fig = plt.figure(figsize=(self.width, self.height), |
|
125 | fig = plt.figure(figsize=(self.width, self.height), | |
119 | edgecolor='k', |
|
126 | edgecolor='k', | |
120 | facecolor='w') |
|
127 | facecolor='w') | |
121 | ax = fig.add_subplot(1, 1, 1) |
|
128 | ax = fig.add_subplot(1, 1, 1) | |
122 | ax.tick_params(labelsize=8) |
|
129 | ax.tick_params(labelsize=8) | |
123 | ax.firsttime = True |
|
130 | ax.firsttime = True | |
|
131 | ax.index = 0 | |||
124 | self.figures.append(fig) |
|
132 | self.figures.append(fig) | |
125 | self.axes.append(ax) |
|
133 | self.axes.append(ax) | |
126 | if self.showprofile: |
|
134 | if self.showprofile: | |
127 | cax = self.__add_axes(ax, size=size, pad=pad) |
|
135 | cax = self.__add_axes(ax, size=size, pad=pad) | |
128 | cax.tick_params(labelsize=8) |
|
136 | cax.tick_params(labelsize=8) | |
129 | self.pf_axes.append(cax) |
|
137 | self.pf_axes.append(cax) | |
130 |
|
138 | |||
131 | for n in range(self.nrows): |
|
139 | for n in range(self.nrows): | |
132 | if self.colormaps is not None: |
|
140 | if self.colormaps is not None: | |
133 | cmap = plt.get_cmap(self.colormaps[n]) |
|
141 | cmap = plt.get_cmap(self.colormaps[n]) | |
134 | else: |
|
142 | else: | |
135 | cmap = plt.get_cmap(self.colormap) |
|
143 | cmap = plt.get_cmap(self.colormap) | |
136 | cmap.set_bad(self.bgcolor, 1.) |
|
144 | cmap.set_bad(self.bgcolor, 1.) | |
137 | self.cmaps.append(cmap) |
|
145 | self.cmaps.append(cmap) | |
138 |
|
146 | |||
|
147 | for fig in self.figures: | |||
|
148 | fig.canvas.mpl_connect('key_press_event', self.event_key_press) | |||
|
149 | ||||
|
150 | def event_key_press(self, event): | |||
|
151 | ''' | |||
|
152 | ''' | |||
|
153 | ||||
|
154 | for ax in self.axes: | |||
|
155 | if ax == event.inaxes: | |||
|
156 | if event.key == 'down': | |||
|
157 | ax.index += 1 | |||
|
158 | elif event.key == 'up': | |||
|
159 | ax.index -= 1 | |||
|
160 | if ax.index < 0: | |||
|
161 | ax.index = len(CMAPS) - 1 | |||
|
162 | elif ax.index == len(CMAPS): | |||
|
163 | ax.index = 0 | |||
|
164 | cmap = CMAPS[ax.index] | |||
|
165 | ax.cbar.set_cmap(cmap) | |||
|
166 | ax.cbar.draw_all() | |||
|
167 | ax.plt.set_cmap(cmap) | |||
|
168 | ax.cbar.patch.figure.canvas.draw() | |||
|
169 | ||||
139 | def __add_axes(self, ax, size='30%', pad='8%'): |
|
170 | def __add_axes(self, ax, size='30%', pad='8%'): | |
140 | ''' |
|
171 | ''' | |
141 | Add new axes to the given figure |
|
172 | Add new axes to the given figure | |
142 | ''' |
|
173 | ''' | |
143 | divider = make_axes_locatable(ax) |
|
174 | divider = make_axes_locatable(ax) | |
144 | nax = divider.new_horizontal(size=size, pad=pad) |
|
175 | nax = divider.new_horizontal(size=size, pad=pad) | |
145 | ax.figure.add_axes(nax) |
|
176 | ax.figure.add_axes(nax) | |
146 | return nax |
|
177 | return nax | |
147 |
|
178 | |||
148 | self.setup() |
|
179 | self.setup() | |
149 |
|
180 | |||
150 | def setup(self): |
|
181 | def setup(self): | |
151 | ''' |
|
182 | ''' | |
152 | This method should be implemented in the child class, the following |
|
183 | This method should be implemented in the child class, the following | |
153 | attributes should be set: |
|
184 | attributes should be set: | |
154 |
|
185 | |||
155 | self.nrows: number of rows |
|
186 | self.nrows: number of rows | |
156 | self.ncols: number of cols |
|
187 | self.ncols: number of cols | |
157 | self.nplots: number of plots (channels or pairs) |
|
188 | self.nplots: number of plots (channels or pairs) | |
158 | self.ylabel: label for Y axes |
|
189 | self.ylabel: label for Y axes | |
159 | self.titles: list of axes title |
|
190 | self.titles: list of axes title | |
160 |
|
191 | |||
161 | ''' |
|
192 | ''' | |
162 | raise(NotImplementedError, 'Implement this method in child class') |
|
193 | raise(NotImplementedError, 'Implement this method in child class') | |
163 |
|
194 | |||
164 | def fill_gaps(self, x_buffer, y_buffer, z_buffer): |
|
195 | def fill_gaps(self, x_buffer, y_buffer, z_buffer): | |
165 | ''' |
|
196 | ''' | |
166 | Create a masked array for missing data |
|
197 | Create a masked array for missing data | |
167 | ''' |
|
198 | ''' | |
168 | if x_buffer.shape[0] < 2: |
|
199 | if x_buffer.shape[0] < 2: | |
169 | return x_buffer, y_buffer, z_buffer |
|
200 | return x_buffer, y_buffer, z_buffer | |
170 |
|
201 | |||
171 | deltas = x_buffer[1:] - x_buffer[0:-1] |
|
202 | deltas = x_buffer[1:] - x_buffer[0:-1] | |
172 | x_median = numpy.median(deltas) |
|
203 | x_median = numpy.median(deltas) | |
173 |
|
204 | |||
174 | index = numpy.where(deltas > 5*x_median) |
|
205 | index = numpy.where(deltas > 5*x_median) | |
175 |
|
206 | |||
176 | if len(index[0]) != 0: |
|
207 | if len(index[0]) != 0: | |
177 | z_buffer[::, index[0], ::] = self.__missing |
|
208 | z_buffer[::, index[0], ::] = self.__missing | |
178 | z_buffer = numpy.ma.masked_inside(z_buffer, |
|
209 | z_buffer = numpy.ma.masked_inside(z_buffer, | |
179 | 0.99*self.__missing, |
|
210 | 0.99*self.__missing, | |
180 | 1.01*self.__missing) |
|
211 | 1.01*self.__missing) | |
181 |
|
212 | |||
182 | return x_buffer, y_buffer, z_buffer |
|
213 | return x_buffer, y_buffer, z_buffer | |
183 |
|
214 | |||
184 | def decimate(self): |
|
215 | def decimate(self): | |
185 |
|
216 | |||
186 | # dx = int(len(self.x)/self.__MAXNUMX) + 1 |
|
217 | # dx = int(len(self.x)/self.__MAXNUMX) + 1 | |
187 | dy = int(len(self.y)/self.__MAXNUMY) + 1 |
|
218 | dy = int(len(self.y)/self.__MAXNUMY) + 1 | |
188 |
|
219 | |||
189 | # x = self.x[::dx] |
|
220 | # x = self.x[::dx] | |
190 | x = self.x |
|
221 | x = self.x | |
191 | y = self.y[::dy] |
|
222 | y = self.y[::dy] | |
192 | z = self.z[::, ::, ::dy] |
|
223 | z = self.z[::, ::, ::dy] | |
193 |
|
224 | |||
194 | return x, y, z |
|
225 | return x, y, z | |
195 |
|
226 | |||
196 | def format(self): |
|
227 | def format(self): | |
197 | ''' |
|
228 | ''' | |
198 | Set min and max values, labels, ticks and titles |
|
229 | Set min and max values, labels, ticks and titles | |
199 | ''' |
|
230 | ''' | |
200 |
|
231 | |||
201 | if self.xmin is None: |
|
232 | if self.xmin is None: | |
202 | xmin = self.min_time |
|
233 | xmin = self.min_time | |
203 | else: |
|
234 | else: | |
204 | if self.xaxis is 'time': |
|
235 | if self.xaxis is 'time': | |
205 | dt = datetime.datetime.fromtimestamp(self.min_time) |
|
236 | dt = datetime.datetime.fromtimestamp(self.min_time) | |
206 | xmin = (datetime.datetime.combine(dt.date(), |
|
237 | xmin = (datetime.datetime.combine(dt.date(), | |
207 |
datetime.time(int(self.xmin), 0, 0))- |
|
238 | datetime.time(int(self.xmin), 0, 0))-UT1970).total_seconds() | |
208 | else: |
|
239 | else: | |
209 | xmin = self.xmin |
|
240 | xmin = self.xmin | |
210 |
|
241 | |||
211 | if self.xmax is None: |
|
242 | if self.xmax is None: | |
212 | xmax = xmin+self.xrange*60*60 |
|
243 | xmax = xmin+self.xrange*60*60 | |
213 | else: |
|
244 | else: | |
214 | if self.xaxis is 'time': |
|
245 | if self.xaxis is 'time': | |
215 | dt = datetime.datetime.fromtimestamp(self.min_time) |
|
246 | dt = datetime.datetime.fromtimestamp(self.min_time) | |
216 | xmax = (datetime.datetime.combine(dt.date(), |
|
247 | xmax = (datetime.datetime.combine(dt.date(), | |
217 |
datetime.time(int(self.xmax), 0, 0))- |
|
248 | datetime.time(int(self.xmax), 0, 0))-UT1970).total_seconds() | |
218 | else: |
|
249 | else: | |
219 | xmax = self.xmax |
|
250 | xmax = self.xmax | |
220 |
|
251 | |||
221 | ymin = self.ymin if self.ymin else numpy.nanmin(self.y) |
|
252 | ymin = self.ymin if self.ymin else numpy.nanmin(self.y) | |
222 | ymax = self.ymax if self.ymax else numpy.nanmax(self.y) |
|
253 | ymax = self.ymax if self.ymax else numpy.nanmax(self.y) | |
223 |
|
254 | |||
224 | ystep = 200 if ymax>= 800 else 100 if ymax>=400 else 50 if ymax>=200 else 20 |
|
255 | ystep = 200 if ymax>= 800 else 100 if ymax>=400 else 50 if ymax>=200 else 20 | |
225 |
|
256 | |||
226 | for n, ax in enumerate(self.axes): |
|
257 | for n, ax in enumerate(self.axes): | |
227 | if ax.firsttime: |
|
258 | if ax.firsttime: | |
228 | ax.set_facecolor(self.bgcolor) |
|
259 | ax.set_facecolor(self.bgcolor) | |
229 | ax.yaxis.set_major_locator(MultipleLocator(ystep)) |
|
260 | ax.yaxis.set_major_locator(MultipleLocator(ystep)) | |
230 | if self.xaxis is 'time': |
|
261 | if self.xaxis is 'time': | |
231 | ax.xaxis.set_major_formatter(FuncFormatter(func)) |
|
262 | ax.xaxis.set_major_formatter(FuncFormatter(func)) | |
232 | ax.xaxis.set_major_locator(LinearLocator(9)) |
|
263 | ax.xaxis.set_major_locator(LinearLocator(9)) | |
233 | if self.xlabel is not None: |
|
264 | if self.xlabel is not None: | |
234 | ax.set_xlabel(self.xlabel) |
|
265 | ax.set_xlabel(self.xlabel) | |
235 | ax.set_ylabel(self.ylabel) |
|
266 | ax.set_ylabel(self.ylabel) | |
236 | ax.firsttime = False |
|
267 | ax.firsttime = False | |
237 | if self.showprofile: |
|
268 | if self.showprofile: | |
238 | self.pf_axes[n].set_ylim(ymin, ymax) |
|
269 | self.pf_axes[n].set_ylim(ymin, ymax) | |
239 | self.pf_axes[n].set_xlim(self.zmin, self.zmax) |
|
270 | self.pf_axes[n].set_xlim(self.zmin, self.zmax) | |
240 | self.pf_axes[n].set_xlabel('dB') |
|
271 | self.pf_axes[n].set_xlabel('dB') | |
241 | self.pf_axes[n].grid(b=True, axis='x') |
|
272 | self.pf_axes[n].grid(b=True, axis='x') | |
242 | [tick.set_visible(False) for tick in self.pf_axes[n].get_yticklabels()] |
|
273 | [tick.set_visible(False) for tick in self.pf_axes[n].get_yticklabels()] | |
243 | if self.colorbar: |
|
274 | if self.colorbar: | |
244 | cb = plt.colorbar(ax.plt, ax=ax, pad=0.02) |
|
275 | ax.cbar = plt.colorbar(ax.plt, ax=ax, pad=0.02, aspect=10) | |
245 | cb.ax.tick_params(labelsize=8) |
|
276 | ax.cbar.ax.tick_params(labelsize=8) | |
246 | if self.cb_label: |
|
277 | if self.cb_label: | |
247 | cb.set_label(self.cb_label, size=8) |
|
278 | ax.cbar.set_label(self.cb_label, size=8) | |
248 | elif self.cb_labels: |
|
279 | elif self.cb_labels: | |
249 | cb.set_label(self.cb_labels[n], size=8) |
|
280 | ax.cbar.set_label(self.cb_labels[n], size=8) | |
250 |
|
281 | |||
251 |
ax.set_title('{} - {} |
|
282 | ax.set_title('{} - {} {}'.format( | |
252 | self.titles[n], |
|
283 | self.titles[n], | |
253 |
datetime.datetime.fromtimestamp(self.max_time).strftime('%H:%M:%S') |
|
284 | datetime.datetime.fromtimestamp(self.max_time).strftime('%H:%M:%S'), | |
|
285 | self.time_label), | |||
254 | size=8) |
|
286 | size=8) | |
255 | ax.set_xlim(xmin, xmax) |
|
287 | ax.set_xlim(xmin, xmax) | |
256 | ax.set_ylim(ymin, ymax) |
|
288 | ax.set_ylim(ymin, ymax) | |
257 |
|
289 | |||
258 |
|
||||
259 | def __plot(self): |
|
290 | def __plot(self): | |
260 | ''' |
|
291 | ''' | |
261 | ''' |
|
292 | ''' | |
262 | log.success('Plotting', self.name) |
|
293 | log.success('Plotting', self.name) | |
263 |
|
294 | |||
264 | self.plot() |
|
295 | self.plot() | |
265 | self.format() |
|
296 | self.format() | |
266 |
|
297 | |||
267 | for n, fig in enumerate(self.figures): |
|
298 | for n, fig in enumerate(self.figures): | |
268 | if self.nrows == 0 or self.nplots == 0: |
|
299 | if self.nrows == 0 or self.nplots == 0: | |
269 | log.warning('No data', self.name) |
|
300 | log.warning('No data', self.name) | |
270 | continue |
|
301 | continue | |
271 | if self.show: |
|
302 | if self.show: | |
272 | fig.show() |
|
303 | fig.show() | |
273 |
|
304 | |||
274 | fig.tight_layout() |
|
305 | fig.tight_layout() | |
275 | fig.canvas.manager.set_window_title('{} - {}'.format(self.title, |
|
306 | fig.canvas.manager.set_window_title('{} - {}'.format(self.title, | |
276 | datetime.datetime.fromtimestamp(self.max_time).strftime('%Y/%m/%d'))) |
|
307 | datetime.datetime.fromtimestamp(self.max_time).strftime('%Y/%m/%d'))) | |
277 | # fig.canvas.draw() |
|
308 | # fig.canvas.draw() | |
278 |
|
309 | |||
279 | if self.save and self.data.ended: |
|
310 | if self.save and self.data.ended: | |
280 | channels = range(self.nrows) |
|
311 | channels = range(self.nrows) | |
281 | if self.oneFigure: |
|
312 | if self.oneFigure: | |
282 | label = '' |
|
313 | label = '' | |
283 | else: |
|
314 | else: | |
284 | label = '_{}'.format(channels[n]) |
|
315 | label = '_{}'.format(channels[n]) | |
285 | figname = os.path.join( |
|
316 | figname = os.path.join( | |
286 | self.save, |
|
317 | self.save, | |
287 | '{}{}_{}.png'.format( |
|
318 | '{}{}_{}.png'.format( | |
288 | self.CODE, |
|
319 | self.CODE, | |
289 | label, |
|
320 | label, | |
290 | datetime.datetime.fromtimestamp(self.saveTime).strftime('%y%m%d_%H%M%S') |
|
321 | datetime.datetime.fromtimestamp(self.saveTime).strftime('%y%m%d_%H%M%S') | |
291 | ) |
|
322 | ) | |
292 | ) |
|
323 | ) | |
293 | print 'Saving figure: {}'.format(figname) |
|
324 | print 'Saving figure: {}'.format(figname) | |
294 | fig.savefig(figname) |
|
325 | fig.savefig(figname) | |
295 |
|
326 | |||
296 | def plot(self): |
|
327 | def plot(self): | |
297 | ''' |
|
328 | ''' | |
298 | ''' |
|
329 | ''' | |
299 | raise(NotImplementedError, 'Implement this method in child class') |
|
330 | raise(NotImplementedError, 'Implement this method in child class') | |
300 |
|
331 | |||
301 | def run(self): |
|
332 | def run(self): | |
302 |
|
333 | |||
303 | log.success('Starting', self.name) |
|
334 | log.success('Starting', self.name) | |
304 |
|
335 | |||
305 | context = zmq.Context() |
|
336 | context = zmq.Context() | |
306 | receiver = context.socket(zmq.SUB) |
|
337 | receiver = context.socket(zmq.SUB) | |
307 | receiver.setsockopt(zmq.SUBSCRIBE, '') |
|
338 | receiver.setsockopt(zmq.SUBSCRIBE, '') | |
308 | receiver.setsockopt(zmq.CONFLATE, self.CONFLATE) |
|
339 | receiver.setsockopt(zmq.CONFLATE, self.CONFLATE) | |
309 |
|
340 | |||
310 | if 'server' in self.kwargs['parent']: |
|
341 | if 'server' in self.kwargs['parent']: | |
311 | receiver.connect('ipc:///tmp/{}.plots'.format(self.kwargs['parent']['server'])) |
|
342 | receiver.connect('ipc:///tmp/{}.plots'.format(self.kwargs['parent']['server'])) | |
312 | else: |
|
343 | else: | |
313 | receiver.connect("ipc:///tmp/zmq.plots") |
|
344 | receiver.connect("ipc:///tmp/zmq.plots") | |
314 |
|
345 | |||
315 | while True: |
|
346 | while True: | |
316 | try: |
|
347 | try: | |
317 |
self.data = receiver.recv_pyobj(flags=zmq.NOBLOCK) |
|
348 | self.data = receiver.recv_pyobj(flags=zmq.NOBLOCK) | |
318 |
|
349 | |||
319 |
|
|
350 | if self.localtime: | |
320 |
self. |
|
351 | self.times = self.data.times - time.timezone | |
|
352 | else: | |||
|
353 | self.times = self.data.times | |||
|
354 | ||||
|
355 | self.min_time = self.times[0] | |||
|
356 | self.max_time = self.times[-1] | |||
321 |
|
357 | |||
322 | if self.isConfig is False: |
|
358 | if self.isConfig is False: | |
323 | self.__setup() |
|
359 | self.__setup() | |
324 | self.isConfig = True |
|
360 | self.isConfig = True | |
325 |
|
361 | |||
326 | self.__plot() |
|
362 | self.__plot() | |
327 |
|
363 | |||
328 | except zmq.Again as e: |
|
364 | except zmq.Again as e: | |
329 | log.log('Waiting for data...') |
|
365 | log.log('Waiting for data...') | |
330 | if self.data: |
|
366 | if self.data: | |
331 | plt.pause(self.data.throttle) |
|
367 | plt.pause(self.data.throttle) | |
332 | else: |
|
368 | else: | |
333 | time.sleep(2) |
|
369 | time.sleep(2) | |
334 |
|
370 | |||
335 | def close(self): |
|
371 | def close(self): | |
336 | if self.data: |
|
372 | if self.data: | |
337 | self.__plot() |
|
373 | self.__plot() | |
338 |
|
374 | |||
339 | class PlotSpectraData(PlotData): |
|
375 | class PlotSpectraData(PlotData): | |
340 | ''' |
|
376 | ''' | |
341 | Plot for Spectra data |
|
377 | Plot for Spectra data | |
342 | ''' |
|
378 | ''' | |
343 |
|
379 | |||
344 | CODE = 'spc' |
|
380 | CODE = 'spc' | |
345 | colormap = 'jro' |
|
381 | colormap = 'jro' | |
346 |
|
382 | |||
347 | def setup(self): |
|
383 | def setup(self): | |
348 | self.nplots = len(self.data.channels) |
|
384 | self.nplots = len(self.data.channels) | |
349 | self.ncols = int(numpy.sqrt(self.nplots)+ 0.9) |
|
385 | self.ncols = int(numpy.sqrt(self.nplots)+ 0.9) | |
350 | self.nrows = int((1.0*self.nplots/self.ncols) + 0.9) |
|
386 | self.nrows = int((1.0*self.nplots/self.ncols) + 0.9) | |
351 | self.width = 3.4*self.ncols |
|
387 | self.width = 3.4*self.ncols | |
352 | self.height = 3*self.nrows |
|
388 | self.height = 3*self.nrows | |
353 | self.cb_label = 'dB' |
|
389 | self.cb_label = 'dB' | |
354 | if self.showprofile: |
|
390 | if self.showprofile: | |
355 | self.width += 0.8*self.ncols |
|
391 | self.width += 0.8*self.ncols | |
356 |
|
392 | |||
357 | self.ylabel = 'Range [Km]' |
|
393 | self.ylabel = 'Range [Km]' | |
358 |
|
394 | |||
359 | def plot(self): |
|
395 | def plot(self): | |
360 | if self.xaxis == "frequency": |
|
396 | if self.xaxis == "frequency": | |
361 | x = self.data.xrange[0] |
|
397 | x = self.data.xrange[0] | |
362 | self.xlabel = "Frequency (kHz)" |
|
398 | self.xlabel = "Frequency (kHz)" | |
363 | elif self.xaxis == "time": |
|
399 | elif self.xaxis == "time": | |
364 | x = self.data.xrange[1] |
|
400 | x = self.data.xrange[1] | |
365 | self.xlabel = "Time (ms)" |
|
401 | self.xlabel = "Time (ms)" | |
366 | else: |
|
402 | else: | |
367 | x = self.data.xrange[2] |
|
403 | x = self.data.xrange[2] | |
368 | self.xlabel = "Velocity (m/s)" |
|
404 | self.xlabel = "Velocity (m/s)" | |
369 |
|
405 | |||
370 | if self.CODE == 'spc_mean': |
|
406 | if self.CODE == 'spc_mean': | |
371 | x = self.data.xrange[2] |
|
407 | x = self.data.xrange[2] | |
372 | self.xlabel = "Velocity (m/s)" |
|
408 | self.xlabel = "Velocity (m/s)" | |
373 |
|
409 | |||
374 | self.titles = [] |
|
410 | self.titles = [] | |
375 |
|
411 | |||
376 | y = self.data.heights |
|
412 | y = self.data.heights | |
377 | self.y = y |
|
413 | self.y = y | |
378 | z = self.data['spc'] |
|
414 | z = self.data['spc'] | |
379 |
|
415 | |||
380 | for n, ax in enumerate(self.axes): |
|
416 | for n, ax in enumerate(self.axes): | |
381 | noise = self.data['noise'][n][-1] |
|
417 | noise = self.data['noise'][n][-1] | |
382 | if self.CODE == 'spc_mean': |
|
418 | if self.CODE == 'spc_mean': | |
383 | mean = self.data['mean'][n][-1] |
|
419 | mean = self.data['mean'][n][-1] | |
384 | if ax.firsttime: |
|
420 | if ax.firsttime: | |
385 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
421 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) | |
386 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
422 | self.xmin = self.xmin if self.xmin else -self.xmax | |
387 | self.zmin = self.zmin if self.zmin else numpy.nanmin(z) |
|
423 | self.zmin = self.zmin if self.zmin else numpy.nanmin(z) | |
388 | self.zmax = self.zmax if self.zmax else numpy.nanmax(z) |
|
424 | self.zmax = self.zmax if self.zmax else numpy.nanmax(z) | |
389 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
425 | ax.plt = ax.pcolormesh(x, y, z[n].T, | |
390 | vmin=self.zmin, |
|
426 | vmin=self.zmin, | |
391 | vmax=self.zmax, |
|
427 | vmax=self.zmax, | |
392 | cmap=plt.get_cmap(self.colormap) |
|
428 | cmap=plt.get_cmap(self.colormap) | |
393 | ) |
|
429 | ) | |
394 |
|
430 | |||
395 | if self.showprofile: |
|
431 | if self.showprofile: | |
396 | ax.plt_profile= self.pf_axes[n].plot(self.data['rti'][n][-1], y)[0] |
|
432 | ax.plt_profile= self.pf_axes[n].plot(self.data['rti'][n][-1], y)[0] | |
397 | ax.plt_noise = self.pf_axes[n].plot(numpy.repeat(noise, len(y)), y, |
|
433 | ax.plt_noise = self.pf_axes[n].plot(numpy.repeat(noise, len(y)), y, | |
398 | color="k", linestyle="dashed", lw=1)[0] |
|
434 | color="k", linestyle="dashed", lw=1)[0] | |
399 | if self.CODE == 'spc_mean': |
|
435 | if self.CODE == 'spc_mean': | |
400 | ax.plt_mean = ax.plot(mean, y, color='k')[0] |
|
436 | ax.plt_mean = ax.plot(mean, y, color='k')[0] | |
401 | else: |
|
437 | else: | |
402 | ax.plt.set_array(z[n].T.ravel()) |
|
438 | ax.plt.set_array(z[n].T.ravel()) | |
403 | if self.showprofile: |
|
439 | if self.showprofile: | |
404 | ax.plt_profile.set_data(self.data['rti'][n][-1], y) |
|
440 | ax.plt_profile.set_data(self.data['rti'][n][-1], y) | |
405 | ax.plt_noise.set_data(numpy.repeat(noise, len(y)), y) |
|
441 | ax.plt_noise.set_data(numpy.repeat(noise, len(y)), y) | |
406 | if self.CODE == 'spc_mean': |
|
442 | if self.CODE == 'spc_mean': | |
407 | ax.plt_mean.set_data(mean, y) |
|
443 | ax.plt_mean.set_data(mean, y) | |
408 |
|
444 | |||
409 | self.titles.append('CH {}: {:3.2f}dB'.format(n, noise)) |
|
445 | self.titles.append('CH {}: {:3.2f}dB'.format(n, noise)) | |
410 | self.saveTime = self.max_time |
|
446 | self.saveTime = self.max_time | |
411 |
|
447 | |||
412 |
|
448 | |||
413 | class PlotCrossSpectraData(PlotData): |
|
449 | class PlotCrossSpectraData(PlotData): | |
414 |
|
450 | |||
415 | CODE = 'cspc' |
|
451 | CODE = 'cspc' | |
416 | zmin_coh = None |
|
452 | zmin_coh = None | |
417 | zmax_coh = None |
|
453 | zmax_coh = None | |
418 | zmin_phase = None |
|
454 | zmin_phase = None | |
419 | zmax_phase = None |
|
455 | zmax_phase = None | |
420 |
|
456 | |||
421 | def setup(self): |
|
457 | def setup(self): | |
422 |
|
458 | |||
423 | self.ncols = 4 |
|
459 | self.ncols = 4 | |
424 | self.nrows = len(self.data.pairs) |
|
460 | self.nrows = len(self.data.pairs) | |
425 | self.nplots = self.nrows*4 |
|
461 | self.nplots = self.nrows*4 | |
426 | self.width = 3.4*self.ncols |
|
462 | self.width = 3.4*self.ncols | |
427 | self.height = 3*self.nrows |
|
463 | self.height = 3*self.nrows | |
428 | self.ylabel = 'Range [Km]' |
|
464 | self.ylabel = 'Range [Km]' | |
429 | self.showprofile = False |
|
465 | self.showprofile = False | |
430 |
|
466 | |||
431 | def plot(self): |
|
467 | def plot(self): | |
432 |
|
468 | |||
433 | if self.xaxis == "frequency": |
|
469 | if self.xaxis == "frequency": | |
434 | x = self.data.xrange[0] |
|
470 | x = self.data.xrange[0] | |
435 | self.xlabel = "Frequency (kHz)" |
|
471 | self.xlabel = "Frequency (kHz)" | |
436 | elif self.xaxis == "time": |
|
472 | elif self.xaxis == "time": | |
437 | x = self.data.xrange[1] |
|
473 | x = self.data.xrange[1] | |
438 | self.xlabel = "Time (ms)" |
|
474 | self.xlabel = "Time (ms)" | |
439 | else: |
|
475 | else: | |
440 | x = self.data.xrange[2] |
|
476 | x = self.data.xrange[2] | |
441 | self.xlabel = "Velocity (m/s)" |
|
477 | self.xlabel = "Velocity (m/s)" | |
442 |
|
478 | |||
443 | self.titles = [] |
|
479 | self.titles = [] | |
444 |
|
480 | |||
445 | y = self.data.heights |
|
481 | y = self.data.heights | |
446 | self.y = y |
|
482 | self.y = y | |
447 | spc = self.data['spc'] |
|
483 | spc = self.data['spc'] | |
448 | cspc = self.data['cspc'] |
|
484 | cspc = self.data['cspc'] | |
449 |
|
485 | |||
450 | for n in range(self.nrows): |
|
486 | for n in range(self.nrows): | |
451 | noise = self.data['noise'][n][-1] |
|
487 | noise = self.data['noise'][n][-1] | |
452 | pair = self.data.pairs[n] |
|
488 | pair = self.data.pairs[n] | |
453 | ax = self.axes[4*n] |
|
489 | ax = self.axes[4*n] | |
454 | ax3 = self.axes[4*n+3] |
|
490 | ax3 = self.axes[4*n+3] | |
455 | if ax.firsttime: |
|
491 | if ax.firsttime: | |
456 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
492 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) | |
457 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
493 | self.xmin = self.xmin if self.xmin else -self.xmax | |
458 | self.zmin = self.zmin if self.zmin else numpy.nanmin(spc) |
|
494 | self.zmin = self.zmin if self.zmin else numpy.nanmin(spc) | |
459 | self.zmax = self.zmax if self.zmax else numpy.nanmax(spc) |
|
495 | self.zmax = self.zmax if self.zmax else numpy.nanmax(spc) | |
460 | ax.plt = ax.pcolormesh(x, y, spc[pair[0]].T, |
|
496 | ax.plt = ax.pcolormesh(x, y, spc[pair[0]].T, | |
461 | vmin=self.zmin, |
|
497 | vmin=self.zmin, | |
462 | vmax=self.zmax, |
|
498 | vmax=self.zmax, | |
463 | cmap=plt.get_cmap(self.colormap) |
|
499 | cmap=plt.get_cmap(self.colormap) | |
464 | ) |
|
500 | ) | |
465 | else: |
|
501 | else: | |
466 | ax.plt.set_array(spc[pair[0]].T.ravel()) |
|
502 | ax.plt.set_array(spc[pair[0]].T.ravel()) | |
467 | self.titles.append('CH {}: {:3.2f}dB'.format(n, noise)) |
|
503 | self.titles.append('CH {}: {:3.2f}dB'.format(n, noise)) | |
468 |
|
504 | |||
469 | ax = self.axes[4*n+1] |
|
505 | ax = self.axes[4*n+1] | |
470 | if ax.firsttime: |
|
506 | if ax.firsttime: | |
471 | ax.plt = ax.pcolormesh(x, y, spc[pair[1]].T, |
|
507 | ax.plt = ax.pcolormesh(x, y, spc[pair[1]].T, | |
472 | vmin=self.zmin, |
|
508 | vmin=self.zmin, | |
473 | vmax=self.zmax, |
|
509 | vmax=self.zmax, | |
474 | cmap=plt.get_cmap(self.colormap) |
|
510 | cmap=plt.get_cmap(self.colormap) | |
475 | ) |
|
511 | ) | |
476 | else: |
|
512 | else: | |
477 | ax.plt.set_array(spc[pair[1]].T.ravel()) |
|
513 | ax.plt.set_array(spc[pair[1]].T.ravel()) | |
478 | self.titles.append('CH {}: {:3.2f}dB'.format(n, noise)) |
|
514 | self.titles.append('CH {}: {:3.2f}dB'.format(n, noise)) | |
479 |
|
515 | |||
480 | out = cspc[n]/numpy.sqrt(spc[pair[0]]*spc[pair[1]]) |
|
516 | out = cspc[n]/numpy.sqrt(spc[pair[0]]*spc[pair[1]]) | |
481 | coh = numpy.abs(out) |
|
517 | coh = numpy.abs(out) | |
482 | phase = numpy.arctan2(out.imag, out.real)*180/numpy.pi |
|
518 | phase = numpy.arctan2(out.imag, out.real)*180/numpy.pi | |
483 |
|
519 | |||
484 | ax = self.axes[4*n+2] |
|
520 | ax = self.axes[4*n+2] | |
485 | if ax.firsttime: |
|
521 | if ax.firsttime: | |
486 | ax.plt = ax.pcolormesh(x, y, coh.T, |
|
522 | ax.plt = ax.pcolormesh(x, y, coh.T, | |
487 | vmin=0, |
|
523 | vmin=0, | |
488 | vmax=1, |
|
524 | vmax=1, | |
489 | cmap=plt.get_cmap(self.colormap_coh) |
|
525 | cmap=plt.get_cmap(self.colormap_coh) | |
490 | ) |
|
526 | ) | |
491 | else: |
|
527 | else: | |
492 | ax.plt.set_array(coh.T.ravel()) |
|
528 | ax.plt.set_array(coh.T.ravel()) | |
493 | self.titles.append('Coherence Ch{} * Ch{}'.format(pair[0], pair[1])) |
|
529 | self.titles.append('Coherence Ch{} * Ch{}'.format(pair[0], pair[1])) | |
494 |
|
530 | |||
495 | ax = self.axes[4*n+3] |
|
531 | ax = self.axes[4*n+3] | |
496 | if ax.firsttime: |
|
532 | if ax.firsttime: | |
497 | ax.plt = ax.pcolormesh(x, y, phase.T, |
|
533 | ax.plt = ax.pcolormesh(x, y, phase.T, | |
498 | vmin=-180, |
|
534 | vmin=-180, | |
499 | vmax=180, |
|
535 | vmax=180, | |
500 | cmap=plt.get_cmap(self.colormap_phase) |
|
536 | cmap=plt.get_cmap(self.colormap_phase) | |
501 | ) |
|
537 | ) | |
502 | else: |
|
538 | else: | |
503 | ax.plt.set_array(phase.T.ravel()) |
|
539 | ax.plt.set_array(phase.T.ravel()) | |
504 | self.titles.append('Phase CH{} * CH{}'.format(pair[0], pair[1])) |
|
540 | self.titles.append('Phase CH{} * CH{}'.format(pair[0], pair[1])) | |
505 |
|
541 | |||
506 | self.saveTime = self.max_time |
|
542 | self.saveTime = self.max_time | |
507 |
|
543 | |||
508 |
|
544 | |||
509 | class PlotSpectraMeanData(PlotSpectraData): |
|
545 | class PlotSpectraMeanData(PlotSpectraData): | |
510 | ''' |
|
546 | ''' | |
511 | Plot for Spectra and Mean |
|
547 | Plot for Spectra and Mean | |
512 | ''' |
|
548 | ''' | |
513 | CODE = 'spc_mean' |
|
549 | CODE = 'spc_mean' | |
514 | colormap = 'jro' |
|
550 | colormap = 'jro' | |
515 |
|
551 | |||
516 |
|
552 | |||
517 | class PlotRTIData(PlotData): |
|
553 | class PlotRTIData(PlotData): | |
518 | ''' |
|
554 | ''' | |
519 | Plot for RTI data |
|
555 | Plot for RTI data | |
520 | ''' |
|
556 | ''' | |
521 |
|
557 | |||
522 | CODE = 'rti' |
|
558 | CODE = 'rti' | |
523 | colormap = 'jro' |
|
559 | colormap = 'jro' | |
524 |
|
560 | |||
525 | def setup(self): |
|
561 | def setup(self): | |
526 | self.xaxis = 'time' |
|
562 | self.xaxis = 'time' | |
527 | self.ncols = 1 |
|
563 | self.ncols = 1 | |
528 | self.nrows = len(self.data.channels) |
|
564 | self.nrows = len(self.data.channels) | |
529 | self.nplots = len(self.data.channels) |
|
565 | self.nplots = len(self.data.channels) | |
530 | self.ylabel = 'Range [Km]' |
|
566 | self.ylabel = 'Range [Km]' | |
531 | self.cb_label = 'dB' |
|
567 | self.cb_label = 'dB' | |
532 | self.titles = ['{} Channel {}'.format(self.CODE.upper(), x) for x in range(self.nrows)] |
|
568 | self.titles = ['{} Channel {}'.format(self.CODE.upper(), x) for x in range(self.nrows)] | |
533 |
|
569 | |||
534 | def plot(self): |
|
570 | def plot(self): | |
535 |
self.x = self. |
|
571 | self.x = self.times | |
536 | self.y = self.data.heights |
|
572 | self.y = self.data.heights | |
537 | self.z = self.data[self.CODE] |
|
573 | self.z = self.data[self.CODE] | |
538 | self.z = numpy.ma.masked_invalid(self.z) |
|
574 | self.z = numpy.ma.masked_invalid(self.z) | |
539 |
|
575 | |||
540 | for n, ax in enumerate(self.axes): |
|
576 | for n, ax in enumerate(self.axes): | |
541 | x, y, z = self.fill_gaps(*self.decimate()) |
|
577 | x, y, z = self.fill_gaps(*self.decimate()) | |
542 | self.zmin = self.zmin if self.zmin else numpy.min(self.z) |
|
578 | self.zmin = self.zmin if self.zmin else numpy.min(self.z) | |
543 | self.zmax = self.zmax if self.zmax else numpy.max(self.z) |
|
579 | self.zmax = self.zmax if self.zmax else numpy.max(self.z) | |
544 | if ax.firsttime: |
|
580 | if ax.firsttime: | |
545 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
581 | ax.plt = ax.pcolormesh(x, y, z[n].T, | |
546 | vmin=self.zmin, |
|
582 | vmin=self.zmin, | |
547 | vmax=self.zmax, |
|
583 | vmax=self.zmax, | |
548 | cmap=plt.get_cmap(self.colormap) |
|
584 | cmap=plt.get_cmap(self.colormap) | |
549 | ) |
|
585 | ) | |
550 | if self.showprofile: |
|
586 | if self.showprofile: | |
551 | ax.plot_profile= self.pf_axes[n].plot(self.data['rti'][n][-1], self.y)[0] |
|
587 | ax.plot_profile= self.pf_axes[n].plot(self.data['rti'][n][-1], self.y)[0] | |
552 | ax.plot_noise = self.pf_axes[n].plot(numpy.repeat(self.data['noise'][n][-1], len(self.y)), self.y, |
|
588 | ax.plot_noise = self.pf_axes[n].plot(numpy.repeat(self.data['noise'][n][-1], len(self.y)), self.y, | |
553 | color="k", linestyle="dashed", lw=1)[0] |
|
589 | color="k", linestyle="dashed", lw=1)[0] | |
554 | else: |
|
590 | else: | |
555 | ax.collections.remove(ax.collections[0]) |
|
591 | ax.collections.remove(ax.collections[0]) | |
556 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
592 | ax.plt = ax.pcolormesh(x, y, z[n].T, | |
557 | vmin=self.zmin, |
|
593 | vmin=self.zmin, | |
558 | vmax=self.zmax, |
|
594 | vmax=self.zmax, | |
559 | cmap=plt.get_cmap(self.colormap) |
|
595 | cmap=plt.get_cmap(self.colormap) | |
560 | ) |
|
596 | ) | |
561 | if self.showprofile: |
|
597 | if self.showprofile: | |
562 | ax.plot_profile.set_data(self.data['rti'][n][-1], self.y) |
|
598 | ax.plot_profile.set_data(self.data['rti'][n][-1], self.y) | |
563 | ax.plot_noise.set_data(numpy.repeat(self.data['noise'][n][-1], len(self.y)), self.y) |
|
599 | ax.plot_noise.set_data(numpy.repeat(self.data['noise'][n][-1], len(self.y)), self.y) | |
564 |
|
600 | |||
565 | self.saveTime = self.min_time |
|
601 | self.saveTime = self.min_time | |
566 |
|
602 | |||
567 |
|
603 | |||
568 | class PlotCOHData(PlotRTIData): |
|
604 | class PlotCOHData(PlotRTIData): | |
569 | ''' |
|
605 | ''' | |
570 | Plot for Coherence data |
|
606 | Plot for Coherence data | |
571 | ''' |
|
607 | ''' | |
572 |
|
608 | |||
573 | CODE = 'coh' |
|
609 | CODE = 'coh' | |
574 |
|
610 | |||
575 | def setup(self): |
|
611 | def setup(self): | |
576 | self.xaxis = 'time' |
|
612 | self.xaxis = 'time' | |
577 | self.ncols = 1 |
|
613 | self.ncols = 1 | |
578 | self.nrows = len(self.data.pairs) |
|
614 | self.nrows = len(self.data.pairs) | |
579 | self.nplots = len(self.data.pairs) |
|
615 | self.nplots = len(self.data.pairs) | |
580 | self.ylabel = 'Range [Km]' |
|
616 | self.ylabel = 'Range [Km]' | |
581 | if self.CODE == 'coh': |
|
617 | if self.CODE == 'coh': | |
582 | self.cb_label = '' |
|
618 | self.cb_label = '' | |
583 | self.titles = ['Coherence Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs] |
|
619 | self.titles = ['Coherence Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs] | |
584 | else: |
|
620 | else: | |
585 | self.cb_label = 'Degrees' |
|
621 | self.cb_label = 'Degrees' | |
586 | self.titles = ['Phase Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs] |
|
622 | self.titles = ['Phase Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs] | |
587 |
|
623 | |||
588 |
|
624 | |||
589 | class PlotPHASEData(PlotCOHData): |
|
625 | class PlotPHASEData(PlotCOHData): | |
590 | ''' |
|
626 | ''' | |
591 | Plot for Phase map data |
|
627 | Plot for Phase map data | |
592 | ''' |
|
628 | ''' | |
593 |
|
629 | |||
594 | CODE = 'phase' |
|
630 | CODE = 'phase' | |
595 | colormap = 'seismic' |
|
631 | colormap = 'seismic' | |
596 |
|
632 | |||
597 |
|
633 | |||
598 | class PlotNoiseData(PlotData): |
|
634 | class PlotNoiseData(PlotData): | |
599 | ''' |
|
635 | ''' | |
600 | Plot for noise |
|
636 | Plot for noise | |
601 | ''' |
|
637 | ''' | |
602 |
|
638 | |||
603 | CODE = 'noise' |
|
639 | CODE = 'noise' | |
604 |
|
640 | |||
605 | def setup(self): |
|
641 | def setup(self): | |
606 | self.xaxis = 'time' |
|
642 | self.xaxis = 'time' | |
607 | self.ncols = 1 |
|
643 | self.ncols = 1 | |
608 | self.nrows = 1 |
|
644 | self.nrows = 1 | |
609 | self.nplots = 1 |
|
645 | self.nplots = 1 | |
610 | self.ylabel = 'Intensity [dB]' |
|
646 | self.ylabel = 'Intensity [dB]' | |
611 | self.titles = ['Noise'] |
|
647 | self.titles = ['Noise'] | |
612 | self.colorbar = False |
|
648 | self.colorbar = False | |
613 |
|
649 | |||
614 | def plot(self): |
|
650 | def plot(self): | |
615 |
|
651 | |||
616 |
x = self. |
|
652 | x = self.times | |
617 | xmin = self.min_time |
|
653 | xmin = self.min_time | |
618 | xmax = xmin+self.xrange*60*60 |
|
654 | xmax = xmin+self.xrange*60*60 | |
619 | Y = self.data[self.CODE] |
|
655 | Y = self.data[self.CODE] | |
620 |
|
656 | |||
621 | if self.axes[0].firsttime: |
|
657 | if self.axes[0].firsttime: | |
622 | for ch in self.data.channels: |
|
658 | for ch in self.data.channels: | |
623 | y = Y[ch] |
|
659 | y = Y[ch] | |
624 | self.axes[0].plot(x, y, lw=1, label='Ch{}'.format(ch)) |
|
660 | self.axes[0].plot(x, y, lw=1, label='Ch{}'.format(ch)) | |
625 | plt.legend() |
|
661 | plt.legend() | |
626 | else: |
|
662 | else: | |
627 | for ch in self.data.channels: |
|
663 | for ch in self.data.channels: | |
628 | y = Y[ch] |
|
664 | y = Y[ch] | |
629 | self.axes[0].lines[ch].set_data(x, y) |
|
665 | self.axes[0].lines[ch].set_data(x, y) | |
630 |
|
666 | |||
631 | self.ymin = numpy.nanmin(Y) - 5 |
|
667 | self.ymin = numpy.nanmin(Y) - 5 | |
632 | self.ymax = numpy.nanmax(Y) + 5 |
|
668 | self.ymax = numpy.nanmax(Y) + 5 | |
633 | self.saveTime = self.min_time |
|
669 | self.saveTime = self.min_time | |
634 |
|
670 | |||
635 |
|
671 | |||
636 | class PlotSNRData(PlotRTIData): |
|
672 | class PlotSNRData(PlotRTIData): | |
637 | ''' |
|
673 | ''' | |
638 | Plot for SNR Data |
|
674 | Plot for SNR Data | |
639 | ''' |
|
675 | ''' | |
640 |
|
676 | |||
641 | CODE = 'snr' |
|
677 | CODE = 'snr' | |
642 | colormap = 'jet' |
|
678 | colormap = 'jet' | |
643 |
|
679 | |||
644 |
|
680 | |||
645 | class PlotDOPData(PlotRTIData): |
|
681 | class PlotDOPData(PlotRTIData): | |
646 | ''' |
|
682 | ''' | |
647 | Plot for DOPPLER Data |
|
683 | Plot for DOPPLER Data | |
648 | ''' |
|
684 | ''' | |
649 |
|
685 | |||
650 | CODE = 'dop' |
|
686 | CODE = 'dop' | |
651 | colormap = 'jet' |
|
687 | colormap = 'jet' | |
652 |
|
688 | |||
653 |
|
689 | |||
654 | class PlotSkyMapData(PlotData): |
|
690 | class PlotSkyMapData(PlotData): | |
655 | ''' |
|
691 | ''' | |
656 | Plot for meteors detection data |
|
692 | Plot for meteors detection data | |
657 | ''' |
|
693 | ''' | |
658 |
|
694 | |||
659 | CODE = 'met' |
|
695 | CODE = 'met' | |
660 |
|
696 | |||
661 | def setup(self): |
|
697 | def setup(self): | |
662 |
|
698 | |||
663 | self.ncols = 1 |
|
699 | self.ncols = 1 | |
664 | self.nrows = 1 |
|
700 | self.nrows = 1 | |
665 | self.width = 7.2 |
|
701 | self.width = 7.2 | |
666 | self.height = 7.2 |
|
702 | self.height = 7.2 | |
667 |
|
703 | |||
668 | self.xlabel = 'Zonal Zenith Angle (deg)' |
|
704 | self.xlabel = 'Zonal Zenith Angle (deg)' | |
669 | self.ylabel = 'Meridional Zenith Angle (deg)' |
|
705 | self.ylabel = 'Meridional Zenith Angle (deg)' | |
670 |
|
706 | |||
671 | if self.figure is None: |
|
707 | if self.figure is None: | |
672 | self.figure = plt.figure(figsize=(self.width, self.height), |
|
708 | self.figure = plt.figure(figsize=(self.width, self.height), | |
673 | edgecolor='k', |
|
709 | edgecolor='k', | |
674 | facecolor='w') |
|
710 | facecolor='w') | |
675 | else: |
|
711 | else: | |
676 | self.figure.clf() |
|
712 | self.figure.clf() | |
677 |
|
713 | |||
678 | self.ax = plt.subplot2grid((self.nrows, self.ncols), (0, 0), 1, 1, polar=True) |
|
714 | self.ax = plt.subplot2grid((self.nrows, self.ncols), (0, 0), 1, 1, polar=True) | |
679 | self.ax.firsttime = True |
|
715 | self.ax.firsttime = True | |
680 |
|
716 | |||
681 |
|
717 | |||
682 | def plot(self): |
|
718 | def plot(self): | |
683 |
|
719 | |||
684 |
arrayParameters = numpy.concatenate([self.data['param'][t] for t in self. |
|
720 | arrayParameters = numpy.concatenate([self.data['param'][t] for t in self.times]) | |
685 | error = arrayParameters[:,-1] |
|
721 | error = arrayParameters[:,-1] | |
686 | indValid = numpy.where(error == 0)[0] |
|
722 | indValid = numpy.where(error == 0)[0] | |
687 | finalMeteor = arrayParameters[indValid,:] |
|
723 | finalMeteor = arrayParameters[indValid,:] | |
688 | finalAzimuth = finalMeteor[:,3] |
|
724 | finalAzimuth = finalMeteor[:,3] | |
689 | finalZenith = finalMeteor[:,4] |
|
725 | finalZenith = finalMeteor[:,4] | |
690 |
|
726 | |||
691 | x = finalAzimuth*numpy.pi/180 |
|
727 | x = finalAzimuth*numpy.pi/180 | |
692 | y = finalZenith |
|
728 | y = finalZenith | |
693 |
|
729 | |||
694 | if self.ax.firsttime: |
|
730 | if self.ax.firsttime: | |
695 | self.ax.plot = self.ax.plot(x, y, 'bo', markersize=5)[0] |
|
731 | self.ax.plot = self.ax.plot(x, y, 'bo', markersize=5)[0] | |
696 | self.ax.set_ylim(0,90) |
|
732 | self.ax.set_ylim(0,90) | |
697 | self.ax.set_yticks(numpy.arange(0,90,20)) |
|
733 | self.ax.set_yticks(numpy.arange(0,90,20)) | |
698 | self.ax.set_xlabel(self.xlabel) |
|
734 | self.ax.set_xlabel(self.xlabel) | |
699 | self.ax.set_ylabel(self.ylabel) |
|
735 | self.ax.set_ylabel(self.ylabel) | |
700 | self.ax.yaxis.labelpad = 40 |
|
736 | self.ax.yaxis.labelpad = 40 | |
701 | self.ax.firsttime = False |
|
737 | self.ax.firsttime = False | |
702 | else: |
|
738 | else: | |
703 | self.ax.plot.set_data(x, y) |
|
739 | self.ax.plot.set_data(x, y) | |
704 |
|
740 | |||
705 |
|
741 | |||
706 | dt1 = datetime.datetime.fromtimestamp(self.min_time).strftime('%y/%m/%d %H:%M:%S') |
|
742 | dt1 = datetime.datetime.fromtimestamp(self.min_time).strftime('%y/%m/%d %H:%M:%S') | |
707 | dt2 = datetime.datetime.fromtimestamp(self.max_time).strftime('%y/%m/%d %H:%M:%S') |
|
743 | dt2 = datetime.datetime.fromtimestamp(self.max_time).strftime('%y/%m/%d %H:%M:%S') | |
708 | title = 'Meteor Detection Sky Map\n %s - %s \n Number of events: %5.0f\n' % (dt1, |
|
744 | title = 'Meteor Detection Sky Map\n %s - %s \n Number of events: %5.0f\n' % (dt1, | |
709 | dt2, |
|
745 | dt2, | |
710 | len(x)) |
|
746 | len(x)) | |
711 | self.ax.set_title(title, size=8) |
|
747 | self.ax.set_title(title, size=8) | |
712 |
|
748 | |||
713 | self.saveTime = self.max_time |
|
749 | self.saveTime = self.max_time | |
714 |
|
750 | |||
715 | class PlotParamData(PlotRTIData): |
|
751 | class PlotParamData(PlotRTIData): | |
716 | ''' |
|
752 | ''' | |
717 | Plot for data_param object |
|
753 | Plot for data_param object | |
718 | ''' |
|
754 | ''' | |
719 |
|
755 | |||
720 | CODE = 'param' |
|
756 | CODE = 'param' | |
721 | colormap = 'seismic' |
|
757 | colormap = 'seismic' | |
722 |
|
758 | |||
723 | def setup(self): |
|
759 | def setup(self): | |
724 | self.xaxis = 'time' |
|
760 | self.xaxis = 'time' | |
725 | self.ncols = 1 |
|
761 | self.ncols = 1 | |
726 | self.nrows = self.data.shape(self.CODE)[0] |
|
762 | self.nrows = self.data.shape(self.CODE)[0] | |
727 | self.nplots = self.nrows |
|
763 | self.nplots = self.nrows | |
728 | if self.showSNR: |
|
764 | if self.showSNR: | |
729 | self.nrows += 1 |
|
765 | self.nrows += 1 | |
730 | self.nplots += 1 |
|
766 | self.nplots += 1 | |
731 |
|
767 | |||
732 | self.ylabel = 'Height [Km]' |
|
768 | self.ylabel = 'Height [Km]' | |
733 | self.titles = self.data.parameters \ |
|
769 | self.titles = self.data.parameters \ | |
734 | if self.data.parameters else ['Param {}'.format(x) for x in xrange(self.nrows)] |
|
770 | if self.data.parameters else ['Param {}'.format(x) for x in xrange(self.nrows)] | |
735 | if self.showSNR: |
|
771 | if self.showSNR: | |
736 | self.titles.append('SNR') |
|
772 | self.titles.append('SNR') | |
737 |
|
773 | |||
738 | def plot(self): |
|
774 | def plot(self): | |
739 | self.data.normalize_heights() |
|
775 | self.data.normalize_heights() | |
740 |
self.x = self. |
|
776 | self.x = self.times | |
741 | self.y = self.data.heights |
|
777 | self.y = self.data.heights | |
742 | if self.showSNR: |
|
778 | if self.showSNR: | |
743 | self.z = numpy.concatenate( |
|
779 | self.z = numpy.concatenate( | |
744 | (self.data[self.CODE], self.data['snr']) |
|
780 | (self.data[self.CODE], self.data['snr']) | |
745 | ) |
|
781 | ) | |
746 | else: |
|
782 | else: | |
747 | self.z = self.data[self.CODE] |
|
783 | self.z = self.data[self.CODE] | |
748 |
|
784 | |||
749 | self.z = numpy.ma.masked_invalid(self.z) |
|
785 | self.z = numpy.ma.masked_invalid(self.z) | |
750 |
|
786 | |||
751 | for n, ax in enumerate(self.axes): |
|
787 | for n, ax in enumerate(self.axes): | |
752 |
|
788 | |||
753 | x, y, z = self.fill_gaps(*self.decimate()) |
|
789 | x, y, z = self.fill_gaps(*self.decimate()) | |
754 |
|
790 | |||
755 | if ax.firsttime: |
|
791 | if ax.firsttime: | |
756 | if self.zlimits is not None: |
|
792 | if self.zlimits is not None: | |
757 | self.zmin, self.zmax = self.zlimits[n] |
|
793 | self.zmin, self.zmax = self.zlimits[n] | |
758 | self.zmax = self.zmax if self.zmax is not None else numpy.nanmax(abs(self.z[:-1, :])) |
|
794 | self.zmax = self.zmax if self.zmax is not None else numpy.nanmax(abs(self.z[:-1, :])) | |
759 | self.zmin = self.zmin if self.zmin is not None else -self.zmax |
|
795 | self.zmin = self.zmin if self.zmin is not None else -self.zmax | |
760 | ax.plt = ax.pcolormesh(x, y, z[n, :, :].T*self.factors[n], |
|
796 | ax.plt = ax.pcolormesh(x, y, z[n, :, :].T*self.factors[n], | |
761 | vmin=self.zmin, |
|
797 | vmin=self.zmin, | |
762 | vmax=self.zmax, |
|
798 | vmax=self.zmax, | |
763 | cmap=self.cmaps[n] |
|
799 | cmap=self.cmaps[n] | |
764 | ) |
|
800 | ) | |
765 | else: |
|
801 | else: | |
766 | if self.zlimits is not None: |
|
802 | if self.zlimits is not None: | |
767 | self.zmin, self.zmax = self.zlimits[n] |
|
803 | self.zmin, self.zmax = self.zlimits[n] | |
768 | ax.collections.remove(ax.collections[0]) |
|
804 | ax.collections.remove(ax.collections[0]) | |
769 | ax.plt = ax.pcolormesh(x, y, z[n, :, :].T*self.factors[n], |
|
805 | ax.plt = ax.pcolormesh(x, y, z[n, :, :].T*self.factors[n], | |
770 | vmin=self.zmin, |
|
806 | vmin=self.zmin, | |
771 | vmax=self.zmax, |
|
807 | vmax=self.zmax, | |
772 | cmap=self.cmaps[n] |
|
808 | cmap=self.cmaps[n] | |
773 | ) |
|
809 | ) | |
774 |
|
810 | |||
775 | self.saveTime = self.min_time |
|
811 | self.saveTime = self.min_time | |
776 |
|
812 | |||
777 | class PlotOuputData(PlotParamData): |
|
813 | class PlotOuputData(PlotParamData): | |
778 | ''' |
|
814 | ''' | |
779 | Plot data_output object |
|
815 | Plot data_output object | |
780 | ''' |
|
816 | ''' | |
781 |
|
817 | |||
782 | CODE = 'output' |
|
818 | CODE = 'output' | |
783 | colormap = 'seismic' |
|
819 | colormap = 'seismic' |
General Comments 0
You need to be logged in to leave comments.
Login now