@@ -1,783 +1,819 | |||
|
1 | 1 | |
|
2 | 2 | import os |
|
3 | 3 | import time |
|
4 | 4 | import glob |
|
5 | 5 | import datetime |
|
6 | 6 | from multiprocessing import Process |
|
7 | 7 | |
|
8 | 8 | import zmq |
|
9 | 9 | import numpy |
|
10 | 10 | import matplotlib |
|
11 | 11 | import matplotlib.pyplot as plt |
|
12 | 12 | from mpl_toolkits.axes_grid1 import make_axes_locatable |
|
13 | 13 | from matplotlib.ticker import FuncFormatter, LinearLocator, MultipleLocator |
|
14 | 14 | |
|
15 | 15 | from schainpy.model.proc.jroproc_base import Operation |
|
16 | 16 | from schainpy.utils import log |
|
17 | 17 | |
|
18 | func = lambda x, pos: ('%s') %(datetime.datetime.fromtimestamp(x).strftime('%H:%M')) | |
|
18 | jet_values = matplotlib.pyplot.get_cmap("jet", 100)(numpy.arange(100))[10:90] | |
|
19 | blu_values = matplotlib.pyplot.get_cmap("seismic_r", 20)(numpy.arange(20))[10:15] | |
|
20 | ncmap = matplotlib.colors.LinearSegmentedColormap.from_list("jro", numpy.vstack((blu_values, jet_values))) | |
|
21 | matplotlib.pyplot.register_cmap(cmap=ncmap) | |
|
19 | 22 | |
|
20 | d1970 = datetime.datetime(1970, 1, 1) | |
|
23 | func = lambda x, pos: '{}'.format(datetime.datetime.fromtimestamp(x).strftime('%H:%M')) | |
|
21 | 24 | |
|
25 | UT1970 = datetime.datetime(1970, 1, 1) - datetime.timedelta(seconds=time.timezone) | |
|
26 | ||
|
27 | CMAPS = [plt.get_cmap(s) for s in ('jro', 'jet', 'RdBu_r', 'seismic')] | |
|
22 | 28 | |
|
23 | 29 | class PlotData(Operation, Process): |
|
24 | 30 | ''' |
|
25 | 31 | Base class for Schain plotting operations |
|
26 | 32 | ''' |
|
27 | 33 | |
|
28 | 34 | CODE = 'Figure' |
|
29 | 35 | colormap = 'jro' |
|
30 | 36 | bgcolor = 'white' |
|
31 | 37 | CONFLATE = False |
|
32 | 38 | __MAXNUMX = 80 |
|
33 | 39 | __missing = 1E30 |
|
34 | 40 | |
|
35 | 41 | def __init__(self, **kwargs): |
|
36 | 42 | |
|
37 | 43 | Operation.__init__(self, plot=True, **kwargs) |
|
38 | 44 | Process.__init__(self) |
|
39 | 45 | self.kwargs['code'] = self.CODE |
|
40 | 46 | self.mp = False |
|
41 | 47 | self.data = None |
|
42 | 48 | self.isConfig = False |
|
43 | 49 | self.figures = [] |
|
44 | 50 | self.axes = [] |
|
45 | 51 | self.cb_axes = [] |
|
46 | 52 | self.localtime = kwargs.pop('localtime', True) |
|
47 | 53 | self.show = kwargs.get('show', True) |
|
48 | 54 | self.save = kwargs.get('save', False) |
|
49 | 55 | self.colormap = kwargs.get('colormap', self.colormap) |
|
50 | 56 | self.colormap_coh = kwargs.get('colormap_coh', 'jet') |
|
51 | 57 | self.colormap_phase = kwargs.get('colormap_phase', 'RdBu_r') |
|
52 | 58 | self.colormaps = kwargs.get('colormaps', None) |
|
53 | 59 | self.bgcolor = kwargs.get('bgcolor', self.bgcolor) |
|
54 | 60 | self.showprofile = kwargs.get('showprofile', False) |
|
55 | 61 | self.title = kwargs.get('wintitle', self.CODE.upper()) |
|
56 | 62 | self.cb_label = kwargs.get('cb_label', None) |
|
57 | 63 | self.cb_labels = kwargs.get('cb_labels', None) |
|
58 | 64 | self.xaxis = kwargs.get('xaxis', 'frequency') |
|
59 | 65 | self.zmin = kwargs.get('zmin', None) |
|
60 | 66 | self.zmax = kwargs.get('zmax', None) |
|
61 | 67 | self.zlimits = kwargs.get('zlimits', None) |
|
62 | self.xmin = kwargs.get('xmin', None) | |
|
63 | if self.xmin is not None: | |
|
64 | self.xmin += 5 | |
|
68 | self.xmin = kwargs.get('xmin', None) | |
|
65 | 69 | self.xmax = kwargs.get('xmax', None) |
|
66 | 70 | self.xrange = kwargs.get('xrange', 24) |
|
67 | 71 | self.ymin = kwargs.get('ymin', None) |
|
68 | 72 | self.ymax = kwargs.get('ymax', None) |
|
69 | 73 | self.xlabel = kwargs.get('xlabel', None) |
|
70 | 74 | self.__MAXNUMY = kwargs.get('decimation', 100) |
|
71 | 75 | self.showSNR = kwargs.get('showSNR', False) |
|
72 | 76 | self.oneFigure = kwargs.get('oneFigure', True) |
|
73 | 77 | self.width = kwargs.get('width', None) |
|
74 | 78 | self.height = kwargs.get('height', None) |
|
75 | 79 | self.colorbar = kwargs.get('colorbar', True) |
|
76 | 80 | self.factors = kwargs.get('factors', [1, 1, 1, 1, 1, 1, 1, 1]) |
|
77 | 81 | self.titles = ['' for __ in range(16)] |
|
78 | 82 | |
|
79 | 83 | def __setup(self): |
|
80 | 84 | ''' |
|
81 | 85 | Common setup for all figures, here figures and axes are created |
|
82 | 86 | ''' |
|
83 | 87 | |
|
84 | 88 | self.setup() |
|
85 | 89 | |
|
90 | self.time_label = 'LT' if self.localtime else 'UTC' | |
|
91 | ||
|
86 | 92 | if self.width is None: |
|
87 | 93 | self.width = 8 |
|
88 | 94 | |
|
89 | 95 | self.figures = [] |
|
90 | 96 | self.axes = [] |
|
91 | 97 | self.cb_axes = [] |
|
92 | 98 | self.pf_axes = [] |
|
93 | 99 | self.cmaps = [] |
|
94 | 100 | |
|
95 | 101 | size = '15%' if self.ncols==1 else '30%' |
|
96 | 102 | pad = '4%' if self.ncols==1 else '8%' |
|
97 | 103 | |
|
98 | 104 | if self.oneFigure: |
|
99 | 105 | if self.height is None: |
|
100 | 106 | self.height = 1.4*self.nrows + 1 |
|
101 | 107 | fig = plt.figure(figsize=(self.width, self.height), |
|
102 | 108 | edgecolor='k', |
|
103 | 109 | facecolor='w') |
|
104 | 110 | self.figures.append(fig) |
|
105 | 111 | for n in range(self.nplots): |
|
106 | 112 | ax = fig.add_subplot(self.nrows, self.ncols, n+1) |
|
107 | 113 | ax.tick_params(labelsize=8) |
|
108 | 114 | ax.firsttime = True |
|
115 | ax.index = 0 | |
|
109 | 116 | self.axes.append(ax) |
|
110 | 117 | if self.showprofile: |
|
111 | 118 | cax = self.__add_axes(ax, size=size, pad=pad) |
|
112 | 119 | cax.tick_params(labelsize=8) |
|
113 | 120 | self.pf_axes.append(cax) |
|
114 | 121 | else: |
|
115 | 122 | if self.height is None: |
|
116 | 123 | self.height = 3 |
|
117 | 124 | for n in range(self.nplots): |
|
118 | 125 | fig = plt.figure(figsize=(self.width, self.height), |
|
119 | 126 | edgecolor='k', |
|
120 | 127 | facecolor='w') |
|
121 | 128 | ax = fig.add_subplot(1, 1, 1) |
|
122 | 129 | ax.tick_params(labelsize=8) |
|
123 | 130 | ax.firsttime = True |
|
131 | ax.index = 0 | |
|
124 | 132 | self.figures.append(fig) |
|
125 | 133 | self.axes.append(ax) |
|
126 | 134 | if self.showprofile: |
|
127 | 135 | cax = self.__add_axes(ax, size=size, pad=pad) |
|
128 | 136 | cax.tick_params(labelsize=8) |
|
129 | 137 | self.pf_axes.append(cax) |
|
130 | 138 | |
|
131 | 139 | for n in range(self.nrows): |
|
132 | 140 | if self.colormaps is not None: |
|
133 | 141 | cmap = plt.get_cmap(self.colormaps[n]) |
|
134 | 142 | else: |
|
135 | 143 | cmap = plt.get_cmap(self.colormap) |
|
136 | 144 | cmap.set_bad(self.bgcolor, 1.) |
|
137 | 145 | self.cmaps.append(cmap) |
|
138 | 146 | |
|
147 | for fig in self.figures: | |
|
148 | fig.canvas.mpl_connect('key_press_event', self.event_key_press) | |
|
149 | ||
|
150 | def event_key_press(self, event): | |
|
151 | ''' | |
|
152 | ''' | |
|
153 | ||
|
154 | for ax in self.axes: | |
|
155 | if ax == event.inaxes: | |
|
156 | if event.key == 'down': | |
|
157 | ax.index += 1 | |
|
158 | elif event.key == 'up': | |
|
159 | ax.index -= 1 | |
|
160 | if ax.index < 0: | |
|
161 | ax.index = len(CMAPS) - 1 | |
|
162 | elif ax.index == len(CMAPS): | |
|
163 | ax.index = 0 | |
|
164 | cmap = CMAPS[ax.index] | |
|
165 | ax.cbar.set_cmap(cmap) | |
|
166 | ax.cbar.draw_all() | |
|
167 | ax.plt.set_cmap(cmap) | |
|
168 | ax.cbar.patch.figure.canvas.draw() | |
|
169 | ||
|
139 | 170 | def __add_axes(self, ax, size='30%', pad='8%'): |
|
140 | 171 | ''' |
|
141 | 172 | Add new axes to the given figure |
|
142 | 173 | ''' |
|
143 | 174 | divider = make_axes_locatable(ax) |
|
144 | 175 | nax = divider.new_horizontal(size=size, pad=pad) |
|
145 | 176 | ax.figure.add_axes(nax) |
|
146 | 177 | return nax |
|
147 | 178 | |
|
148 | 179 | self.setup() |
|
149 | 180 | |
|
150 | 181 | def setup(self): |
|
151 | 182 | ''' |
|
152 | 183 | This method should be implemented in the child class, the following |
|
153 | 184 | attributes should be set: |
|
154 | 185 | |
|
155 | 186 | self.nrows: number of rows |
|
156 | 187 | self.ncols: number of cols |
|
157 | 188 | self.nplots: number of plots (channels or pairs) |
|
158 | 189 | self.ylabel: label for Y axes |
|
159 | 190 | self.titles: list of axes title |
|
160 | 191 | |
|
161 | 192 | ''' |
|
162 | 193 | raise(NotImplementedError, 'Implement this method in child class') |
|
163 | 194 | |
|
164 | 195 | def fill_gaps(self, x_buffer, y_buffer, z_buffer): |
|
165 | 196 | ''' |
|
166 | 197 | Create a masked array for missing data |
|
167 | 198 | ''' |
|
168 | 199 | if x_buffer.shape[0] < 2: |
|
169 | 200 | return x_buffer, y_buffer, z_buffer |
|
170 | 201 | |
|
171 | 202 | deltas = x_buffer[1:] - x_buffer[0:-1] |
|
172 | 203 | x_median = numpy.median(deltas) |
|
173 | 204 | |
|
174 | 205 | index = numpy.where(deltas > 5*x_median) |
|
175 | 206 | |
|
176 | 207 | if len(index[0]) != 0: |
|
177 | 208 | z_buffer[::, index[0], ::] = self.__missing |
|
178 | 209 | z_buffer = numpy.ma.masked_inside(z_buffer, |
|
179 | 210 | 0.99*self.__missing, |
|
180 | 211 | 1.01*self.__missing) |
|
181 | 212 | |
|
182 | 213 | return x_buffer, y_buffer, z_buffer |
|
183 | 214 | |
|
184 | 215 | def decimate(self): |
|
185 | 216 | |
|
186 | 217 | # dx = int(len(self.x)/self.__MAXNUMX) + 1 |
|
187 | 218 | dy = int(len(self.y)/self.__MAXNUMY) + 1 |
|
188 | 219 | |
|
189 | 220 | # x = self.x[::dx] |
|
190 | 221 | x = self.x |
|
191 | 222 | y = self.y[::dy] |
|
192 | 223 | z = self.z[::, ::, ::dy] |
|
193 | 224 | |
|
194 | 225 | return x, y, z |
|
195 | 226 | |
|
196 | 227 | def format(self): |
|
197 | 228 | ''' |
|
198 | 229 | Set min and max values, labels, ticks and titles |
|
199 | 230 | ''' |
|
200 | 231 | |
|
201 | 232 | if self.xmin is None: |
|
202 | 233 | xmin = self.min_time |
|
203 | 234 | else: |
|
204 | 235 | if self.xaxis is 'time': |
|
205 | 236 | dt = datetime.datetime.fromtimestamp(self.min_time) |
|
206 | 237 | xmin = (datetime.datetime.combine(dt.date(), |
|
207 |
datetime.time(int(self.xmin), 0, 0))- |
|
|
238 | datetime.time(int(self.xmin), 0, 0))-UT1970).total_seconds() | |
|
208 | 239 | else: |
|
209 | 240 | xmin = self.xmin |
|
210 | 241 | |
|
211 | 242 | if self.xmax is None: |
|
212 | 243 | xmax = xmin+self.xrange*60*60 |
|
213 | 244 | else: |
|
214 | 245 | if self.xaxis is 'time': |
|
215 | 246 | dt = datetime.datetime.fromtimestamp(self.min_time) |
|
216 | 247 | xmax = (datetime.datetime.combine(dt.date(), |
|
217 |
datetime.time(int(self.xmax), 0, 0))- |
|
|
248 | datetime.time(int(self.xmax), 0, 0))-UT1970).total_seconds() | |
|
218 | 249 | else: |
|
219 | 250 | xmax = self.xmax |
|
220 | 251 | |
|
221 | 252 | ymin = self.ymin if self.ymin else numpy.nanmin(self.y) |
|
222 | 253 | ymax = self.ymax if self.ymax else numpy.nanmax(self.y) |
|
223 | 254 | |
|
224 | 255 | ystep = 200 if ymax>= 800 else 100 if ymax>=400 else 50 if ymax>=200 else 20 |
|
225 | 256 | |
|
226 | 257 | for n, ax in enumerate(self.axes): |
|
227 | 258 | if ax.firsttime: |
|
228 | 259 | ax.set_facecolor(self.bgcolor) |
|
229 | 260 | ax.yaxis.set_major_locator(MultipleLocator(ystep)) |
|
230 | 261 | if self.xaxis is 'time': |
|
231 | 262 | ax.xaxis.set_major_formatter(FuncFormatter(func)) |
|
232 | 263 | ax.xaxis.set_major_locator(LinearLocator(9)) |
|
233 | 264 | if self.xlabel is not None: |
|
234 | 265 | ax.set_xlabel(self.xlabel) |
|
235 | 266 | ax.set_ylabel(self.ylabel) |
|
236 | 267 | ax.firsttime = False |
|
237 | 268 | if self.showprofile: |
|
238 | 269 | self.pf_axes[n].set_ylim(ymin, ymax) |
|
239 | 270 | self.pf_axes[n].set_xlim(self.zmin, self.zmax) |
|
240 | 271 | self.pf_axes[n].set_xlabel('dB') |
|
241 | 272 | self.pf_axes[n].grid(b=True, axis='x') |
|
242 | 273 | [tick.set_visible(False) for tick in self.pf_axes[n].get_yticklabels()] |
|
243 | 274 | if self.colorbar: |
|
244 | cb = plt.colorbar(ax.plt, ax=ax, pad=0.02) | |
|
245 | cb.ax.tick_params(labelsize=8) | |
|
275 | ax.cbar = plt.colorbar(ax.plt, ax=ax, pad=0.02, aspect=10) | |
|
276 | ax.cbar.ax.tick_params(labelsize=8) | |
|
246 | 277 | if self.cb_label: |
|
247 | cb.set_label(self.cb_label, size=8) | |
|
278 | ax.cbar.set_label(self.cb_label, size=8) | |
|
248 | 279 | elif self.cb_labels: |
|
249 | cb.set_label(self.cb_labels[n], size=8) | |
|
250 | ||
|
251 |
ax.set_title('{} - {} |
|
|
280 | ax.cbar.set_label(self.cb_labels[n], size=8) | |
|
281 | ||
|
282 | ax.set_title('{} - {} {}'.format( | |
|
252 | 283 | self.titles[n], |
|
253 |
datetime.datetime.fromtimestamp(self.max_time).strftime('%H:%M:%S') |
|
|
284 | datetime.datetime.fromtimestamp(self.max_time).strftime('%H:%M:%S'), | |
|
285 | self.time_label), | |
|
254 | 286 | size=8) |
|
255 | 287 | ax.set_xlim(xmin, xmax) |
|
256 | 288 | ax.set_ylim(ymin, ymax) |
|
257 | ||
|
258 | 289 | |
|
259 | 290 | def __plot(self): |
|
260 | 291 | ''' |
|
261 | 292 | ''' |
|
262 | 293 | log.success('Plotting', self.name) |
|
263 | 294 | |
|
264 | 295 | self.plot() |
|
265 | 296 | self.format() |
|
266 | 297 | |
|
267 | 298 | for n, fig in enumerate(self.figures): |
|
268 | 299 | if self.nrows == 0 or self.nplots == 0: |
|
269 | 300 | log.warning('No data', self.name) |
|
270 | 301 | continue |
|
271 | 302 | if self.show: |
|
272 | 303 | fig.show() |
|
273 | 304 | |
|
274 | 305 | fig.tight_layout() |
|
275 | 306 | fig.canvas.manager.set_window_title('{} - {}'.format(self.title, |
|
276 | 307 | datetime.datetime.fromtimestamp(self.max_time).strftime('%Y/%m/%d'))) |
|
277 | 308 | # fig.canvas.draw() |
|
278 | 309 | |
|
279 | 310 | if self.save and self.data.ended: |
|
280 | 311 | channels = range(self.nrows) |
|
281 | 312 | if self.oneFigure: |
|
282 | 313 | label = '' |
|
283 | 314 | else: |
|
284 | 315 | label = '_{}'.format(channels[n]) |
|
285 | 316 | figname = os.path.join( |
|
286 | 317 | self.save, |
|
287 | 318 | '{}{}_{}.png'.format( |
|
288 | 319 | self.CODE, |
|
289 | 320 | label, |
|
290 | 321 | datetime.datetime.fromtimestamp(self.saveTime).strftime('%y%m%d_%H%M%S') |
|
291 | 322 | ) |
|
292 | 323 | ) |
|
293 | 324 | print 'Saving figure: {}'.format(figname) |
|
294 | 325 | fig.savefig(figname) |
|
295 | 326 | |
|
296 | 327 | def plot(self): |
|
297 | 328 | ''' |
|
298 | 329 | ''' |
|
299 | 330 | raise(NotImplementedError, 'Implement this method in child class') |
|
300 | 331 | |
|
301 | 332 | def run(self): |
|
302 | 333 | |
|
303 | 334 | log.success('Starting', self.name) |
|
304 | 335 | |
|
305 | 336 | context = zmq.Context() |
|
306 | 337 | receiver = context.socket(zmq.SUB) |
|
307 | 338 | receiver.setsockopt(zmq.SUBSCRIBE, '') |
|
308 | 339 | receiver.setsockopt(zmq.CONFLATE, self.CONFLATE) |
|
309 | 340 | |
|
310 | 341 | if 'server' in self.kwargs['parent']: |
|
311 | 342 | receiver.connect('ipc:///tmp/{}.plots'.format(self.kwargs['parent']['server'])) |
|
312 | 343 | else: |
|
313 | 344 | receiver.connect("ipc:///tmp/zmq.plots") |
|
314 | 345 | |
|
315 | 346 | while True: |
|
316 | 347 | try: |
|
317 |
self.data = receiver.recv_pyobj(flags=zmq.NOBLOCK) |
|
|
348 | self.data = receiver.recv_pyobj(flags=zmq.NOBLOCK) | |
|
349 | ||
|
350 | if self.localtime: | |
|
351 | self.times = self.data.times - time.timezone | |
|
352 | else: | |
|
353 | self.times = self.data.times | |
|
318 | 354 | |
|
319 |
self.min_time = self. |
|
|
320 |
self.max_time = self. |
|
|
355 | self.min_time = self.times[0] | |
|
356 | self.max_time = self.times[-1] | |
|
321 | 357 | |
|
322 | 358 | if self.isConfig is False: |
|
323 | 359 | self.__setup() |
|
324 | 360 | self.isConfig = True |
|
325 | 361 | |
|
326 | 362 | self.__plot() |
|
327 | 363 | |
|
328 | 364 | except zmq.Again as e: |
|
329 | 365 | log.log('Waiting for data...') |
|
330 | 366 | if self.data: |
|
331 | 367 | plt.pause(self.data.throttle) |
|
332 | 368 | else: |
|
333 | 369 | time.sleep(2) |
|
334 | 370 | |
|
335 | 371 | def close(self): |
|
336 | 372 | if self.data: |
|
337 | 373 | self.__plot() |
|
338 | 374 | |
|
339 | 375 | class PlotSpectraData(PlotData): |
|
340 | 376 | ''' |
|
341 | 377 | Plot for Spectra data |
|
342 | 378 | ''' |
|
343 | 379 | |
|
344 | 380 | CODE = 'spc' |
|
345 | 381 | colormap = 'jro' |
|
346 | 382 | |
|
347 | 383 | def setup(self): |
|
348 | 384 | self.nplots = len(self.data.channels) |
|
349 | 385 | self.ncols = int(numpy.sqrt(self.nplots)+ 0.9) |
|
350 | 386 | self.nrows = int((1.0*self.nplots/self.ncols) + 0.9) |
|
351 | 387 | self.width = 3.4*self.ncols |
|
352 | 388 | self.height = 3*self.nrows |
|
353 | 389 | self.cb_label = 'dB' |
|
354 | 390 | if self.showprofile: |
|
355 | 391 | self.width += 0.8*self.ncols |
|
356 | 392 | |
|
357 | 393 | self.ylabel = 'Range [Km]' |
|
358 | 394 | |
|
359 | 395 | def plot(self): |
|
360 | 396 | if self.xaxis == "frequency": |
|
361 | 397 | x = self.data.xrange[0] |
|
362 | 398 | self.xlabel = "Frequency (kHz)" |
|
363 | 399 | elif self.xaxis == "time": |
|
364 | 400 | x = self.data.xrange[1] |
|
365 | 401 | self.xlabel = "Time (ms)" |
|
366 | 402 | else: |
|
367 | 403 | x = self.data.xrange[2] |
|
368 | 404 | self.xlabel = "Velocity (m/s)" |
|
369 | 405 | |
|
370 | 406 | if self.CODE == 'spc_mean': |
|
371 | 407 | x = self.data.xrange[2] |
|
372 | 408 | self.xlabel = "Velocity (m/s)" |
|
373 | 409 | |
|
374 | 410 | self.titles = [] |
|
375 | 411 | |
|
376 | 412 | y = self.data.heights |
|
377 | 413 | self.y = y |
|
378 | 414 | z = self.data['spc'] |
|
379 | 415 | |
|
380 | 416 | for n, ax in enumerate(self.axes): |
|
381 | 417 | noise = self.data['noise'][n][-1] |
|
382 | 418 | if self.CODE == 'spc_mean': |
|
383 | 419 | mean = self.data['mean'][n][-1] |
|
384 | 420 | if ax.firsttime: |
|
385 | 421 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
386 | 422 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
387 | 423 | self.zmin = self.zmin if self.zmin else numpy.nanmin(z) |
|
388 | 424 | self.zmax = self.zmax if self.zmax else numpy.nanmax(z) |
|
389 | 425 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
390 | 426 | vmin=self.zmin, |
|
391 | 427 | vmax=self.zmax, |
|
392 | 428 | cmap=plt.get_cmap(self.colormap) |
|
393 | 429 | ) |
|
394 | 430 | |
|
395 | 431 | if self.showprofile: |
|
396 | 432 | ax.plt_profile= self.pf_axes[n].plot(self.data['rti'][n][-1], y)[0] |
|
397 | 433 | ax.plt_noise = self.pf_axes[n].plot(numpy.repeat(noise, len(y)), y, |
|
398 | 434 | color="k", linestyle="dashed", lw=1)[0] |
|
399 | 435 | if self.CODE == 'spc_mean': |
|
400 | 436 | ax.plt_mean = ax.plot(mean, y, color='k')[0] |
|
401 | 437 | else: |
|
402 | 438 | ax.plt.set_array(z[n].T.ravel()) |
|
403 | 439 | if self.showprofile: |
|
404 | 440 | ax.plt_profile.set_data(self.data['rti'][n][-1], y) |
|
405 | 441 | ax.plt_noise.set_data(numpy.repeat(noise, len(y)), y) |
|
406 | 442 | if self.CODE == 'spc_mean': |
|
407 | 443 | ax.plt_mean.set_data(mean, y) |
|
408 | 444 | |
|
409 | 445 | self.titles.append('CH {}: {:3.2f}dB'.format(n, noise)) |
|
410 | 446 | self.saveTime = self.max_time |
|
411 | 447 | |
|
412 | 448 | |
|
413 | 449 | class PlotCrossSpectraData(PlotData): |
|
414 | 450 | |
|
415 | 451 | CODE = 'cspc' |
|
416 | 452 | zmin_coh = None |
|
417 | 453 | zmax_coh = None |
|
418 | 454 | zmin_phase = None |
|
419 | 455 | zmax_phase = None |
|
420 | 456 | |
|
421 | 457 | def setup(self): |
|
422 | 458 | |
|
423 | 459 | self.ncols = 4 |
|
424 | 460 | self.nrows = len(self.data.pairs) |
|
425 | 461 | self.nplots = self.nrows*4 |
|
426 | 462 | self.width = 3.4*self.ncols |
|
427 | 463 | self.height = 3*self.nrows |
|
428 | 464 | self.ylabel = 'Range [Km]' |
|
429 | 465 | self.showprofile = False |
|
430 | 466 | |
|
431 | 467 | def plot(self): |
|
432 | 468 | |
|
433 | 469 | if self.xaxis == "frequency": |
|
434 | 470 | x = self.data.xrange[0] |
|
435 | 471 | self.xlabel = "Frequency (kHz)" |
|
436 | 472 | elif self.xaxis == "time": |
|
437 | 473 | x = self.data.xrange[1] |
|
438 | 474 | self.xlabel = "Time (ms)" |
|
439 | 475 | else: |
|
440 | 476 | x = self.data.xrange[2] |
|
441 | 477 | self.xlabel = "Velocity (m/s)" |
|
442 | 478 | |
|
443 | 479 | self.titles = [] |
|
444 | 480 | |
|
445 | 481 | y = self.data.heights |
|
446 | 482 | self.y = y |
|
447 | 483 | spc = self.data['spc'] |
|
448 | 484 | cspc = self.data['cspc'] |
|
449 | 485 | |
|
450 | 486 | for n in range(self.nrows): |
|
451 | 487 | noise = self.data['noise'][n][-1] |
|
452 | 488 | pair = self.data.pairs[n] |
|
453 | 489 | ax = self.axes[4*n] |
|
454 | 490 | ax3 = self.axes[4*n+3] |
|
455 | 491 | if ax.firsttime: |
|
456 | 492 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
457 | 493 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
458 | 494 | self.zmin = self.zmin if self.zmin else numpy.nanmin(spc) |
|
459 | 495 | self.zmax = self.zmax if self.zmax else numpy.nanmax(spc) |
|
460 | 496 | ax.plt = ax.pcolormesh(x, y, spc[pair[0]].T, |
|
461 | 497 | vmin=self.zmin, |
|
462 | 498 | vmax=self.zmax, |
|
463 | 499 | cmap=plt.get_cmap(self.colormap) |
|
464 | 500 | ) |
|
465 | 501 | else: |
|
466 | 502 | ax.plt.set_array(spc[pair[0]].T.ravel()) |
|
467 | 503 | self.titles.append('CH {}: {:3.2f}dB'.format(n, noise)) |
|
468 | 504 | |
|
469 | 505 | ax = self.axes[4*n+1] |
|
470 | 506 | if ax.firsttime: |
|
471 | 507 | ax.plt = ax.pcolormesh(x, y, spc[pair[1]].T, |
|
472 | 508 | vmin=self.zmin, |
|
473 | 509 | vmax=self.zmax, |
|
474 | 510 | cmap=plt.get_cmap(self.colormap) |
|
475 | 511 | ) |
|
476 | 512 | else: |
|
477 | 513 | ax.plt.set_array(spc[pair[1]].T.ravel()) |
|
478 | 514 | self.titles.append('CH {}: {:3.2f}dB'.format(n, noise)) |
|
479 | 515 | |
|
480 | 516 | out = cspc[n]/numpy.sqrt(spc[pair[0]]*spc[pair[1]]) |
|
481 | 517 | coh = numpy.abs(out) |
|
482 | 518 | phase = numpy.arctan2(out.imag, out.real)*180/numpy.pi |
|
483 | 519 | |
|
484 | 520 | ax = self.axes[4*n+2] |
|
485 | 521 | if ax.firsttime: |
|
486 | 522 | ax.plt = ax.pcolormesh(x, y, coh.T, |
|
487 | 523 | vmin=0, |
|
488 | 524 | vmax=1, |
|
489 | 525 | cmap=plt.get_cmap(self.colormap_coh) |
|
490 | 526 | ) |
|
491 | 527 | else: |
|
492 | 528 | ax.plt.set_array(coh.T.ravel()) |
|
493 | 529 | self.titles.append('Coherence Ch{} * Ch{}'.format(pair[0], pair[1])) |
|
494 | 530 | |
|
495 | 531 | ax = self.axes[4*n+3] |
|
496 | 532 | if ax.firsttime: |
|
497 | 533 | ax.plt = ax.pcolormesh(x, y, phase.T, |
|
498 | 534 | vmin=-180, |
|
499 | 535 | vmax=180, |
|
500 | 536 | cmap=plt.get_cmap(self.colormap_phase) |
|
501 | 537 | ) |
|
502 | 538 | else: |
|
503 | 539 | ax.plt.set_array(phase.T.ravel()) |
|
504 | 540 | self.titles.append('Phase CH{} * CH{}'.format(pair[0], pair[1])) |
|
505 | 541 | |
|
506 | 542 | self.saveTime = self.max_time |
|
507 | 543 | |
|
508 | 544 | |
|
509 | 545 | class PlotSpectraMeanData(PlotSpectraData): |
|
510 | 546 | ''' |
|
511 | 547 | Plot for Spectra and Mean |
|
512 | 548 | ''' |
|
513 | 549 | CODE = 'spc_mean' |
|
514 | 550 | colormap = 'jro' |
|
515 | 551 | |
|
516 | 552 | |
|
517 | 553 | class PlotRTIData(PlotData): |
|
518 | 554 | ''' |
|
519 | 555 | Plot for RTI data |
|
520 | 556 | ''' |
|
521 | 557 | |
|
522 | 558 | CODE = 'rti' |
|
523 | 559 | colormap = 'jro' |
|
524 | 560 | |
|
525 | 561 | def setup(self): |
|
526 | 562 | self.xaxis = 'time' |
|
527 | 563 | self.ncols = 1 |
|
528 | 564 | self.nrows = len(self.data.channels) |
|
529 | 565 | self.nplots = len(self.data.channels) |
|
530 | 566 | self.ylabel = 'Range [Km]' |
|
531 | 567 | self.cb_label = 'dB' |
|
532 | 568 | self.titles = ['{} Channel {}'.format(self.CODE.upper(), x) for x in range(self.nrows)] |
|
533 | 569 | |
|
534 | 570 | def plot(self): |
|
535 |
self.x = self. |
|
|
571 | self.x = self.times | |
|
536 | 572 | self.y = self.data.heights |
|
537 | 573 | self.z = self.data[self.CODE] |
|
538 | 574 | self.z = numpy.ma.masked_invalid(self.z) |
|
539 | 575 | |
|
540 | 576 | for n, ax in enumerate(self.axes): |
|
541 | 577 | x, y, z = self.fill_gaps(*self.decimate()) |
|
542 | 578 | self.zmin = self.zmin if self.zmin else numpy.min(self.z) |
|
543 | 579 | self.zmax = self.zmax if self.zmax else numpy.max(self.z) |
|
544 | 580 | if ax.firsttime: |
|
545 | 581 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
546 | 582 | vmin=self.zmin, |
|
547 | 583 | vmax=self.zmax, |
|
548 | 584 | cmap=plt.get_cmap(self.colormap) |
|
549 | 585 | ) |
|
550 | 586 | if self.showprofile: |
|
551 | 587 | ax.plot_profile= self.pf_axes[n].plot(self.data['rti'][n][-1], self.y)[0] |
|
552 | 588 | ax.plot_noise = self.pf_axes[n].plot(numpy.repeat(self.data['noise'][n][-1], len(self.y)), self.y, |
|
553 | 589 | color="k", linestyle="dashed", lw=1)[0] |
|
554 | 590 | else: |
|
555 | 591 | ax.collections.remove(ax.collections[0]) |
|
556 | 592 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
557 | 593 | vmin=self.zmin, |
|
558 | 594 | vmax=self.zmax, |
|
559 | 595 | cmap=plt.get_cmap(self.colormap) |
|
560 | 596 | ) |
|
561 | 597 | if self.showprofile: |
|
562 | 598 | ax.plot_profile.set_data(self.data['rti'][n][-1], self.y) |
|
563 | 599 | ax.plot_noise.set_data(numpy.repeat(self.data['noise'][n][-1], len(self.y)), self.y) |
|
564 | 600 | |
|
565 | 601 | self.saveTime = self.min_time |
|
566 | 602 | |
|
567 | 603 | |
|
568 | 604 | class PlotCOHData(PlotRTIData): |
|
569 | 605 | ''' |
|
570 | 606 | Plot for Coherence data |
|
571 | 607 | ''' |
|
572 | 608 | |
|
573 | 609 | CODE = 'coh' |
|
574 | 610 | |
|
575 | 611 | def setup(self): |
|
576 | 612 | self.xaxis = 'time' |
|
577 | 613 | self.ncols = 1 |
|
578 | 614 | self.nrows = len(self.data.pairs) |
|
579 | 615 | self.nplots = len(self.data.pairs) |
|
580 | 616 | self.ylabel = 'Range [Km]' |
|
581 | 617 | if self.CODE == 'coh': |
|
582 | 618 | self.cb_label = '' |
|
583 | 619 | self.titles = ['Coherence Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs] |
|
584 | 620 | else: |
|
585 | 621 | self.cb_label = 'Degrees' |
|
586 | 622 | self.titles = ['Phase Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs] |
|
587 | 623 | |
|
588 | 624 | |
|
589 | 625 | class PlotPHASEData(PlotCOHData): |
|
590 | 626 | ''' |
|
591 | 627 | Plot for Phase map data |
|
592 | 628 | ''' |
|
593 | 629 | |
|
594 | 630 | CODE = 'phase' |
|
595 | 631 | colormap = 'seismic' |
|
596 | 632 | |
|
597 | 633 | |
|
598 | 634 | class PlotNoiseData(PlotData): |
|
599 | 635 | ''' |
|
600 | 636 | Plot for noise |
|
601 | 637 | ''' |
|
602 | 638 | |
|
603 | 639 | CODE = 'noise' |
|
604 | 640 | |
|
605 | 641 | def setup(self): |
|
606 | 642 | self.xaxis = 'time' |
|
607 | 643 | self.ncols = 1 |
|
608 | 644 | self.nrows = 1 |
|
609 | 645 | self.nplots = 1 |
|
610 | 646 | self.ylabel = 'Intensity [dB]' |
|
611 | 647 | self.titles = ['Noise'] |
|
612 | 648 | self.colorbar = False |
|
613 | 649 | |
|
614 | 650 | def plot(self): |
|
615 | 651 | |
|
616 |
x = self. |
|
|
652 | x = self.times | |
|
617 | 653 | xmin = self.min_time |
|
618 | 654 | xmax = xmin+self.xrange*60*60 |
|
619 | 655 | Y = self.data[self.CODE] |
|
620 | 656 | |
|
621 | 657 | if self.axes[0].firsttime: |
|
622 | 658 | for ch in self.data.channels: |
|
623 | 659 | y = Y[ch] |
|
624 | 660 | self.axes[0].plot(x, y, lw=1, label='Ch{}'.format(ch)) |
|
625 | 661 | plt.legend() |
|
626 | 662 | else: |
|
627 | 663 | for ch in self.data.channels: |
|
628 | 664 | y = Y[ch] |
|
629 | 665 | self.axes[0].lines[ch].set_data(x, y) |
|
630 | 666 | |
|
631 | 667 | self.ymin = numpy.nanmin(Y) - 5 |
|
632 | 668 | self.ymax = numpy.nanmax(Y) + 5 |
|
633 | 669 | self.saveTime = self.min_time |
|
634 | 670 | |
|
635 | 671 | |
|
636 | 672 | class PlotSNRData(PlotRTIData): |
|
637 | 673 | ''' |
|
638 | 674 | Plot for SNR Data |
|
639 | 675 | ''' |
|
640 | 676 | |
|
641 | 677 | CODE = 'snr' |
|
642 | 678 | colormap = 'jet' |
|
643 | 679 | |
|
644 | 680 | |
|
645 | 681 | class PlotDOPData(PlotRTIData): |
|
646 | 682 | ''' |
|
647 | 683 | Plot for DOPPLER Data |
|
648 | 684 | ''' |
|
649 | 685 | |
|
650 | 686 | CODE = 'dop' |
|
651 | 687 | colormap = 'jet' |
|
652 | 688 | |
|
653 | 689 | |
|
654 | 690 | class PlotSkyMapData(PlotData): |
|
655 | 691 | ''' |
|
656 | 692 | Plot for meteors detection data |
|
657 | 693 | ''' |
|
658 | 694 | |
|
659 | 695 | CODE = 'met' |
|
660 | 696 | |
|
661 | 697 | def setup(self): |
|
662 | 698 | |
|
663 | 699 | self.ncols = 1 |
|
664 | 700 | self.nrows = 1 |
|
665 | 701 | self.width = 7.2 |
|
666 | 702 | self.height = 7.2 |
|
667 | 703 | |
|
668 | 704 | self.xlabel = 'Zonal Zenith Angle (deg)' |
|
669 | 705 | self.ylabel = 'Meridional Zenith Angle (deg)' |
|
670 | 706 | |
|
671 | 707 | if self.figure is None: |
|
672 | 708 | self.figure = plt.figure(figsize=(self.width, self.height), |
|
673 | 709 | edgecolor='k', |
|
674 | 710 | facecolor='w') |
|
675 | 711 | else: |
|
676 | 712 | self.figure.clf() |
|
677 | 713 | |
|
678 | 714 | self.ax = plt.subplot2grid((self.nrows, self.ncols), (0, 0), 1, 1, polar=True) |
|
679 | 715 | self.ax.firsttime = True |
|
680 | 716 | |
|
681 | 717 | |
|
682 | 718 | def plot(self): |
|
683 | 719 | |
|
684 |
arrayParameters = numpy.concatenate([self.data['param'][t] for t in self. |
|
|
720 | arrayParameters = numpy.concatenate([self.data['param'][t] for t in self.times]) | |
|
685 | 721 | error = arrayParameters[:,-1] |
|
686 | 722 | indValid = numpy.where(error == 0)[0] |
|
687 | 723 | finalMeteor = arrayParameters[indValid,:] |
|
688 | 724 | finalAzimuth = finalMeteor[:,3] |
|
689 | 725 | finalZenith = finalMeteor[:,4] |
|
690 | 726 | |
|
691 | 727 | x = finalAzimuth*numpy.pi/180 |
|
692 | 728 | y = finalZenith |
|
693 | 729 | |
|
694 | 730 | if self.ax.firsttime: |
|
695 | 731 | self.ax.plot = self.ax.plot(x, y, 'bo', markersize=5)[0] |
|
696 | 732 | self.ax.set_ylim(0,90) |
|
697 | 733 | self.ax.set_yticks(numpy.arange(0,90,20)) |
|
698 | 734 | self.ax.set_xlabel(self.xlabel) |
|
699 | 735 | self.ax.set_ylabel(self.ylabel) |
|
700 | 736 | self.ax.yaxis.labelpad = 40 |
|
701 | 737 | self.ax.firsttime = False |
|
702 | 738 | else: |
|
703 | 739 | self.ax.plot.set_data(x, y) |
|
704 | 740 | |
|
705 | 741 | |
|
706 | 742 | dt1 = datetime.datetime.fromtimestamp(self.min_time).strftime('%y/%m/%d %H:%M:%S') |
|
707 | 743 | dt2 = datetime.datetime.fromtimestamp(self.max_time).strftime('%y/%m/%d %H:%M:%S') |
|
708 | 744 | title = 'Meteor Detection Sky Map\n %s - %s \n Number of events: %5.0f\n' % (dt1, |
|
709 | 745 | dt2, |
|
710 | 746 | len(x)) |
|
711 | 747 | self.ax.set_title(title, size=8) |
|
712 | 748 | |
|
713 | 749 | self.saveTime = self.max_time |
|
714 | 750 | |
|
715 | 751 | class PlotParamData(PlotRTIData): |
|
716 | 752 | ''' |
|
717 | 753 | Plot for data_param object |
|
718 | 754 | ''' |
|
719 | 755 | |
|
720 | 756 | CODE = 'param' |
|
721 | 757 | colormap = 'seismic' |
|
722 | 758 | |
|
723 | 759 | def setup(self): |
|
724 | 760 | self.xaxis = 'time' |
|
725 | 761 | self.ncols = 1 |
|
726 | 762 | self.nrows = self.data.shape(self.CODE)[0] |
|
727 | 763 | self.nplots = self.nrows |
|
728 | 764 | if self.showSNR: |
|
729 | 765 | self.nrows += 1 |
|
730 | 766 | self.nplots += 1 |
|
731 | 767 | |
|
732 | 768 | self.ylabel = 'Height [Km]' |
|
733 | 769 | self.titles = self.data.parameters \ |
|
734 | 770 | if self.data.parameters else ['Param {}'.format(x) for x in xrange(self.nrows)] |
|
735 | 771 | if self.showSNR: |
|
736 | 772 | self.titles.append('SNR') |
|
737 | 773 | |
|
738 | 774 | def plot(self): |
|
739 | 775 | self.data.normalize_heights() |
|
740 |
self.x = self. |
|
|
776 | self.x = self.times | |
|
741 | 777 | self.y = self.data.heights |
|
742 | 778 | if self.showSNR: |
|
743 | 779 | self.z = numpy.concatenate( |
|
744 | 780 | (self.data[self.CODE], self.data['snr']) |
|
745 | 781 | ) |
|
746 | 782 | else: |
|
747 | 783 | self.z = self.data[self.CODE] |
|
748 | 784 | |
|
749 | 785 | self.z = numpy.ma.masked_invalid(self.z) |
|
750 | 786 | |
|
751 | 787 | for n, ax in enumerate(self.axes): |
|
752 | 788 | |
|
753 | 789 | x, y, z = self.fill_gaps(*self.decimate()) |
|
754 | 790 | |
|
755 | 791 | if ax.firsttime: |
|
756 | 792 | if self.zlimits is not None: |
|
757 | 793 | self.zmin, self.zmax = self.zlimits[n] |
|
758 | 794 | self.zmax = self.zmax if self.zmax is not None else numpy.nanmax(abs(self.z[:-1, :])) |
|
759 | 795 | self.zmin = self.zmin if self.zmin is not None else -self.zmax |
|
760 | 796 | ax.plt = ax.pcolormesh(x, y, z[n, :, :].T*self.factors[n], |
|
761 | 797 | vmin=self.zmin, |
|
762 | 798 | vmax=self.zmax, |
|
763 | 799 | cmap=self.cmaps[n] |
|
764 | 800 | ) |
|
765 | 801 | else: |
|
766 | 802 | if self.zlimits is not None: |
|
767 | 803 | self.zmin, self.zmax = self.zlimits[n] |
|
768 | 804 | ax.collections.remove(ax.collections[0]) |
|
769 | 805 | ax.plt = ax.pcolormesh(x, y, z[n, :, :].T*self.factors[n], |
|
770 | 806 | vmin=self.zmin, |
|
771 | 807 | vmax=self.zmax, |
|
772 | 808 | cmap=self.cmaps[n] |
|
773 | 809 | ) |
|
774 | 810 | |
|
775 | 811 | self.saveTime = self.min_time |
|
776 | 812 | |
|
777 | 813 | class PlotOuputData(PlotParamData): |
|
778 | 814 | ''' |
|
779 | 815 | Plot data_output object |
|
780 | 816 | ''' |
|
781 | 817 | |
|
782 | 818 | CODE = 'output' |
|
783 | 819 | colormap = 'seismic' |
General Comments 0
You need to be logged in to leave comments.
Login now