bltrproc_parameters.py
402 lines
| 15.6 KiB
| text/x-python
|
PythonLexer
|
r965 | ''' | |
Created on Oct 24, 2016 | |||
@author: roj- LouVD | |||
''' | |||
import numpy | |||
import copy | |||
import datetime | |||
import time | |||
from time import gmtime | |||
from numpy import transpose | |||
|
r1018 | from jroproc_base import ProcessingUnit, Operation | |
from schainpy.model.data.jrodata import Parameters | |||
|
r965 | ||
|
r1010 | class BLTRParametersProc(ProcessingUnit): | |
|
r965 | ''' | |
|
r1010 | Processing unit for BLTR parameters data (winds) | |
|
r965 | Inputs: | |
self.dataOut.nmodes - Number of operation modes | |||
self.dataOut.nchannels - Number of channels | |||
self.dataOut.nranges - Number of ranges | |||
|
r1010 | ||
|
r965 | self.dataOut.data_SNR - SNR array | |
self.dataOut.data_output - Zonal, Vertical and Meridional velocity array | |||
self.dataOut.height - Height array (km) | |||
self.dataOut.time - Time array (seconds) | |||
|
r1010 | ||
|
r965 | self.dataOut.fileIndex -Index of the file currently read | |
self.dataOut.lat - Latitude coordinate of BLTR location | |||
|
r1010 | ||
|
r965 | self.dataOut.doy - Experiment doy (number of the day in the current year) | |
self.dataOut.month - Experiment month | |||
self.dataOut.day - Experiment day | |||
self.dataOut.year - Experiment year | |||
''' | |||
|
r1010 | ||
def __init__(self, **kwargs): | |||
|
r965 | ''' | |
|
r1010 | Inputs: None | |
|
r965 | ''' | |
|
r1006 | ProcessingUnit.__init__(self, **kwargs) | |
|
r965 | self.dataOut = Parameters() | |
|
r1021 | self.isConfig = False | |
|
r965 | ||
|
r1021 | def setup(self, mode): | |
''' | |||
|
r1010 | ''' | |
|
r1021 | self.dataOut.mode = mode | |
|
r1018 | ||
|
r1021 | def run(self, mode, snr_threshold=None): | |
''' | |||
|
r1018 | Inputs: | |
mode = High resolution (0) or Low resolution (1) data | |||
snr_threshold = snr filter value | |||
|
r1010 | ''' | |
|
r1021 | ||
if not self.isConfig: | |||
self.setup(mode) | |||
self.isConfig = True | |||
|
r1018 | if self.dataIn.type == 'Parameters': | |
|
r965 | self.dataOut.copy(self.dataIn) | |
|
r1085 | ||
self.dataOut.data_param = self.dataOut.data[mode] | |||
|
r1018 | self.dataOut.heightList = self.dataOut.height[0] | |
self.dataOut.data_SNR = self.dataOut.data_SNR[mode] | |||
|
r965 | ||
|
r1018 | if snr_threshold is not None: | |
SNRavg = numpy.average(self.dataOut.data_SNR, axis=0) | |||
SNRavgdB = 10*numpy.log10(SNRavg) | |||
for i in range(3): | |||
|
r1085 | self.dataOut.data_param[i][SNRavgdB <= snr_threshold] = numpy.nan | |
|
r1018 | ||
# TODO | |||
class OutliersFilter(Operation): | |||
def __init__(self, **kwargs): | |||
|
r965 | ''' | |
''' | |||
|
r1018 | Operation.__init__(self, **kwargs) | |
|
r965 | ||
|
r1018 | def run(self, svalue2, method, factor, filter, npoints=9): | |
|
r965 | ''' | |
Inputs: | |||
svalue - string to select array velocity | |||
svalue2 - string to choose axis filtering | |||
method - 0 for SMOOTH or 1 for MEDIAN | |||
|
r1018 | factor - number used to set threshold | |
|
r965 | filter - 1 for data filtering using the standard deviation criteria else 0 | |
npoints - number of points for mask filter | |||
|
r1018 | ''' | |
print ' Outliers Filter {} {} / threshold = {}'.format(svalue, svalue, factor) | |||
|
r965 | ||
|
r1018 | yaxis = self.dataOut.heightList | |
xaxis = numpy.array([[self.dataOut.utctime]]) | |||
|
r965 | ||
|
r1018 | # Zonal | |
value_temp = self.dataOut.data_output[0] | |||
|
r965 | ||
|
r1018 | # Zonal | |
value_temp = self.dataOut.data_output[1] | |||
|
r965 | ||
|
r1018 | # Vertical | |
value_temp = numpy.transpose(self.dataOut.data_output[2]) | |||
htemp = yaxis | |||
|
r965 | std = value_temp | |
for h in range(len(htemp)): | |||
nvalues_valid = len(numpy.where(numpy.isfinite(value_temp[h]))[0]) | |||
|
r1018 | minvalid = npoints | |
|
r965 | ||
#only if valid values greater than the minimum required (10%) | |||
if nvalues_valid > minvalid: | |||
if method == 0: | |||
#SMOOTH | |||
w = value_temp[h] - self.Smooth(input=value_temp[h], width=npoints, edge_truncate=1) | |||
if method == 1: | |||
#MEDIAN | |||
w = value_temp[h] - self.Median(input=value_temp[h], width = npoints) | |||
dw = numpy.std(w[numpy.where(numpy.isfinite(w))],ddof = 1) | |||
threshold = dw*factor | |||
value_temp[numpy.where(w > threshold),h] = numpy.nan | |||
value_temp[numpy.where(w < -1*threshold),h] = numpy.nan | |||
#At the end | |||
if svalue2 == 'inHeight': | |||
value_temp = numpy.transpose(value_temp) | |||
output_array[:,m] = value_temp | |||
if svalue == 'zonal': | |||
self.dataOut.data_output[0] = output_array | |||
elif svalue == 'meridional': | |||
self.dataOut.data_output[1] = output_array | |||
elif svalue == 'vertical': | |||
self.dataOut.data_output[2] = output_array | |||
return self.dataOut.data_output | |||
def Median(self,input,width): | |||
''' | |||
Inputs: | |||
input - Velocity array | |||
width - Number of points for mask filter | |||
''' | |||
if numpy.mod(width,2) == 1: | |||
pc = int((width - 1) / 2) | |||
cont = 0 | |||
output = [] | |||
for i in range(len(input)): | |||
if i >= pc and i < len(input) - pc: | |||
new2 = input[i-pc:i+pc+1] | |||
temp = numpy.where(numpy.isfinite(new2)) | |||
new = new2[temp] | |||
value = numpy.median(new) | |||
output.append(value) | |||
output = numpy.array(output) | |||
output = numpy.hstack((input[0:pc],output)) | |||
output = numpy.hstack((output,input[-pc:len(input)])) | |||
return output | |||
def Smooth(self,input,width,edge_truncate = None): | |||
''' | |||
Inputs: | |||
input - Velocity array | |||
width - Number of points for mask filter | |||
edge_truncate - 1 for truncate the convolution product else | |||
''' | |||
if numpy.mod(width,2) == 0: | |||
real_width = width + 1 | |||
nzeros = width / 2 | |||
else: | |||
real_width = width | |||
nzeros = (width - 1) / 2 | |||
half_width = int(real_width)/2 | |||
length = len(input) | |||
gate = numpy.ones(real_width,dtype='float') | |||
norm_of_gate = numpy.sum(gate) | |||
nan_process = 0 | |||
nan_id = numpy.where(numpy.isnan(input)) | |||
if len(nan_id[0]) > 0: | |||
nan_process = 1 | |||
pb = numpy.zeros(len(input)) | |||
pb[nan_id] = 1. | |||
input[nan_id] = 0. | |||
if edge_truncate == True: | |||
output = numpy.convolve(input/norm_of_gate,gate,mode='same') | |||
elif edge_truncate == False or edge_truncate == None: | |||
output = numpy.convolve(input/norm_of_gate,gate,mode='valid') | |||
output = numpy.hstack((input[0:half_width],output)) | |||
output = numpy.hstack((output,input[len(input)-half_width:len(input)])) | |||
if nan_process: | |||
pb = numpy.convolve(pb/norm_of_gate,gate,mode='valid') | |||
pb = numpy.hstack((numpy.zeros(half_width),pb)) | |||
pb = numpy.hstack((pb,numpy.zeros(half_width))) | |||
output[numpy.where(pb > 0.9999)] = numpy.nan | |||
input[nan_id] = numpy.nan | |||
return output | |||
def Average(self,aver=0,nhaver=1): | |||
''' | |||
Inputs: | |||
aver - Indicates the time period over which is averaged or consensus data | |||
nhaver - Indicates the decimation factor in heights | |||
''' | |||
nhpoints = 48 | |||
lat_piura = -5.17 | |||
lat_huancayo = -12.04 | |||
lat_porcuya = -5.8 | |||
if '%2.2f'%self.dataOut.lat == '%2.2f'%lat_piura: | |||
hcm = 3. | |||
if self.dataOut.year == 2003 : | |||
if self.dataOut.doy >= 25 and self.dataOut.doy < 64: | |||
nhpoints = 12 | |||
elif '%2.2f'%self.dataOut.lat == '%2.2f'%lat_huancayo: | |||
hcm = 3. | |||
if self.dataOut.year == 2003 : | |||
if self.dataOut.doy >= 25 and self.dataOut.doy < 64: | |||
nhpoints = 12 | |||
elif '%2.2f'%self.dataOut.lat == '%2.2f'%lat_porcuya: | |||
hcm = 5.#2 | |||
pdata = 0.2 | |||
taver = [1,2,3,4,6,8,12,24] | |||
t0 = 0 | |||
tf = 24 | |||
ntime =(tf-t0)/taver[aver] | |||
ti = numpy.arange(ntime) | |||
tf = numpy.arange(ntime) + taver[aver] | |||
old_height = self.dataOut.heightList | |||
if nhaver > 1: | |||
num_hei = len(self.dataOut.heightList)/nhaver/self.dataOut.nmodes | |||
deltha = 0.05*nhaver | |||
minhvalid = pdata*nhaver | |||
for im in range(self.dataOut.nmodes): | |||
new_height = numpy.arange(num_hei)*deltha + self.dataOut.height[im,0] + deltha/2. | |||
data_fHeigths_List = [] | |||
data_fZonal_List = [] | |||
data_fMeridional_List = [] | |||
data_fVertical_List = [] | |||
startDTList = [] | |||
for i in range(ntime): | |||
height = old_height | |||
start = datetime.datetime(self.dataOut.year,self.dataOut.month,self.dataOut.day) + datetime.timedelta(hours = int(ti[i])) - datetime.timedelta(hours = 5) | |||
stop = datetime.datetime(self.dataOut.year,self.dataOut.month,self.dataOut.day) + datetime.timedelta(hours = int(tf[i])) - datetime.timedelta(hours = 5) | |||
limit_sec1 = time.mktime(start.timetuple()) | |||
limit_sec2 = time.mktime(stop.timetuple()) | |||
t1 = numpy.where(self.f_timesec >= limit_sec1) | |||
t2 = numpy.where(self.f_timesec < limit_sec2) | |||
time_select = [] | |||
for val_sec in t1[0]: | |||
if val_sec in t2[0]: | |||
time_select.append(val_sec) | |||
time_select = numpy.array(time_select,dtype = 'int') | |||
minvalid = numpy.ceil(pdata*nhpoints) | |||
zon_aver = numpy.zeros([self.dataOut.nranges,self.dataOut.nmodes],dtype='f4') + numpy.nan | |||
mer_aver = numpy.zeros([self.dataOut.nranges,self.dataOut.nmodes],dtype='f4') + numpy.nan | |||
ver_aver = numpy.zeros([self.dataOut.nranges,self.dataOut.nmodes],dtype='f4') + numpy.nan | |||
if nhaver > 1: | |||
new_zon_aver = numpy.zeros([num_hei,self.dataOut.nmodes],dtype='f4') + numpy.nan | |||
new_mer_aver = numpy.zeros([num_hei,self.dataOut.nmodes],dtype='f4') + numpy.nan | |||
new_ver_aver = numpy.zeros([num_hei,self.dataOut.nmodes],dtype='f4') + numpy.nan | |||
if len(time_select) > minvalid: | |||
time_average = self.f_timesec[time_select] | |||
for im in range(self.dataOut.nmodes): | |||
for ih in range(self.dataOut.nranges): | |||
if numpy.sum(numpy.isfinite(self.f_zon[time_select,ih,im])) >= minvalid: | |||
zon_aver[ih,im] = numpy.nansum(self.f_zon[time_select,ih,im]) / numpy.sum(numpy.isfinite(self.f_zon[time_select,ih,im])) | |||
if numpy.sum(numpy.isfinite(self.f_mer[time_select,ih,im])) >= minvalid: | |||
mer_aver[ih,im] = numpy.nansum(self.f_mer[time_select,ih,im]) / numpy.sum(numpy.isfinite(self.f_mer[time_select,ih,im])) | |||
if numpy.sum(numpy.isfinite(self.f_ver[time_select,ih,im])) >= minvalid: | |||
ver_aver[ih,im] = numpy.nansum(self.f_ver[time_select,ih,im]) / numpy.sum(numpy.isfinite(self.f_ver[time_select,ih,im])) | |||
if nhaver > 1: | |||
for ih in range(num_hei): | |||
hvalid = numpy.arange(nhaver) + nhaver*ih | |||
if numpy.sum(numpy.isfinite(zon_aver[hvalid,im])) >= minvalid: | |||
new_zon_aver[ih,im] = numpy.nansum(zon_aver[hvalid,im]) / numpy.sum(numpy.isfinite(zon_aver[hvalid,im])) | |||
if numpy.sum(numpy.isfinite(mer_aver[hvalid,im])) >= minvalid: | |||
new_mer_aver[ih,im] = numpy.nansum(mer_aver[hvalid,im]) / numpy.sum(numpy.isfinite(mer_aver[hvalid,im])) | |||
if numpy.sum(numpy.isfinite(ver_aver[hvalid,im])) >= minvalid: | |||
new_ver_aver[ih,im] = numpy.nansum(ver_aver[hvalid,im]) / numpy.sum(numpy.isfinite(ver_aver[hvalid,im])) | |||
if nhaver > 1: | |||
zon_aver = new_zon_aver | |||
mer_aver = new_mer_aver | |||
ver_aver = new_ver_aver | |||
height = new_height | |||
tstart = time_average[0] | |||
tend = time_average[-1] | |||
startTime = time.gmtime(tstart) | |||
year = startTime.tm_year | |||
month = startTime.tm_mon | |||
day = startTime.tm_mday | |||
hour = startTime.tm_hour | |||
minute = startTime.tm_min | |||
second = startTime.tm_sec | |||
startDTList.append(datetime.datetime(year,month,day,hour,minute,second)) | |||
o_height = numpy.array([]) | |||
o_zon_aver = numpy.array([]) | |||
o_mer_aver = numpy.array([]) | |||
o_ver_aver = numpy.array([]) | |||
if self.dataOut.nmodes > 1: | |||
for im in range(self.dataOut.nmodes): | |||
if im == 0: | |||
h_select = numpy.where(numpy.bitwise_and(height[0,:] >=0,height[0,:] <= hcm,numpy.isfinite(height[0,:]))) | |||
else: | |||
h_select = numpy.where(numpy.bitwise_and(height[1,:] > hcm,height[1,:] < 20,numpy.isfinite(height[1,:]))) | |||
ht = h_select[0] | |||
o_height = numpy.hstack((o_height,height[im,ht])) | |||
o_zon_aver = numpy.hstack((o_zon_aver,zon_aver[ht,im])) | |||
o_mer_aver = numpy.hstack((o_mer_aver,mer_aver[ht,im])) | |||
o_ver_aver = numpy.hstack((o_ver_aver,ver_aver[ht,im])) | |||
data_fHeigths_List.append(o_height) | |||
data_fZonal_List.append(o_zon_aver) | |||
data_fMeridional_List.append(o_mer_aver) | |||
data_fVertical_List.append(o_ver_aver) | |||
else: | |||
h_select = numpy.where(numpy.bitwise_and(height[0,:] <= hcm,numpy.isfinite(height[0,:]))) | |||
ht = h_select[0] | |||
o_height = numpy.hstack((o_height,height[im,ht])) | |||
o_zon_aver = numpy.hstack((o_zon_aver,zon_aver[ht,im])) | |||
o_mer_aver = numpy.hstack((o_mer_aver,mer_aver[ht,im])) | |||
o_ver_aver = numpy.hstack((o_ver_aver,ver_aver[ht,im])) | |||
data_fHeigths_List.append(o_height) | |||
data_fZonal_List.append(o_zon_aver) | |||
data_fMeridional_List.append(o_mer_aver) | |||
data_fVertical_List.append(o_ver_aver) | |||
return startDTList, data_fHeigths_List, data_fZonal_List, data_fMeridional_List, data_fVertical_List | |||