jroIO_bltr.py
1180 lines
| 48.3 KiB
| text/x-python
|
PythonLexer
|
r1075 | import os | ||
import sys | ||||
|
r965 | import glob | ||
import fnmatch | ||||
import datetime | ||||
import time | ||||
import re | ||||
import h5py | ||||
import numpy | ||||
import pylab as plb | ||||
from scipy.optimize import curve_fit | ||||
|
r1010 | from scipy import asarray as ar, exp | ||
|
r965 | from scipy import stats | ||
from numpy.ma.core import getdata | ||||
SPEED_OF_LIGHT = 299792458 | ||||
SPEED_OF_LIGHT = 3e8 | ||||
try: | ||||
from gevent import sleep | ||||
except: | ||||
from time import sleep | ||||
from schainpy.model.data.jrodata import Spectra | ||||
#from schainpy.model.data.BLTRheaderIO import FileHeader, RecordHeader | ||||
from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation | ||||
#from schainpy.model.io.jroIO_bltr import BLTRReader | ||||
from numpy import imag, shape, NaN | ||||
|
r1001 | from jroIO_base import JRODataReader | ||
|
r965 | |||
class Header(object): | ||||
|
r1075 | |||
|
r965 | def __init__(self): | ||
raise NotImplementedError | ||||
|
r1075 | |||
|
r965 | def read(self): | ||
|
r1075 | |||
|
r965 | raise NotImplementedError | ||
|
r1075 | |||
|
r965 | def write(self): | ||
|
r1075 | |||
|
r965 | raise NotImplementedError | ||
|
r1075 | |||
|
r965 | def printInfo(self): | ||
|
r1075 | |||
message = "#" * 50 + "\n" | ||||
|
r965 | message += self.__class__.__name__.upper() + "\n" | ||
|
r1075 | message += "#" * 50 + "\n" | ||
|
r965 | keyList = self.__dict__.keys() | ||
keyList.sort() | ||||
|
r1075 | |||
|
r965 | for key in keyList: | ||
|
r1075 | message += "%s = %s" % (key, self.__dict__[key]) + "\n" | ||
|
r965 | if "size" not in keyList: | ||
attr = getattr(self, "size") | ||||
|
r1075 | if attr: | ||
message += "%s = %s" % ("size", attr) + "\n" | ||||
|
r965 | |||
|
r1075 | # print message | ||
|
r965 | |||
|
r1075 | FILE_STRUCTURE = numpy.dtype([ # HEADER 48bytes | ||
('FileMgcNumber', '<u4'), # 0x23020100 | ||||
# No Of FDT data records in this file (0 or more) | ||||
('nFDTdataRecors', '<u4'), | ||||
('OffsetStartHeader', '<u4'), | ||||
('RadarUnitId', '<u4'), | ||||
('SiteName', numpy.str_, 32), # Null terminated | ||||
]) | ||||
|
r965 | |||
class FileHeaderBLTR(Header): | ||||
|
r1075 | |||
|
r965 | def __init__(self): | ||
|
r1075 | |||
self.FileMgcNumber = 0 # 0x23020100 | ||||
# No Of FDT data records in this file (0 or more) | ||||
self.nFDTdataRecors = 0 | ||||
self.RadarUnitId = 0 | ||||
self.OffsetStartHeader = 0 | ||||
self.SiteName = "" | ||||
|
r965 | self.size = 48 | ||
|
r1075 | |||
|
r965 | def FHread(self, fp): | ||
|
r1075 | # try: | ||
startFp = open(fp, "rb") | ||||
header = numpy.fromfile(startFp, FILE_STRUCTURE, 1) | ||||
|
r965 | print ' ' | ||
print 'puntero file header', startFp.tell() | ||||
print ' ' | ||||
|
r1075 | |||
|
r965 | ''' numpy.fromfile(file, dtype, count, sep='') | ||
file : file or str | ||||
Open file object or filename. | ||||
dtype : data-type | ||||
Data type of the returned array. For binary files, it is used to determine | ||||
the size and byte-order of the items in the file. | ||||
count : int | ||||
Number of items to read. -1 means all items (i.e., the complete file). | ||||
sep : str | ||||
Separator between items if file is a text file. Empty ("") separator means | ||||
the file should be treated as binary. Spaces (" ") in the separator match zero | ||||
or more whitespace characters. A separator consisting only of spaces must match | ||||
at least one whitespace. | ||||
''' | ||||
|
r1075 | self.FileMgcNumber = hex(header['FileMgcNumber'][0]) | ||
# No Of FDT data records in this file (0 or more) | ||||
self.nFDTdataRecors = int(header['nFDTdataRecors'][0]) | ||||
self.RadarUnitId = int(header['RadarUnitId'][0]) | ||||
self.OffsetStartHeader = int(header['OffsetStartHeader'][0]) | ||||
self.SiteName = str(header['SiteName'][0]) | ||||
# print 'Numero de bloques', self.nFDTdataRecors | ||||
|
r965 | |||
|
r1075 | if self.size < 48: | ||
|
r965 | return 0 | ||
|
r1075 | |||
|
r965 | return 1 | ||
|
r1075 | |||
|
r965 | def write(self, fp): | ||
|
r1075 | |||
|
r965 | headerTuple = (self.FileMgcNumber, | ||
self.nFDTdataRecors, | ||||
self.RadarUnitId, | ||||
self.SiteName, | ||||
self.size) | ||||
|
r1075 | |||
|
r965 | header = numpy.array(headerTuple, FILE_STRUCTURE) | ||
# numpy.array(object, dtype=None, copy=True, order=None, subok=False, ndmin=0) | ||||
header.tofile(fp) | ||||
''' ndarray.tofile(fid, sep, format) Write array to a file as text or binary (default). | ||||
fid : file or str | ||||
An open file object, or a string containing a filename. | ||||
sep : str | ||||
Separator between array items for text output. If "" (empty), a binary file is written, | ||||
equivalent to file.write(a.tobytes()). | ||||
format : str | ||||
Format string for text file output. Each entry in the array is formatted to text by | ||||
first converting it to the closest Python type, and then using "format" % item. | ||||
''' | ||||
|
r1075 | return 1 | ||
|
r965 | |||
|
r1075 | RECORD_STRUCTURE = numpy.dtype([ # RECORD HEADER 180+20N bytes | ||
('RecMgcNumber', '<u4'), # 0x23030001 | ||||
('RecCounter', '<u4'), # Record counter(0,1, ...) | ||||
# Offset to start of next record form start of this record | ||||
('Off2StartNxtRec', '<u4'), | ||||
# Offset to start of data from start of this record | ||||
('Off2StartData', '<u4'), | ||||
# Epoch time stamp of start of acquisition (seconds) | ||||
('nUtime', '<i4'), | ||||
# Millisecond component of time stamp (0,...,999) | ||||
('nMilisec', '<u4'), | ||||
# Experiment tag name (null terminated) | ||||
('ExpTagName', numpy.str_, 32), | ||||
# Experiment comment (null terminated) | ||||
('ExpComment', numpy.str_, 32), | ||||
# Site latitude (from GPS) in degrees (positive implies North) | ||||
('SiteLatDegrees', '<f4'), | ||||
# Site longitude (from GPS) in degrees (positive implies East) | ||||
('SiteLongDegrees', '<f4'), | ||||
# RTC GPS engine status (0=SEEK, 1=LOCK, 2=NOT FITTED, 3=UNAVAILABLE) | ||||
('RTCgpsStatus', '<u4'), | ||||
('TransmitFrec', '<u4'), # Transmit frequency (Hz) | ||||
('ReceiveFrec', '<u4'), # Receive frequency | ||||
# First local oscillator frequency (Hz) | ||||
('FirstOsciFrec', '<u4'), | ||||
# (0="O", 1="E", 2="linear 1", 3="linear2") | ||||
('Polarisation', '<u4'), | ||||
# Receiver filter settings (0,1,2,3) | ||||
('ReceiverFiltSett', '<u4'), | ||||
# Number of modes in use (1 or 2) | ||||
('nModesInUse', '<u4'), | ||||
# Dual Mode index number for these data (0 or 1) | ||||
('DualModeIndex', '<u4'), | ||||
# Dual Mode range correction for these data (m) | ||||
('DualModeRange', '<u4'), | ||||
# Number of digital channels acquired (2*N) | ||||
('nDigChannels', '<u4'), | ||||
# Sampling resolution (meters) | ||||
('SampResolution', '<u4'), | ||||
# Number of range gates sampled | ||||
('nHeights', '<u4'), | ||||
# Start range of sampling (meters) | ||||
('StartRangeSamp', '<u4'), | ||||
('PRFhz', '<u4'), # PRF (Hz) | ||||
('nCohInt', '<u4'), # Integrations | ||||
# Number of data points transformed | ||||
('nProfiles', '<u4'), | ||||
# Number of receive beams stored in file (1 or N) | ||||
('nChannels', '<u4'), | ||||
('nIncohInt', '<u4'), # Number of spectral averages | ||||
# FFT windowing index (0 = no window) | ||||
('FFTwindowingInd', '<u4'), | ||||
# Beam steer angle (azimuth) in degrees (clockwise from true North) | ||||
('BeamAngleAzim', '<f4'), | ||||
# Beam steer angle (zenith) in degrees (0=> vertical) | ||||
('BeamAngleZen', '<f4'), | ||||
# Antenna coordinates (Range(meters), Bearing(degrees)) - N pairs | ||||
('AntennaCoord0', '<f4'), | ||||
# Antenna coordinates (Range(meters), Bearing(degrees)) - N pairs | ||||
('AntennaAngl0', '<f4'), | ||||
# Antenna coordinates (Range(meters), Bearing(degrees)) - N pairs | ||||
('AntennaCoord1', '<f4'), | ||||
# Antenna coordinates (Range(meters), Bearing(degrees)) - N pairs | ||||
('AntennaAngl1', '<f4'), | ||||
# Antenna coordinates (Range(meters), Bearing(degrees)) - N pairs | ||||
('AntennaCoord2', '<f4'), | ||||
# Antenna coordinates (Range(meters), Bearing(degrees)) - N pairs | ||||
('AntennaAngl2', '<f4'), | ||||
# Receiver phase calibration (degrees) - N values | ||||
('RecPhaseCalibr0', '<f4'), | ||||
# Receiver phase calibration (degrees) - N values | ||||
('RecPhaseCalibr1', '<f4'), | ||||
# Receiver phase calibration (degrees) - N values | ||||
('RecPhaseCalibr2', '<f4'), | ||||
# Receiver amplitude calibration (ratio relative to receiver one) - N values | ||||
('RecAmpCalibr0', '<f4'), | ||||
# Receiver amplitude calibration (ratio relative to receiver one) - N values | ||||
('RecAmpCalibr1', '<f4'), | ||||
# Receiver amplitude calibration (ratio relative to receiver one) - N values | ||||
('RecAmpCalibr2', '<f4'), | ||||
# Receiver gains in dB - N values | ||||
('ReceiverGaindB0', '<i4'), | ||||
# Receiver gains in dB - N values | ||||
('ReceiverGaindB1', '<i4'), | ||||
# Receiver gains in dB - N values | ||||
('ReceiverGaindB2', '<i4'), | ||||
]) | ||||
|
r965 | |||
|
r1075 | class RecordHeaderBLTR(Header): | ||
|
r965 | |||
|
r1075 | def __init__(self, RecMgcNumber=None, RecCounter=0, Off2StartNxtRec=811248, | ||
nUtime=0, nMilisec=0, ExpTagName=None, | ||||
ExpComment=None, SiteLatDegrees=0, SiteLongDegrees=0, | ||||
RTCgpsStatus=0, TransmitFrec=0, ReceiveFrec=0, | ||||
FirstOsciFrec=0, Polarisation=0, ReceiverFiltSett=0, | ||||
nModesInUse=0, DualModeIndex=0, DualModeRange=0, | ||||
nDigChannels=0, SampResolution=0, nHeights=0, | ||||
StartRangeSamp=0, PRFhz=0, nCohInt=0, | ||||
nProfiles=0, nChannels=0, nIncohInt=0, | ||||
FFTwindowingInd=0, BeamAngleAzim=0, BeamAngleZen=0, | ||||
AntennaCoord0=0, AntennaCoord1=0, AntennaCoord2=0, | ||||
RecPhaseCalibr0=0, RecPhaseCalibr1=0, RecPhaseCalibr2=0, | ||||
RecAmpCalibr0=0, RecAmpCalibr1=0, RecAmpCalibr2=0, | ||||
AntennaAngl0=0, AntennaAngl1=0, AntennaAngl2=0, | ||||
ReceiverGaindB0=0, ReceiverGaindB1=0, ReceiverGaindB2=0, Off2StartData=0, OffsetStartHeader=0): | ||||
|
r965 | |||
|
r1075 | self.RecMgcNumber = RecMgcNumber # 0x23030001 | ||
self.RecCounter = RecCounter | ||||
self.Off2StartNxtRec = Off2StartNxtRec | ||||
|
r965 | self.Off2StartData = Off2StartData | ||
|
r1075 | self.nUtime = nUtime | ||
self.nMilisec = nMilisec | ||||
self.ExpTagName = ExpTagName | ||||
self.ExpComment = ExpComment | ||||
self.SiteLatDegrees = SiteLatDegrees | ||||
self.SiteLongDegrees = SiteLongDegrees | ||||
self.RTCgpsStatus = RTCgpsStatus | ||||
self.TransmitFrec = TransmitFrec | ||||
self.ReceiveFrec = ReceiveFrec | ||||
self.FirstOsciFrec = FirstOsciFrec | ||||
self.Polarisation = Polarisation | ||||
self.ReceiverFiltSett = ReceiverFiltSett | ||||
self.nModesInUse = nModesInUse | ||||
self.DualModeIndex = DualModeIndex | ||||
self.DualModeRange = DualModeRange | ||||
|
r965 | self.nDigChannels = nDigChannels | ||
|
r1075 | self.SampResolution = SampResolution | ||
self.nHeights = nHeights | ||||
self.StartRangeSamp = StartRangeSamp | ||||
self.PRFhz = PRFhz | ||||
self.nCohInt = nCohInt | ||||
self.nProfiles = nProfiles | ||||
self.nChannels = nChannels | ||||
self.nIncohInt = nIncohInt | ||||
self.FFTwindowingInd = FFTwindowingInd | ||||
self.BeamAngleAzim = BeamAngleAzim | ||||
self.BeamAngleZen = BeamAngleZen | ||||
|
r965 | self.AntennaCoord0 = AntennaCoord0 | ||
self.AntennaAngl0 = AntennaAngl0 | ||||
self.AntennaAngl1 = AntennaAngl1 | ||||
self.AntennaAngl2 = AntennaAngl2 | ||||
self.AntennaCoord1 = AntennaCoord1 | ||||
|
r1075 | self.AntennaCoord2 = AntennaCoord2 | ||
|
r965 | self.RecPhaseCalibr0 = RecPhaseCalibr0 | ||
self.RecPhaseCalibr1 = RecPhaseCalibr1 | ||||
|
r1075 | self.RecPhaseCalibr2 = RecPhaseCalibr2 | ||
|
r965 | self.RecAmpCalibr0 = RecAmpCalibr0 | ||
self.RecAmpCalibr1 = RecAmpCalibr1 | ||||
|
r1075 | self.RecAmpCalibr2 = RecAmpCalibr2 | ||
|
r965 | self.ReceiverGaindB0 = ReceiverGaindB0 | ||
self.ReceiverGaindB1 = ReceiverGaindB1 | ||||
|
r1075 | self.ReceiverGaindB2 = ReceiverGaindB2 | ||
self.OffsetStartHeader = 48 | ||||
|
r965 | def RHread(self, fp): | ||
|
r1075 | # print fp | ||
# startFp = open('/home/erick/Documents/Data/huancayo.20161019.22.fdt',"rb") #The method tell() returns the current position of the file read/write pointer within the file. | ||||
# The method tell() returns the current position of the file read/write pointer within the file. | ||||
startFp = open(fp, "rb") | ||||
# RecCounter=0 | ||||
# Off2StartNxtRec=811248 | ||||
OffRHeader = self.OffsetStartHeader + self.RecCounter * self.Off2StartNxtRec | ||||
|
r965 | print ' ' | ||
print 'puntero Record Header', startFp.tell() | ||||
print ' ' | ||||
|
r1075 | |||
|
r965 | startFp.seek(OffRHeader, os.SEEK_SET) | ||
|
r1075 | |||
|
r965 | print ' ' | ||
print 'puntero Record Header con seek', startFp.tell() | ||||
print ' ' | ||||
|
r1075 | |||
# print 'Posicion del bloque: ',OffRHeader | ||||
header = numpy.fromfile(startFp, RECORD_STRUCTURE, 1) | ||||
|
r965 | print ' ' | ||
print 'puntero Record Header con seek', startFp.tell() | ||||
print ' ' | ||||
|
r1075 | |||
|
r965 | print ' ' | ||
# | ||||
|
r1075 | # print 'puntero Record Header despues de seek', header.tell() | ||
|
r965 | print ' ' | ||
|
r1075 | |||
self.RecMgcNumber = hex(header['RecMgcNumber'][0]) # 0x23030001 | ||||
self.RecCounter = int(header['RecCounter'][0]) | ||||
self.Off2StartNxtRec = int(header['Off2StartNxtRec'][0]) | ||||
self.Off2StartData = int(header['Off2StartData'][0]) | ||||
self.nUtime = header['nUtime'][0] | ||||
self.nMilisec = header['nMilisec'][0] | ||||
self.ExpTagName = str(header['ExpTagName'][0]) | ||||
self.ExpComment = str(header['ExpComment'][0]) | ||||
self.SiteLatDegrees = header['SiteLatDegrees'][0] | ||||
self.SiteLongDegrees = header['SiteLongDegrees'][0] | ||||
self.RTCgpsStatus = header['RTCgpsStatus'][0] | ||||
self.TransmitFrec = header['TransmitFrec'][0] | ||||
self.ReceiveFrec = header['ReceiveFrec'][0] | ||||
self.FirstOsciFrec = header['FirstOsciFrec'][0] | ||||
self.Polarisation = header['Polarisation'][0] | ||||
self.ReceiverFiltSett = header['ReceiverFiltSett'][0] | ||||
self.nModesInUse = header['nModesInUse'][0] | ||||
self.DualModeIndex = header['DualModeIndex'][0] | ||||
self.DualModeRange = header['DualModeRange'][0] | ||||
|
r965 | self.nDigChannels = header['nDigChannels'][0] | ||
|
r1075 | self.SampResolution = header['SampResolution'][0] | ||
self.nHeights = header['nHeights'][0] | ||||
self.StartRangeSamp = header['StartRangeSamp'][0] | ||||
self.PRFhz = header['PRFhz'][0] | ||||
self.nCohInt = header['nCohInt'][0] | ||||
self.nProfiles = header['nProfiles'][0] | ||||
self.nChannels = header['nChannels'][0] | ||||
self.nIncohInt = header['nIncohInt'][0] | ||||
self.FFTwindowingInd = header['FFTwindowingInd'][0] | ||||
self.BeamAngleAzim = header['BeamAngleAzim'][0] | ||||
self.BeamAngleZen = header['BeamAngleZen'][0] | ||||
|
r965 | self.AntennaCoord0 = header['AntennaCoord0'][0] | ||
self.AntennaAngl0 = header['AntennaAngl0'][0] | ||||
self.AntennaCoord1 = header['AntennaCoord1'][0] | ||||
|
r1075 | self.AntennaAngl1 = header['AntennaAngl1'][0] | ||
|
r965 | self.AntennaCoord2 = header['AntennaCoord2'][0] | ||
|
r1075 | self.AntennaAngl2 = header['AntennaAngl2'][0] | ||
|
r965 | self.RecPhaseCalibr0 = header['RecPhaseCalibr0'][0] | ||
self.RecPhaseCalibr1 = header['RecPhaseCalibr1'][0] | ||||
|
r1075 | self.RecPhaseCalibr2 = header['RecPhaseCalibr2'][0] | ||
|
r965 | self.RecAmpCalibr0 = header['RecAmpCalibr0'][0] | ||
self.RecAmpCalibr1 = header['RecAmpCalibr1'][0] | ||||
|
r1075 | self.RecAmpCalibr2 = header['RecAmpCalibr2'][0] | ||
|
r965 | self.ReceiverGaindB0 = header['ReceiverGaindB0'][0] | ||
self.ReceiverGaindB1 = header['ReceiverGaindB1'][0] | ||||
self.ReceiverGaindB2 = header['ReceiverGaindB2'][0] | ||||
|
r1075 | self.ipp = 0.5 * (SPEED_OF_LIGHT / self.PRFhz) | ||
self.RHsize = 180 + 20 * self.nChannels | ||||
self.Datasize = self.nProfiles * self.nChannels * self.nHeights * 2 * 4 | ||||
# print 'Datasize',self.Datasize | ||||
endFp = self.OffsetStartHeader + self.RecCounter * self.Off2StartNxtRec | ||||
|
r965 | print '==============================================' | ||
|
r1075 | print 'RecMgcNumber ', self.RecMgcNumber | ||
print 'RecCounter ', self.RecCounter | ||||
print 'Off2StartNxtRec ', self.Off2StartNxtRec | ||||
print 'Off2StartData ', self.Off2StartData | ||||
print 'Range Resolution ', self.SampResolution | ||||
print 'First Height ', self.StartRangeSamp | ||||
print 'PRF (Hz) ', self.PRFhz | ||||
print 'Heights (K) ', self.nHeights | ||||
print 'Channels (N) ', self.nChannels | ||||
print 'Profiles (J) ', self.nProfiles | ||||
print 'iCoh ', self.nCohInt | ||||
print 'iInCoh ', self.nIncohInt | ||||
print 'BeamAngleAzim ', self.BeamAngleAzim | ||||
print 'BeamAngleZen ', self.BeamAngleZen | ||||
# print 'ModoEnUso ',self.DualModeIndex | ||||
# print 'UtcTime ',self.nUtime | ||||
# print 'MiliSec ',self.nMilisec | ||||
# print 'Exp TagName ',self.ExpTagName | ||||
# print 'Exp Comment ',self.ExpComment | ||||
# print 'FFT Window Index ',self.FFTwindowingInd | ||||
# print 'N Dig. Channels ',self.nDigChannels | ||||
print 'Size de bloque ', self.RHsize | ||||
print 'DataSize ', self.Datasize | ||||
print 'BeamAngleAzim ', self.BeamAngleAzim | ||||
# print 'AntennaCoord0 ',self.AntennaCoord0 | ||||
# print 'AntennaAngl0 ',self.AntennaAngl0 | ||||
# print 'AntennaCoord1 ',self.AntennaCoord1 | ||||
# print 'AntennaAngl1 ',self.AntennaAngl1 | ||||
# print 'AntennaCoord2 ',self.AntennaCoord2 | ||||
# print 'AntennaAngl2 ',self.AntennaAngl2 | ||||
print 'RecPhaseCalibr0 ', self.RecPhaseCalibr0 | ||||
print 'RecPhaseCalibr1 ', self.RecPhaseCalibr1 | ||||
print 'RecPhaseCalibr2 ', self.RecPhaseCalibr2 | ||||
print 'RecAmpCalibr0 ', self.RecAmpCalibr0 | ||||
print 'RecAmpCalibr1 ', self.RecAmpCalibr1 | ||||
print 'RecAmpCalibr2 ', self.RecAmpCalibr2 | ||||
print 'ReceiverGaindB0 ', self.ReceiverGaindB0 | ||||
print 'ReceiverGaindB1 ', self.ReceiverGaindB1 | ||||
print 'ReceiverGaindB2 ', self.ReceiverGaindB2 | ||||
|
r965 | print '==============================================' | ||
|
r1075 | |||
|
r965 | if OffRHeader > endFp: | ||
|
r1075 | sys.stderr.write( | ||
"Warning %s: Size value read from System Header is lower than it has to be\n" % fp) | ||||
|
r965 | return 0 | ||
|
r1075 | |||
|
r965 | if OffRHeader < endFp: | ||
|
r1075 | sys.stderr.write( | ||
"Warning %s: Size value read from System Header size is greater than it has to be\n" % fp) | ||||
|
r965 | return 0 | ||
|
r1075 | |||
|
r965 | return 1 | ||
|
r1075 | |||
|
r1010 | class BLTRSpectraReader (ProcessingUnit, FileHeaderBLTR, RecordHeaderBLTR, JRODataReader): | ||
|
r1075 | |||
|
r965 | path = None | ||
startDate = None | ||||
endDate = None | ||||
startTime = None | ||||
endTime = None | ||||
walk = None | ||||
isConfig = False | ||||
|
r1075 | |||
fileList = None | ||||
# metadata | ||||
TimeZone = None | ||||
Interval = None | ||||
heightList = None | ||||
# data | ||||
data = None | ||||
utctime = None | ||||
|
r1001 | def __init__(self, **kwargs): | ||
|
r1075 | |||
# Eliminar de la base la herencia | ||||
|
r1001 | ProcessingUnit.__init__(self, **kwargs) | ||
|
r1075 | |||
|
r1010 | #self.isConfig = False | ||
|
r1075 | |||
|
r965 | #self.pts2read_SelfSpectra = 0 | ||
#self.pts2read_CrossSpectra = 0 | ||||
#self.pts2read_DCchannels = 0 | ||||
#self.datablock = None | ||||
self.utc = None | ||||
self.ext = ".fdt" | ||||
self.optchar = "P" | ||||
|
r1075 | self.fpFile = None | ||
|
r965 | self.fp = None | ||
|
r1075 | self.BlockCounter = 0 | ||
|
r965 | self.dtype = None | ||
self.fileSizeByHeader = None | ||||
self.filenameList = [] | ||||
self.fileSelector = 0 | ||||
|
r1075 | self.Off2StartNxtRec = 0 | ||
self.RecCounter = 0 | ||||
|
r965 | self.flagNoMoreFiles = 0 | ||
|
r1075 | self.data_spc = None | ||
self.data_cspc = None | ||||
self.data_output = None | ||||
|
r965 | self.path = None | ||
|
r1075 | self.OffsetStartHeader = 0 | ||
self.Off2StartData = 0 | ||||
|
r965 | self.ipp = 0 | ||
|
r1075 | self.nFDTdataRecors = 0 | ||
|
r965 | self.blocksize = 0 | ||
self.dataOut = Spectra() | ||||
|
r1075 | self.profileIndex = 1 # Always | ||
self.dataOut.flagNoData = False | ||||
|
r1097 | self.dataOut.nRdPairs = 0 | ||
self.dataOut.data_spc = None | ||||
|
r1075 | self.dataOut.velocityX = [] | ||
self.dataOut.velocityY = [] | ||||
self.dataOut.velocityV = [] | ||||
|
r965 | |||
def Files2Read(self, fp): | ||||
''' | ||||
Function that indicates the number of .fdt files that exist in the folder to be read. | ||||
It also creates an organized list with the names of the files to read. | ||||
''' | ||||
|
r1075 | # self.__checkPath() | ||
# Gets the list of files within the fp address | ||||
ListaData = os.listdir(fp) | ||||
# Sort the list of files from least to largest by names | ||||
ListaData = sorted(ListaData) | ||||
nFiles = 0 # File Counter | ||||
FileList = [] # A list is created that will contain the .fdt files | ||||
for IndexFile in ListaData: | ||||
if '.fdt' in IndexFile: | ||||
|
r965 | FileList.append(IndexFile) | ||
|
r1075 | nFiles += 1 | ||
# print 'Files2Read' | ||||
# print 'Existen '+str(nFiles)+' archivos .fdt' | ||||
self.filenameList = FileList # List of files from least to largest by names | ||||
|
r965 | def run(self, **kwargs): | ||
''' | ||||
This method will be the one that will initiate the data entry, will be called constantly. | ||||
You should first verify that your Setup () is set up and then continue to acquire | ||||
the data to be processed with getData (). | ||||
''' | ||||
if not self.isConfig: | ||||
self.setup(**kwargs) | ||||
self.isConfig = True | ||||
|
r1075 | |||
|
r965 | self.getData() | ||
|
r1075 | # print 'running' | ||
|
r965 | def setup(self, path=None, | ||
|
r1075 | startDate=None, | ||
endDate=None, | ||||
startTime=None, | ||||
endTime=None, | ||||
walk=True, | ||||
timezone='utc', | ||||
code=None, | ||||
online=False, | ||||
ReadMode=None, | ||||
**kwargs): | ||||
|
r965 | self.isConfig = True | ||
|
r1075 | |||
self.path = path | ||||
self.startDate = startDate | ||||
self.endDate = endDate | ||||
self.startTime = startTime | ||||
self.endTime = endTime | ||||
self.walk = walk | ||||
self.ReadMode = int(ReadMode) | ||||
|
r965 | pass | ||
|
r1075 | |||
|
r965 | def getData(self): | ||
''' | ||||
Before starting this function, you should check that there is still an unread file, | ||||
If there are still blocks to read or if the data block is empty. | ||||
|
r1075 | |||
|
r965 | You should call the file "read". | ||
|
r1075 | |||
|
r965 | ''' | ||
|
r1075 | |||
|
r965 | if self.flagNoMoreFiles: | ||
self.dataOut.flagNoData = True | ||||
print 'NoData se vuelve true' | ||||
return 0 | ||||
|
r1075 | self.fp = self.path | ||
|
r965 | self.Files2Read(self.fp) | ||
self.readFile(self.fp) | ||||
self.dataOut.data_spc = self.data_spc | ||||
|
r1075 | self.dataOut.data_cspc = self.data_cspc | ||
self.dataOut.data_output = self.data_output | ||||
|
r965 | print 'self.dataOut.data_output', shape(self.dataOut.data_output) | ||
|
r1075 | |||
# self.removeDC() | ||||
return self.dataOut.data_spc | ||||
def readFile(self, fp): | ||||
|
r965 | ''' | ||
You must indicate if you are reading in Online or Offline mode and load the | ||||
The parameters for this file reading mode. | ||||
|
r1075 | |||
|
r965 | Then you must do 2 actions: | ||
|
r1075 | |||
|
r965 | 1. Get the BLTR FileHeader. | ||
2. Start reading the first block. | ||||
''' | ||||
|
r1075 | |||
# The address of the folder is generated the name of the .fdt file that will be read | ||||
print "File: ", self.fileSelector + 1 | ||||
|
r965 | if self.fileSelector < len(self.filenameList): | ||
|
r1075 | |||
self.fpFile = str(fp) + '/' + \ | ||||
str(self.filenameList[self.fileSelector]) | ||||
# print self.fpFile | ||||
|
r965 | fheader = FileHeaderBLTR() | ||
|
r1075 | fheader.FHread(self.fpFile) # Bltr FileHeader Reading | ||
self.nFDTdataRecors = fheader.nFDTdataRecors | ||||
self.readBlock() # Block reading | ||||
|
r965 | else: | ||
print 'readFile FlagNoData becomes true' | ||||
|
r1075 | self.flagNoMoreFiles = True | ||
|
r965 | self.dataOut.flagNoData = True | ||
|
r1075 | return 0 | ||
|
r965 | def getVelRange(self, extrapoints=0): | ||
|
r1075 | Lambda = SPEED_OF_LIGHT / 50000000 | ||
# 1./(self.dataOut.ippSeconds * self.dataOut.nCohInt) | ||||
PRF = self.dataOut.PRF | ||||
Vmax = -Lambda / (4. * (1. / PRF) * self.dataOut.nCohInt * 2.) | ||||
deltafreq = PRF / (self.nProfiles) | ||||
deltavel = (Vmax * 2) / (self.nProfiles) | ||||
freqrange = deltafreq * \ | ||||
(numpy.arange(self.nProfiles) - self.nProfiles / 2.) - deltafreq / 2 | ||||
velrange = deltavel * \ | ||||
(numpy.arange(self.nProfiles) - self.nProfiles / 2.) | ||||
return velrange | ||||
def readBlock(self): | ||||
|
r965 | ''' | ||
It should be checked if the block has data, if it is not passed to the next file. | ||||
|
r1075 | |||
|
r965 | Then the following is done: | ||
|
r1075 | |||
|
r965 | 1. Read the RecordHeader | ||
2. Fill the buffer with the current block number. | ||||
|
r1075 | |||
|
r965 | ''' | ||
|
r1075 | |||
if self.BlockCounter < self.nFDTdataRecors - 2: | ||||
|
r965 | print self.nFDTdataRecors, 'CONDICION!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!' | ||
|
r1075 | if self.ReadMode == 1: | ||
rheader = RecordHeaderBLTR(RecCounter=self.BlockCounter + 1) | ||||
elif self.ReadMode == 0: | ||||
|
r965 | rheader = RecordHeaderBLTR(RecCounter=self.BlockCounter) | ||
|
r1075 | |||
rheader.RHread(self.fpFile) # Bltr FileHeader Reading | ||||
self.OffsetStartHeader = rheader.OffsetStartHeader | ||||
self.RecCounter = rheader.RecCounter | ||||
self.Off2StartNxtRec = rheader.Off2StartNxtRec | ||||
self.Off2StartData = rheader.Off2StartData | ||||
self.nProfiles = rheader.nProfiles | ||||
self.nChannels = rheader.nChannels | ||||
self.nHeights = rheader.nHeights | ||||
self.frequency = rheader.TransmitFrec | ||||
self.DualModeIndex = rheader.DualModeIndex | ||||
self.pairsList = [(0, 1), (0, 2), (1, 2)] | ||||
|
r965 | self.dataOut.pairsList = self.pairsList | ||
|
r1075 | |||
self.nRdPairs = len(self.dataOut.pairsList) | ||||
|
r965 | self.dataOut.nRdPairs = self.nRdPairs | ||
|
r1075 | |||
self.__firstHeigth = rheader.StartRangeSamp | ||||
self.__deltaHeigth = rheader.SampResolution | ||||
self.dataOut.heightList = self.__firstHeigth + \ | ||||
numpy.array(range(self.nHeights)) * self.__deltaHeigth | ||||
|
r965 | self.dataOut.channelList = range(self.nChannels) | ||
|
r1075 | self.dataOut.nProfiles = rheader.nProfiles | ||
self.dataOut.nIncohInt = rheader.nIncohInt | ||||
self.dataOut.nCohInt = rheader.nCohInt | ||||
self.dataOut.ippSeconds = 1 / float(rheader.PRFhz) | ||||
self.dataOut.PRF = rheader.PRFhz | ||||
self.dataOut.nFFTPoints = rheader.nProfiles | ||||
self.dataOut.utctime = rheader.nUtime | ||||
self.dataOut.timeZone = 0 | ||||
self.dataOut.normFactor = self.dataOut.nProfiles * \ | ||||
self.dataOut.nIncohInt * self.dataOut.nCohInt | ||||
self.dataOut.outputInterval = self.dataOut.ippSeconds * \ | ||||
self.dataOut.nCohInt * self.dataOut.nIncohInt * self.nProfiles | ||||
self.data_output = numpy.ones([3, rheader.nHeights]) * numpy.NaN | ||||
|
r965 | print 'self.data_output', shape(self.data_output) | ||
|
r1075 | self.dataOut.velocityX = [] | ||
self.dataOut.velocityY = [] | ||||
self.dataOut.velocityV = [] | ||||
|
r965 | '''Block Reading, the Block Data is received and Reshape is used to give it | ||
shape. | ||||
|
r1075 | ''' | ||
# Procedure to take the pointer to where the date block starts | ||||
startDATA = open(self.fpFile, "rb") | ||||
OffDATA = self.OffsetStartHeader + self.RecCounter * \ | ||||
self.Off2StartNxtRec + self.Off2StartData | ||||
|
r965 | startDATA.seek(OffDATA, os.SEEK_SET) | ||
|
r1075 | |||
|
r965 | def moving_average(x, N=2): | ||
|
r1075 | return numpy.convolve(x, numpy.ones((N,)) / N)[(N - 1):] | ||
def gaus(xSamples, a, x0, sigma): | ||||
return a * exp(-(xSamples - x0)**2 / (2 * sigma**2)) | ||||
def Find(x, value): | ||||
|
r965 | for index in range(len(x)): | ||
|
r1075 | if x[index] == value: | ||
return index | ||||
|
r965 | def pol2cart(rho, phi): | ||
x = rho * numpy.cos(phi) | ||||
y = rho * numpy.sin(phi) | ||||
return(x, y) | ||||
|
r1075 | |||
if self.DualModeIndex == self.ReadMode: | ||||
self.data_fft = numpy.fromfile( | ||||
startDATA, [('complex', '<c8')], self.nProfiles * self.nChannels * self.nHeights) | ||||
self.data_fft = self.data_fft.astype(numpy.dtype('complex')) | ||||
self.data_block = numpy.reshape( | ||||
self.data_fft, (self.nHeights, self.nChannels, self.nProfiles)) | ||||
self.data_block = numpy.transpose(self.data_block, (1, 2, 0)) | ||||
|
r1001 | copy = self.data_block.copy() | ||
|
r1075 | spc = copy * numpy.conjugate(copy) | ||
self.data_spc = numpy.absolute( | ||||
spc) # valor absoluto o magnitud | ||||
|
r965 | factor = self.dataOut.normFactor | ||
|
r1075 | |||
z = self.data_spc.copy() # /factor | ||||
|
r965 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) | ||
#zdB = 10*numpy.log10(z) | ||||
print ' ' | ||||
print 'Z: ' | ||||
|
r1075 | print shape(z) | ||
|
r965 | print ' ' | ||
print ' ' | ||||
|
r1075 | |||
self.dataOut.data_spc = self.data_spc | ||||
self.noise = self.dataOut.getNoise( | ||||
ymin_index=80, ymax_index=132) # /factor | ||||
|
r965 | #noisedB = 10*numpy.log10(self.noise) | ||
|
r1075 | |||
ySamples = numpy.ones([3, self.nProfiles]) | ||||
phase = numpy.ones([3, self.nProfiles]) | ||||
CSPCSamples = numpy.ones( | ||||
[3, self.nProfiles], dtype=numpy.complex_) | ||||
coherence = numpy.ones([3, self.nProfiles]) | ||||
PhaseSlope = numpy.ones(3) | ||||
PhaseInter = numpy.ones(3) | ||||
|
r965 | '''****** Getting CrossSpectra ******''' | ||
|
r1075 | cspc = self.data_block.copy() | ||
self.data_cspc = self.data_block.copy() | ||||
xFrec = self.getVelRange(1) | ||||
VelRange = self.getVelRange(1) | ||||
self.dataOut.VelRange = VelRange | ||||
# print ' ' | ||||
# print ' ' | ||||
# print 'xFrec',xFrec | ||||
# print ' ' | ||||
# print ' ' | ||||
# Height=35 | ||||
for i in range(self.nRdPairs): | ||||
|
r965 | chan_index0 = self.dataOut.pairsList[i][0] | ||
chan_index1 = self.dataOut.pairsList[i][1] | ||||
|
r1075 | |||
self.data_cspc[i, :, :] = cspc[chan_index0, :, | ||||
:] * numpy.conjugate(cspc[chan_index1, :, :]) | ||||
|
r965 | '''Getting Eij and Nij''' | ||
|
r1075 | (AntennaX0, AntennaY0) = pol2cart( | ||
rheader.AntennaCoord0, rheader.AntennaAngl0 * numpy.pi / 180) | ||||
(AntennaX1, AntennaY1) = pol2cart( | ||||
rheader.AntennaCoord1, rheader.AntennaAngl1 * numpy.pi / 180) | ||||
(AntennaX2, AntennaY2) = pol2cart( | ||||
rheader.AntennaCoord2, rheader.AntennaAngl2 * numpy.pi / 180) | ||||
E01 = AntennaX0 - AntennaX1 | ||||
N01 = AntennaY0 - AntennaY1 | ||||
E02 = AntennaX0 - AntennaX2 | ||||
N02 = AntennaY0 - AntennaY2 | ||||
E12 = AntennaX1 - AntennaX2 | ||||
N12 = AntennaY1 - AntennaY2 | ||||
self.ChanDist = numpy.array( | ||||
[[E01, N01], [E02, N02], [E12, N12]]) | ||||
|
r965 | self.dataOut.ChanDist = self.ChanDist | ||
|
r1075 | |||
|
r965 | # for Height in range(self.nHeights): | ||
|
r1075 | # | ||
|
r965 | # for i in range(self.nRdPairs): | ||
|
r1075 | # | ||
|
r965 | # '''****** Line of Data SPC ******''' | ||
# zline=z[i,:,Height] | ||||
|
r1075 | # | ||
|
r965 | # '''****** DC is removed ******''' | ||
# DC=Find(zline,numpy.amax(zline)) | ||||
# zline[DC]=(zline[DC-1]+zline[DC+1])/2 | ||||
|
r1075 | # | ||
# | ||||
|
r965 | # '''****** SPC is normalized ******''' | ||
# FactNorm= zline.copy() / numpy.sum(zline.copy()) | ||||
# FactNorm= FactNorm/numpy.sum(FactNorm) | ||||
|
r1075 | # | ||
|
r965 | # SmoothSPC=moving_average(FactNorm,N=3) | ||
|
r1075 | # | ||
|
r965 | # xSamples = ar(range(len(SmoothSPC))) | ||
# ySamples[i] = SmoothSPC-self.noise[i] | ||||
|
r1075 | # | ||
|
r965 | # for i in range(self.nRdPairs): | ||
|
r1075 | # | ||
|
r965 | # '''****** Line of Data CSPC ******''' | ||
# cspcLine=self.data_cspc[i,:,Height].copy() | ||||
|
r1075 | # | ||
# | ||||
# | ||||
|
r965 | # '''****** CSPC is normalized ******''' | ||
# chan_index0 = self.dataOut.pairsList[i][0] | ||||
|
r1075 | # chan_index1 = self.dataOut.pairsList[i][1] | ||
|
r965 | # CSPCFactor= numpy.sum(ySamples[chan_index0]) * numpy.sum(ySamples[chan_index1]) | ||
|
r1075 | # | ||
# | ||||
|
r965 | # CSPCNorm= cspcLine.copy() / numpy.sqrt(CSPCFactor) | ||
|
r1075 | # | ||
# | ||||
|
r965 | # CSPCSamples[i] = CSPCNorm-self.noise[i] | ||
# coherence[i] = numpy.abs(CSPCSamples[i]) / numpy.sqrt(CSPCFactor) | ||||
|
r1075 | # | ||
|
r965 | # '''****** DC is removed ******''' | ||
# DC=Find(coherence[i],numpy.amax(coherence[i])) | ||||
# coherence[i][DC]=(coherence[i][DC-1]+coherence[i][DC+1])/2 | ||||
# coherence[i]= moving_average(coherence[i],N=2) | ||||
|
r1075 | # | ||
|
r965 | # phase[i] = moving_average( numpy.arctan2(CSPCSamples[i].imag, CSPCSamples[i].real),N=1)#*180/numpy.pi | ||
|
r1075 | # | ||
# | ||||
|
r965 | # '''****** Getting fij width ******''' | ||
|
r1075 | # | ||
|
r965 | # yMean=[] | ||
|
r1075 | # yMean2=[] | ||
# | ||||
|
r965 | # for j in range(len(ySamples[1])): | ||
# yMean=numpy.append(yMean,numpy.average([ySamples[0,j],ySamples[1,j],ySamples[2,j]])) | ||||
|
r1075 | # | ||
|
r965 | # '''******* Getting fitting Gaussian ******''' | ||
# meanGauss=sum(xSamples*yMean) / len(xSamples) | ||||
# sigma=sum(yMean*(xSamples-meanGauss)**2) / len(xSamples) | ||||
# #print 'Height',Height,'SNR', meanGauss/sigma**2 | ||||
|
r1075 | # | ||
|
r965 | # if (abs(meanGauss/sigma**2) > 0.0001) : | ||
|
r1075 | # | ||
# try: | ||||
|
r965 | # popt,pcov = curve_fit(gaus,xSamples,yMean,p0=[1,meanGauss,sigma]) | ||
|
r1075 | # | ||
|
r965 | # if numpy.amax(popt)>numpy.amax(yMean)*0.3: | ||
# FitGauss=gaus(xSamples,*popt) | ||||
|
r1075 | # | ||
# else: | ||||
|
r965 | # FitGauss=numpy.ones(len(xSamples))*numpy.mean(yMean) | ||
# print 'Verificador: Dentro', Height | ||||
# except RuntimeError: | ||||
|
r1075 | # | ||
|
r965 | # try: | ||
# for j in range(len(ySamples[1])): | ||||
# yMean2=numpy.append(yMean2,numpy.average([ySamples[1,j],ySamples[2,j]])) | ||||
# popt,pcov = curve_fit(gaus,xSamples,yMean2,p0=[1,meanGauss,sigma]) | ||||
# FitGauss=gaus(xSamples,*popt) | ||||
# print 'Verificador: Exepcion1', Height | ||||
# except RuntimeError: | ||||
|
r1075 | # | ||
|
r965 | # try: | ||
# popt,pcov = curve_fit(gaus,xSamples,ySamples[1],p0=[1,meanGauss,sigma]) | ||||
# FitGauss=gaus(xSamples,*popt) | ||||
# print 'Verificador: Exepcion2', Height | ||||
# except RuntimeError: | ||||
# FitGauss=numpy.ones(len(xSamples))*numpy.mean(yMean) | ||||
# print 'Verificador: Exepcion3', Height | ||||
# else: | ||||
# FitGauss=numpy.ones(len(xSamples))*numpy.mean(yMean) | ||||
# #print 'Verificador: Fuera', Height | ||||
|
r1075 | # | ||
# | ||||
# | ||||
|
r965 | # Maximun=numpy.amax(yMean) | ||
# eMinus1=Maximun*numpy.exp(-1) | ||||
|
r1075 | # | ||
|
r965 | # HWpos=Find(FitGauss,min(FitGauss, key=lambda value:abs(value-eMinus1))) | ||
# HalfWidth= xFrec[HWpos] | ||||
# GCpos=Find(FitGauss, numpy.amax(FitGauss)) | ||||
# Vpos=Find(FactNorm, numpy.amax(FactNorm)) | ||||
# #Vpos=numpy.sum(FactNorm)/len(FactNorm) | ||||
# #Vpos=Find(FactNorm, min(FactNorm, key=lambda value:abs(value- numpy.mean(FactNorm) ))) | ||||
# #print 'GCpos',GCpos, numpy.amax(FitGauss), 'HWpos',HWpos | ||||
# '''****** Getting Fij ******''' | ||||
|
r1075 | # | ||
|
r965 | # GaussCenter=xFrec[GCpos] | ||
# if (GaussCenter<0 and HalfWidth>0) or (GaussCenter>0 and HalfWidth<0): | ||||
# Fij=abs(GaussCenter)+abs(HalfWidth)+0.0000001 | ||||
# else: | ||||
# Fij=abs(GaussCenter-HalfWidth)+0.0000001 | ||||
|
r1075 | # | ||
|
r965 | # '''****** Getting Frecuency range of significant data ******''' | ||
|
r1075 | # | ||
|
r965 | # Rangpos=Find(FitGauss,min(FitGauss, key=lambda value:abs(value-Maximun*0.10))) | ||
|
r1075 | # | ||
|
r965 | # if Rangpos<GCpos: | ||
# Range=numpy.array([Rangpos,2*GCpos-Rangpos]) | ||||
# else: | ||||
# Range=numpy.array([2*GCpos-Rangpos,Rangpos]) | ||||
|
r1075 | # | ||
|
r965 | # FrecRange=xFrec[Range[0]:Range[1]] | ||
|
r1075 | # | ||
|
r965 | # #print 'FrecRange', FrecRange | ||
# '''****** Getting SCPC Slope ******''' | ||||
|
r1075 | # | ||
|
r965 | # for i in range(self.nRdPairs): | ||
|
r1075 | # | ||
|
r965 | # if len(FrecRange)>5 and len(FrecRange)<self.nProfiles*0.5: | ||
|
r1075 | # PhaseRange=moving_average(phase[i,Range[0]:Range[1]],N=3) | ||
# | ||||
|
r965 | # slope, intercept, r_value, p_value, std_err = stats.linregress(FrecRange,PhaseRange) | ||
# PhaseSlope[i]=slope | ||||
# PhaseInter[i]=intercept | ||||
# else: | ||||
# PhaseSlope[i]=0 | ||||
# PhaseInter[i]=0 | ||||
|
r1075 | # | ||
|
r965 | # # plt.figure(i+15) | ||
# # plt.title('FASE ( CH%s*CH%s )' %(self.dataOut.pairsList[i][0],self.dataOut.pairsList[i][1])) | ||||
# # plt.xlabel('Frecuencia (KHz)') | ||||
# # plt.ylabel('Magnitud') | ||||
# # #plt.subplot(311+i) | ||||
# # plt.plot(FrecRange,PhaseRange,'b') | ||||
# # plt.plot(FrecRange,FrecRange*PhaseSlope[i]+PhaseInter[i],'r') | ||||
|
r1075 | # | ||
|
r965 | # #plt.axis([-0.6, 0.2, -3.2, 3.2]) | ||
|
r1075 | # | ||
# | ||||
|
r965 | # '''Getting constant C''' | ||
# cC=(Fij*numpy.pi)**2 | ||||
|
r1075 | # | ||
|
r965 | # # '''Getting Eij and Nij''' | ||
# # (AntennaX0,AntennaY0)=pol2cart(rheader.AntennaCoord0, rheader.AntennaAngl0*numpy.pi/180) | ||||
# # (AntennaX1,AntennaY1)=pol2cart(rheader.AntennaCoord1, rheader.AntennaAngl1*numpy.pi/180) | ||||
# # (AntennaX2,AntennaY2)=pol2cart(rheader.AntennaCoord2, rheader.AntennaAngl2*numpy.pi/180) | ||||
|
r1075 | # # | ||
|
r965 | # # E01=AntennaX0-AntennaX1 | ||
# # N01=AntennaY0-AntennaY1 | ||||
|
r1075 | # # | ||
|
r965 | # # E02=AntennaX0-AntennaX2 | ||
# # N02=AntennaY0-AntennaY2 | ||||
|
r1075 | # # | ||
|
r965 | # # E12=AntennaX1-AntennaX2 | ||
# # N12=AntennaY1-AntennaY2 | ||||
|
r1075 | # | ||
|
r965 | # '''****** Getting constants F and G ******''' | ||
# MijEijNij=numpy.array([[E02,N02], [E12,N12]]) | ||||
# MijResult0=(-PhaseSlope[1]*cC) / (2*numpy.pi) | ||||
|
r1075 | # MijResult1=(-PhaseSlope[2]*cC) / (2*numpy.pi) | ||
|
r965 | # MijResults=numpy.array([MijResult0,MijResult1]) | ||
# (cF,cG) = numpy.linalg.solve(MijEijNij, MijResults) | ||||
|
r1075 | # | ||
|
r965 | # '''****** Getting constants A, B and H ******''' | ||
# W01=numpy.amax(coherence[0]) | ||||
# W02=numpy.amax(coherence[1]) | ||||
# W12=numpy.amax(coherence[2]) | ||||
|
r1075 | # | ||
|
r965 | # WijResult0=((cF*E01+cG*N01)**2)/cC - numpy.log(W01 / numpy.sqrt(numpy.pi/cC)) | ||
# WijResult1=((cF*E02+cG*N02)**2)/cC - numpy.log(W02 / numpy.sqrt(numpy.pi/cC)) | ||||
# WijResult2=((cF*E12+cG*N12)**2)/cC - numpy.log(W12 / numpy.sqrt(numpy.pi/cC)) | ||||
|
r1075 | # | ||
|
r965 | # WijResults=numpy.array([WijResult0, WijResult1, WijResult2]) | ||
|
r1075 | # | ||
# WijEijNij=numpy.array([ [E01**2, N01**2, 2*E01*N01] , [E02**2, N02**2, 2*E02*N02] , [E12**2, N12**2, 2*E12*N12] ]) | ||||
|
r965 | # (cA,cB,cH) = numpy.linalg.solve(WijEijNij, WijResults) | ||
|
r1075 | # | ||
|
r965 | # VxVy=numpy.array([[cA,cH],[cH,cB]]) | ||
|
r1075 | # | ||
|
r965 | # VxVyResults=numpy.array([-cF,-cG]) | ||
# (Vx,Vy) = numpy.linalg.solve(VxVy, VxVyResults) | ||||
# Vzon = Vy | ||||
# Vmer = Vx | ||||
# Vmag=numpy.sqrt(Vzon**2+Vmer**2) | ||||
# Vang=numpy.arctan2(Vmer,Vzon) | ||||
|
r1075 | # | ||
|
r965 | # if abs(Vy)<100 and abs(Vy)> 0.: | ||
# self.dataOut.velocityX=numpy.append(self.dataOut.velocityX, Vzon) #Vmag | ||||
# #print 'Vmag',Vmag | ||||
# else: | ||||
# self.dataOut.velocityX=numpy.append(self.dataOut.velocityX, NaN) | ||||
|
r1075 | # | ||
|
r965 | # if abs(Vx)<100 and abs(Vx) > 0.: | ||
# self.dataOut.velocityY=numpy.append(self.dataOut.velocityY, Vmer) #Vang | ||||
|
r1075 | # #print 'Vang',Vang | ||
|
r965 | # else: | ||
# self.dataOut.velocityY=numpy.append(self.dataOut.velocityY, NaN) | ||||
|
r1075 | # | ||
|
r965 | # if abs(GaussCenter)<2: | ||
# self.dataOut.velocityV=numpy.append(self.dataOut.velocityV, xFrec[Vpos]) | ||||
|
r1075 | # | ||
|
r965 | # else: | ||
# self.dataOut.velocityV=numpy.append(self.dataOut.velocityV, NaN) | ||||
|
r1075 | # | ||
# | ||||
|
r965 | # # print '********************************************' | ||
# # print 'HalfWidth ', HalfWidth | ||||
# # print 'Maximun ', Maximun | ||||
# # print 'eMinus1 ', eMinus1 | ||||
# # print 'Rangpos ', Rangpos | ||||
# # print 'GaussCenter ',GaussCenter | ||||
# # print 'E01 ',E01 | ||||
# # print 'N01 ',N01 | ||||
# # print 'E02 ',E02 | ||||
# # print 'N02 ',N02 | ||||
# # print 'E12 ',E12 | ||||
# # print 'N12 ',N12 | ||||
# #print 'self.dataOut.velocityX ', self.dataOut.velocityX | ||||
# # print 'Fij ', Fij | ||||
# # print 'cC ', cC | ||||
# # print 'cF ', cF | ||||
# # print 'cG ', cG | ||||
# # print 'cA ', cA | ||||
# # print 'cB ', cB | ||||
# # print 'cH ', cH | ||||
# # print 'Vx ', Vx | ||||
# # print 'Vy ', Vy | ||||
# # print 'Vmag ', Vmag | ||||
# # print 'Vang ', Vang*180/numpy.pi | ||||
# # print 'PhaseSlope ',PhaseSlope[0] | ||||
# # print 'PhaseSlope ',PhaseSlope[1] | ||||
# # print 'PhaseSlope ',PhaseSlope[2] | ||||
# # print '********************************************' | ||||
# #print 'data_output',shape(self.dataOut.velocityX), shape(self.dataOut.velocityY) | ||||
|
r1075 | # | ||
|
r965 | # #print 'self.dataOut.velocityX', len(self.dataOut.velocityX) | ||
# #print 'self.dataOut.velocityY', len(self.dataOut.velocityY) | ||||
# #print 'self.dataOut.velocityV', self.dataOut.velocityV | ||||
|
r1075 | # | ||
|
r965 | # self.data_output[0]=numpy.array(self.dataOut.velocityX) | ||
# self.data_output[1]=numpy.array(self.dataOut.velocityY) | ||||
# self.data_output[2]=numpy.array(self.dataOut.velocityV) | ||||
|
r1075 | # | ||
|
r965 | # prin= self.data_output[0][~numpy.isnan(self.data_output[0])] | ||
# print ' ' | ||||
|
r1075 | # print 'VmagAverage',numpy.mean(prin) | ||
|
r965 | # print ' ' | ||
# # plt.figure(5) | ||||
# # plt.subplot(211) | ||||
# # plt.plot(self.dataOut.velocityX,'yo:') | ||||
# # plt.subplot(212) | ||||
# # plt.plot(self.dataOut.velocityY,'yo:') | ||||
|
r1075 | # | ||
|
r965 | # # plt.figure(1) | ||
# # # plt.subplot(121) | ||||
# # # plt.plot(xFrec,ySamples[0],'k',label='Ch0') | ||||
# # # plt.plot(xFrec,ySamples[1],'g',label='Ch1') | ||||
# # # plt.plot(xFrec,ySamples[2],'r',label='Ch2') | ||||
# # # plt.plot(xFrec,FitGauss,'yo:',label='fit') | ||||
# # # plt.legend() | ||||
# # plt.title('DATOS A ALTURA DE 2850 METROS') | ||||
|
r1075 | # # | ||
|
r965 | # # plt.xlabel('Frecuencia (KHz)') | ||
# # plt.ylabel('Magnitud') | ||||
# # # plt.subplot(122) | ||||
# # # plt.title('Fit for Time Constant') | ||||
# # #plt.plot(xFrec,zline) | ||||
# # #plt.plot(xFrec,SmoothSPC,'g') | ||||
# # plt.plot(xFrec,FactNorm) | ||||
# # plt.axis([-4, 4, 0, 0.15]) | ||||
# # # plt.xlabel('SelfSpectra KHz') | ||||
|
r1075 | # # | ||
|
r965 | # # plt.figure(10) | ||
# # # plt.subplot(121) | ||||
# # plt.plot(xFrec,ySamples[0],'b',label='Ch0') | ||||
# # plt.plot(xFrec,ySamples[1],'y',label='Ch1') | ||||
# # plt.plot(xFrec,ySamples[2],'r',label='Ch2') | ||||
# # # plt.plot(xFrec,FitGauss,'yo:',label='fit') | ||||
# # plt.legend() | ||||
# # plt.title('SELFSPECTRA EN CANALES') | ||||
|
r1075 | # # | ||
|
r965 | # # plt.xlabel('Frecuencia (KHz)') | ||
# # plt.ylabel('Magnitud') | ||||
# # # plt.subplot(122) | ||||
# # # plt.title('Fit for Time Constant') | ||||
# # #plt.plot(xFrec,zline) | ||||
# # #plt.plot(xFrec,SmoothSPC,'g') | ||||
# # # plt.plot(xFrec,FactNorm) | ||||
# # # plt.axis([-4, 4, 0, 0.15]) | ||||
# # # plt.xlabel('SelfSpectra KHz') | ||||
|
r1075 | # # | ||
|
r965 | # # plt.figure(9) | ||
|
r1075 | # # | ||
# # | ||||
|
r965 | # # plt.title('DATOS SUAVIZADOS') | ||
# # plt.xlabel('Frecuencia (KHz)') | ||||
# # plt.ylabel('Magnitud') | ||||
# # plt.plot(xFrec,SmoothSPC,'g') | ||||
|
r1075 | # # | ||
|
r965 | # # #plt.plot(xFrec,FactNorm) | ||
# # plt.axis([-4, 4, 0, 0.15]) | ||||
# # # plt.xlabel('SelfSpectra KHz') | ||||
|
r1075 | # # # | ||
|
r965 | # # plt.figure(2) | ||
# # # #plt.subplot(121) | ||||
# # plt.plot(xFrec,yMean,'r',label='Mean SelfSpectra') | ||||
# # plt.plot(xFrec,FitGauss,'yo:',label='Ajuste Gaussiano') | ||||
# # # plt.plot(xFrec[Rangpos],FitGauss[Find(FitGauss,min(FitGauss, key=lambda value:abs(value-Maximun*0.1)))],'bo') | ||||
# # # #plt.plot(xFrec,phase) | ||||
# # # plt.xlabel('Suavizado, promediado KHz') | ||||
# # plt.title('SELFSPECTRA PROMEDIADO') | ||||
# # # #plt.subplot(122) | ||||
# # # #plt.plot(xSamples,zline) | ||||
# # plt.xlabel('Frecuencia (KHz)') | ||||
# # plt.ylabel('Magnitud') | ||||
# # plt.legend() | ||||
|
r1075 | # # # | ||
|
r965 | # # # plt.figure(3) | ||
# # # plt.subplot(311) | ||||
# # # #plt.plot(xFrec,phase[0]) | ||||
# # # plt.plot(xFrec,phase[0],'g') | ||||
# # # plt.subplot(312) | ||||
# # # plt.plot(xFrec,phase[1],'g') | ||||
# # # plt.subplot(313) | ||||
# # # plt.plot(xFrec,phase[2],'g') | ||||
# # # #plt.plot(xFrec,phase[2]) | ||||
|
r1075 | # # # | ||
|
r965 | # # # plt.figure(4) | ||
|
r1075 | # # # | ||
|
r965 | # # # plt.plot(xSamples,coherence[0],'b') | ||
# # # plt.plot(xSamples,coherence[1],'r') | ||||
# # # plt.plot(xSamples,coherence[2],'g') | ||||
# # plt.show() | ||||
|
r1075 | # # # | ||
|
r965 | # # # plt.clf() | ||
# # # plt.cla() | ||||
|
r1075 | # # # plt.close() | ||
# | ||||
# print ' ' | ||||
self.BlockCounter += 2 | ||||
|
r965 | else: | ||
|
r1075 | self.fileSelector += 1 | ||
self.BlockCounter = 0 | ||||
|
r965 | print "Next File" | ||