jroIO_bltr.py
802 lines
| 32.8 KiB
| text/x-python
|
PythonLexer
|
r965 | import os, sys | |
import glob | |||
import fnmatch | |||
import datetime | |||
import time | |||
import re | |||
import h5py | |||
import numpy | |||
import matplotlib.pyplot as plt | |||
import pylab as plb | |||
from scipy.optimize import curve_fit | |||
|
r1010 | from scipy import asarray as ar, exp | |
|
r965 | from scipy import stats | |
from numpy.ma.core import getdata | |||
SPEED_OF_LIGHT = 299792458 | |||
SPEED_OF_LIGHT = 3e8 | |||
try: | |||
from gevent import sleep | |||
except: | |||
from time import sleep | |||
from schainpy.model.data.jrodata import Spectra | |||
#from schainpy.model.data.BLTRheaderIO import FileHeader, RecordHeader | |||
from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation | |||
#from schainpy.model.io.jroIO_bltr import BLTRReader | |||
from numpy import imag, shape, NaN | |||
|
r1001 | from jroIO_base import JRODataReader | |
|
r965 | ||
class Header(object): | |||
def __init__(self): | |||
raise NotImplementedError | |||
def read(self): | |||
raise NotImplementedError | |||
def write(self): | |||
raise NotImplementedError | |||
def printInfo(self): | |||
message = "#"*50 + "\n" | |||
message += self.__class__.__name__.upper() + "\n" | |||
message += "#"*50 + "\n" | |||
keyList = self.__dict__.keys() | |||
keyList.sort() | |||
for key in keyList: | |||
message += "%s = %s" %(key, self.__dict__[key]) + "\n" | |||
if "size" not in keyList: | |||
attr = getattr(self, "size") | |||
if attr: | |||
message += "%s = %s" %("size", attr) + "\n" | |||
#print message | |||
FILE_STRUCTURE = numpy.dtype([ #HEADER 48bytes | |||
('FileMgcNumber','<u4'), #0x23020100 | |||
('nFDTdataRecors','<u4'), #No Of FDT data records in this file (0 or more) | |||
('OffsetStartHeader','<u4'), | |||
('RadarUnitId','<u4'), | |||
('SiteName',numpy.str_,32), #Null terminated | |||
]) | |||
class FileHeaderBLTR(Header): | |||
def __init__(self): | |||
self.FileMgcNumber= 0 #0x23020100 | |||
self.nFDTdataRecors=0 #No Of FDT data records in this file (0 or more) | |||
self.RadarUnitId= 0 | |||
self.OffsetStartHeader=0 | |||
self.SiteName= "" | |||
self.size = 48 | |||
def FHread(self, fp): | |||
#try: | |||
startFp = open(fp,"rb") | |||
header = numpy.fromfile(startFp, FILE_STRUCTURE,1) | |||
print ' ' | |||
print 'puntero file header', startFp.tell() | |||
print ' ' | |||
''' numpy.fromfile(file, dtype, count, sep='') | |||
file : file or str | |||
Open file object or filename. | |||
dtype : data-type | |||
Data type of the returned array. For binary files, it is used to determine | |||
the size and byte-order of the items in the file. | |||
count : int | |||
Number of items to read. -1 means all items (i.e., the complete file). | |||
sep : str | |||
Separator between items if file is a text file. Empty ("") separator means | |||
the file should be treated as binary. Spaces (" ") in the separator match zero | |||
or more whitespace characters. A separator consisting only of spaces must match | |||
at least one whitespace. | |||
''' | |||
self.FileMgcNumber= hex(header['FileMgcNumber'][0]) | |||
self.nFDTdataRecors=int(header['nFDTdataRecors'][0]) #No Of FDT data records in this file (0 or more) | |||
self.RadarUnitId= int(header['RadarUnitId'][0]) | |||
self.OffsetStartHeader= int(header['OffsetStartHeader'][0]) | |||
self.SiteName= str(header['SiteName'][0]) | |||
#print 'Numero de bloques', self.nFDTdataRecors | |||
if self.size <48: | |||
return 0 | |||
return 1 | |||
def write(self, fp): | |||
headerTuple = (self.FileMgcNumber, | |||
self.nFDTdataRecors, | |||
self.RadarUnitId, | |||
self.SiteName, | |||
self.size) | |||
header = numpy.array(headerTuple, FILE_STRUCTURE) | |||
# numpy.array(object, dtype=None, copy=True, order=None, subok=False, ndmin=0) | |||
header.tofile(fp) | |||
''' ndarray.tofile(fid, sep, format) Write array to a file as text or binary (default). | |||
fid : file or str | |||
An open file object, or a string containing a filename. | |||
sep : str | |||
Separator between array items for text output. If "" (empty), a binary file is written, | |||
equivalent to file.write(a.tobytes()). | |||
format : str | |||
Format string for text file output. Each entry in the array is formatted to text by | |||
first converting it to the closest Python type, and then using "format" % item. | |||
''' | |||
return 1 | |||
RECORD_STRUCTURE = numpy.dtype([ #RECORD HEADER 180+20N bytes | |||
('RecMgcNumber','<u4'), #0x23030001 | |||
('RecCounter','<u4'), #Record counter(0,1, ...) | |||
('Off2StartNxtRec','<u4'), #Offset to start of next record form start of this record | |||
('Off2StartData','<u4'), #Offset to start of data from start of this record | |||
('nUtime','<i4'), #Epoch time stamp of start of acquisition (seconds) | |||
('nMilisec','<u4'), #Millisecond component of time stamp (0,...,999) | |||
('ExpTagName',numpy.str_,32), #Experiment tag name (null terminated) | |||
('ExpComment',numpy.str_,32), #Experiment comment (null terminated) | |||
('SiteLatDegrees','<f4'), #Site latitude (from GPS) in degrees (positive implies North) | |||
('SiteLongDegrees','<f4'), #Site longitude (from GPS) in degrees (positive implies East) | |||
('RTCgpsStatus','<u4'), #RTC GPS engine status (0=SEEK, 1=LOCK, 2=NOT FITTED, 3=UNAVAILABLE) | |||
('TransmitFrec','<u4'), #Transmit frequency (Hz) | |||
('ReceiveFrec','<u4'), #Receive frequency | |||
('FirstOsciFrec','<u4'), #First local oscillator frequency (Hz) | |||
('Polarisation','<u4'), #(0="O", 1="E", 2="linear 1", 3="linear2") | |||
('ReceiverFiltSett','<u4'), #Receiver filter settings (0,1,2,3) | |||
('nModesInUse','<u4'), #Number of modes in use (1 or 2) | |||
('DualModeIndex','<u4'), #Dual Mode index number for these data (0 or 1) | |||
('DualModeRange','<u4'), #Dual Mode range correction for these data (m) | |||
('nDigChannels','<u4'), #Number of digital channels acquired (2*N) | |||
('SampResolution','<u4'), #Sampling resolution (meters) | |||
('nHeights','<u4'), #Number of range gates sampled | |||
('StartRangeSamp','<u4'), #Start range of sampling (meters) | |||
('PRFhz','<u4'), #PRF (Hz) | |||
('nCohInt','<u4'), #Integrations | |||
('nProfiles','<u4'), #Number of data points transformed | |||
('nChannels','<u4'), #Number of receive beams stored in file (1 or N) | |||
('nIncohInt','<u4'), #Number of spectral averages | |||
('FFTwindowingInd','<u4'), #FFT windowing index (0 = no window) | |||
('BeamAngleAzim','<f4'), #Beam steer angle (azimuth) in degrees (clockwise from true North) | |||
('BeamAngleZen','<f4'), #Beam steer angle (zenith) in degrees (0=> vertical) | |||
('AntennaCoord0','<f4'), #Antenna coordinates (Range(meters), Bearing(degrees)) - N pairs | |||
('AntennaAngl0','<f4'), #Antenna coordinates (Range(meters), Bearing(degrees)) - N pairs | |||
('AntennaCoord1','<f4'), #Antenna coordinates (Range(meters), Bearing(degrees)) - N pairs | |||
('AntennaAngl1','<f4'), #Antenna coordinates (Range(meters), Bearing(degrees)) - N pairs | |||
('AntennaCoord2','<f4'), #Antenna coordinates (Range(meters), Bearing(degrees)) - N pairs | |||
('AntennaAngl2','<f4'), #Antenna coordinates (Range(meters), Bearing(degrees)) - N pairs | |||
('RecPhaseCalibr0','<f4'), #Receiver phase calibration (degrees) - N values | |||
('RecPhaseCalibr1','<f4'), #Receiver phase calibration (degrees) - N values | |||
('RecPhaseCalibr2','<f4'), #Receiver phase calibration (degrees) - N values | |||
('RecAmpCalibr0','<f4'), #Receiver amplitude calibration (ratio relative to receiver one) - N values | |||
('RecAmpCalibr1','<f4'), #Receiver amplitude calibration (ratio relative to receiver one) - N values | |||
('RecAmpCalibr2','<f4'), #Receiver amplitude calibration (ratio relative to receiver one) - N values | |||
('ReceiverGaindB0','<i4'), #Receiver gains in dB - N values | |||
('ReceiverGaindB1','<i4'), #Receiver gains in dB - N values | |||
('ReceiverGaindB2','<i4'), #Receiver gains in dB - N values | |||
]) | |||
class RecordHeaderBLTR(Header): | |||
def __init__(self, RecMgcNumber=None, RecCounter= 0, Off2StartNxtRec= 811248, | |||
nUtime= 0, nMilisec= 0, ExpTagName= None, | |||
ExpComment=None, SiteLatDegrees=0, SiteLongDegrees= 0, | |||
RTCgpsStatus= 0, TransmitFrec= 0, ReceiveFrec= 0, | |||
FirstOsciFrec= 0, Polarisation= 0, ReceiverFiltSett= 0, | |||
nModesInUse= 0, DualModeIndex= 0, DualModeRange= 0, | |||
nDigChannels= 0, SampResolution= 0, nHeights= 0, | |||
StartRangeSamp= 0, PRFhz= 0, nCohInt= 0, | |||
nProfiles= 0, nChannels= 0, nIncohInt= 0, | |||
FFTwindowingInd= 0, BeamAngleAzim= 0, BeamAngleZen= 0, | |||
AntennaCoord0= 0, AntennaCoord1= 0, AntennaCoord2= 0, | |||
RecPhaseCalibr0= 0, RecPhaseCalibr1= 0, RecPhaseCalibr2= 0, | |||
RecAmpCalibr0= 0, RecAmpCalibr1= 0, RecAmpCalibr2= 0, | |||
AntennaAngl0=0, AntennaAngl1=0, AntennaAngl2=0, | |||
ReceiverGaindB0= 0, ReceiverGaindB1= 0, ReceiverGaindB2= 0, Off2StartData=0, OffsetStartHeader=0): | |||
self.RecMgcNumber = RecMgcNumber #0x23030001 | |||
self.RecCounter = RecCounter | |||
self.Off2StartNxtRec = Off2StartNxtRec | |||
self.Off2StartData = Off2StartData | |||
self.nUtime = nUtime | |||
self.nMilisec = nMilisec | |||
self.ExpTagName = ExpTagName | |||
self.ExpComment = ExpComment | |||
self.SiteLatDegrees = SiteLatDegrees | |||
self.SiteLongDegrees = SiteLongDegrees | |||
self.RTCgpsStatus = RTCgpsStatus | |||
self.TransmitFrec = TransmitFrec | |||
self.ReceiveFrec = ReceiveFrec | |||
self.FirstOsciFrec = FirstOsciFrec | |||
self.Polarisation = Polarisation | |||
self.ReceiverFiltSett = ReceiverFiltSett | |||
self.nModesInUse = nModesInUse | |||
self.DualModeIndex = DualModeIndex | |||
self.DualModeRange = DualModeRange | |||
self.nDigChannels = nDigChannels | |||
self.SampResolution = SampResolution | |||
self.nHeights = nHeights | |||
self.StartRangeSamp = StartRangeSamp | |||
self.PRFhz = PRFhz | |||
self.nCohInt = nCohInt | |||
self.nProfiles = nProfiles | |||
self.nChannels = nChannels | |||
self.nIncohInt = nIncohInt | |||
self.FFTwindowingInd = FFTwindowingInd | |||
self.BeamAngleAzim = BeamAngleAzim | |||
self.BeamAngleZen = BeamAngleZen | |||
self.AntennaCoord0 = AntennaCoord0 | |||
self.AntennaAngl0 = AntennaAngl0 | |||
self.AntennaAngl1 = AntennaAngl1 | |||
self.AntennaAngl2 = AntennaAngl2 | |||
self.AntennaCoord1 = AntennaCoord1 | |||
self.AntennaCoord2 = AntennaCoord2 | |||
self.RecPhaseCalibr0 = RecPhaseCalibr0 | |||
self.RecPhaseCalibr1 = RecPhaseCalibr1 | |||
self.RecPhaseCalibr2 = RecPhaseCalibr2 | |||
self.RecAmpCalibr0 = RecAmpCalibr0 | |||
self.RecAmpCalibr1 = RecAmpCalibr1 | |||
self.RecAmpCalibr2 = RecAmpCalibr2 | |||
self.ReceiverGaindB0 = ReceiverGaindB0 | |||
self.ReceiverGaindB1 = ReceiverGaindB1 | |||
self.ReceiverGaindB2 = ReceiverGaindB2 | |||
self.OffsetStartHeader = 48 | |||
def RHread(self, fp): | |||
#print fp | |||
#startFp = open('/home/erick/Documents/Data/huancayo.20161019.22.fdt',"rb") #The method tell() returns the current position of the file read/write pointer within the file. | |||
startFp = open(fp,"rb") #The method tell() returns the current position of the file read/write pointer within the file. | |||
#RecCounter=0 | |||
#Off2StartNxtRec=811248 | |||
OffRHeader= self.OffsetStartHeader + self.RecCounter*self.Off2StartNxtRec | |||
print ' ' | |||
print 'puntero Record Header', startFp.tell() | |||
print ' ' | |||
startFp.seek(OffRHeader, os.SEEK_SET) | |||
print ' ' | |||
print 'puntero Record Header con seek', startFp.tell() | |||
print ' ' | |||
#print 'Posicion del bloque: ',OffRHeader | |||
header = numpy.fromfile(startFp,RECORD_STRUCTURE,1) | |||
print ' ' | |||
print 'puntero Record Header con seek', startFp.tell() | |||
print ' ' | |||
print ' ' | |||
# | |||
#print 'puntero Record Header despues de seek', header.tell() | |||
print ' ' | |||
self.RecMgcNumber = hex(header['RecMgcNumber'][0]) #0x23030001 | |||
self.RecCounter = int(header['RecCounter'][0]) | |||
self.Off2StartNxtRec = int(header['Off2StartNxtRec'][0]) | |||
self.Off2StartData = int(header['Off2StartData'][0]) | |||
self.nUtime = header['nUtime'][0] | |||
self.nMilisec = header['nMilisec'][0] | |||
self.ExpTagName = str(header['ExpTagName'][0]) | |||
self.ExpComment = str(header['ExpComment'][0]) | |||
self.SiteLatDegrees = header['SiteLatDegrees'][0] | |||
self.SiteLongDegrees = header['SiteLongDegrees'][0] | |||
self.RTCgpsStatus = header['RTCgpsStatus'][0] | |||
self.TransmitFrec = header['TransmitFrec'][0] | |||
self.ReceiveFrec = header['ReceiveFrec'][0] | |||
self.FirstOsciFrec = header['FirstOsciFrec'][0] | |||
self.Polarisation = header['Polarisation'][0] | |||
self.ReceiverFiltSett = header['ReceiverFiltSett'][0] | |||
self.nModesInUse = header['nModesInUse'][0] | |||
self.DualModeIndex = header['DualModeIndex'][0] | |||
self.DualModeRange = header['DualModeRange'][0] | |||
self.nDigChannels = header['nDigChannels'][0] | |||
self.SampResolution = header['SampResolution'][0] | |||
self.nHeights = header['nHeights'][0] | |||
self.StartRangeSamp = header['StartRangeSamp'][0] | |||
self.PRFhz = header['PRFhz'][0] | |||
self.nCohInt = header['nCohInt'][0] | |||
self.nProfiles = header['nProfiles'][0] | |||
self.nChannels = header['nChannels'][0] | |||
self.nIncohInt = header['nIncohInt'][0] | |||
self.FFTwindowingInd = header['FFTwindowingInd'][0] | |||
self.BeamAngleAzim = header['BeamAngleAzim'][0] | |||
self.BeamAngleZen = header['BeamAngleZen'][0] | |||
self.AntennaCoord0 = header['AntennaCoord0'][0] | |||
self.AntennaAngl0 = header['AntennaAngl0'][0] | |||
self.AntennaCoord1 = header['AntennaCoord1'][0] | |||
self.AntennaAngl1 = header['AntennaAngl1'][0] | |||
self.AntennaCoord2 = header['AntennaCoord2'][0] | |||
self.AntennaAngl2 = header['AntennaAngl2'][0] | |||
self.RecPhaseCalibr0 = header['RecPhaseCalibr0'][0] | |||
self.RecPhaseCalibr1 = header['RecPhaseCalibr1'][0] | |||
self.RecPhaseCalibr2 = header['RecPhaseCalibr2'][0] | |||
self.RecAmpCalibr0 = header['RecAmpCalibr0'][0] | |||
self.RecAmpCalibr1 = header['RecAmpCalibr1'][0] | |||
self.RecAmpCalibr2 = header['RecAmpCalibr2'][0] | |||
self.ReceiverGaindB0 = header['ReceiverGaindB0'][0] | |||
self.ReceiverGaindB1 = header['ReceiverGaindB1'][0] | |||
self.ReceiverGaindB2 = header['ReceiverGaindB2'][0] | |||
self.ipp= 0.5*(SPEED_OF_LIGHT/self.PRFhz) | |||
self.RHsize = 180+20*self.nChannels | |||
self.Datasize= self.nProfiles*self.nChannels*self.nHeights*2*4 | |||
#print 'Datasize',self.Datasize | |||
endFp = self.OffsetStartHeader + self.RecCounter*self.Off2StartNxtRec | |||
print '==============================================' | |||
print 'RecMgcNumber ',self.RecMgcNumber | |||
print 'RecCounter ',self.RecCounter | |||
print 'Off2StartNxtRec ',self.Off2StartNxtRec | |||
print 'Off2StartData ',self.Off2StartData | |||
print 'Range Resolution ',self.SampResolution | |||
print 'First Height ',self.StartRangeSamp | |||
print 'PRF (Hz) ',self.PRFhz | |||
print 'Heights (K) ',self.nHeights | |||
print 'Channels (N) ',self.nChannels | |||
print 'Profiles (J) ',self.nProfiles | |||
print 'iCoh ',self.nCohInt | |||
print 'iInCoh ',self.nIncohInt | |||
print 'BeamAngleAzim ',self.BeamAngleAzim | |||
print 'BeamAngleZen ',self.BeamAngleZen | |||
#print 'ModoEnUso ',self.DualModeIndex | |||
#print 'UtcTime ',self.nUtime | |||
#print 'MiliSec ',self.nMilisec | |||
#print 'Exp TagName ',self.ExpTagName | |||
#print 'Exp Comment ',self.ExpComment | |||
#print 'FFT Window Index ',self.FFTwindowingInd | |||
#print 'N Dig. Channels ',self.nDigChannels | |||
print 'Size de bloque ',self.RHsize | |||
print 'DataSize ',self.Datasize | |||
print 'BeamAngleAzim ',self.BeamAngleAzim | |||
#print 'AntennaCoord0 ',self.AntennaCoord0 | |||
#print 'AntennaAngl0 ',self.AntennaAngl0 | |||
#print 'AntennaCoord1 ',self.AntennaCoord1 | |||
#print 'AntennaAngl1 ',self.AntennaAngl1 | |||
#print 'AntennaCoord2 ',self.AntennaCoord2 | |||
#print 'AntennaAngl2 ',self.AntennaAngl2 | |||
print 'RecPhaseCalibr0 ',self.RecPhaseCalibr0 | |||
print 'RecPhaseCalibr1 ',self.RecPhaseCalibr1 | |||
print 'RecPhaseCalibr2 ',self.RecPhaseCalibr2 | |||
print 'RecAmpCalibr0 ',self.RecAmpCalibr0 | |||
print 'RecAmpCalibr1 ',self.RecAmpCalibr1 | |||
print 'RecAmpCalibr2 ',self.RecAmpCalibr2 | |||
print 'ReceiverGaindB0 ',self.ReceiverGaindB0 | |||
print 'ReceiverGaindB1 ',self.ReceiverGaindB1 | |||
print 'ReceiverGaindB2 ',self.ReceiverGaindB2 | |||
print '==============================================' | |||
if OffRHeader > endFp: | |||
sys.stderr.write("Warning %s: Size value read from System Header is lower than it has to be\n" %fp) | |||
return 0 | |||
if OffRHeader < endFp: | |||
sys.stderr.write("Warning %s: Size value read from System Header size is greater than it has to be\n" %fp) | |||
return 0 | |||
return 1 | |||
|
r1010 | class BLTRSpectraReader (ProcessingUnit, FileHeaderBLTR, RecordHeaderBLTR, JRODataReader): | |
|
r965 | ||
path = None | |||
startDate = None | |||
endDate = None | |||
startTime = None | |||
endTime = None | |||
walk = None | |||
isConfig = False | |||
fileList= None | |||
#metadata | |||
TimeZone= None | |||
Interval= None | |||
heightList= None | |||
#data | |||
data= None | |||
utctime= None | |||
|
r1001 | def __init__(self, **kwargs): | |
|
r965 | ||
#Eliminar de la base la herencia | |||
|
r1001 | ProcessingUnit.__init__(self, **kwargs) | |
|
r965 | ||
|
r1010 | #self.isConfig = False | |
|
r965 | ||
#self.pts2read_SelfSpectra = 0 | |||
#self.pts2read_CrossSpectra = 0 | |||
#self.pts2read_DCchannels = 0 | |||
#self.datablock = None | |||
self.utc = None | |||
self.ext = ".fdt" | |||
self.optchar = "P" | |||
self.fpFile=None | |||
self.fp = None | |||
self.BlockCounter=0 | |||
self.dtype = None | |||
self.fileSizeByHeader = None | |||
self.filenameList = [] | |||
self.fileSelector = 0 | |||
self.Off2StartNxtRec=0 | |||
self.RecCounter=0 | |||
self.flagNoMoreFiles = 0 | |||
self.data_spc=None | |||
self.data_cspc=None | |||
self.data_output=None | |||
self.path = None | |||
self.OffsetStartHeader=0 | |||
self.Off2StartData=0 | |||
self.ipp = 0 | |||
self.nFDTdataRecors=0 | |||
self.blocksize = 0 | |||
self.dataOut = Spectra() | |||
self.profileIndex = 1 #Always | |||
self.dataOut.flagNoData=False | |||
self.dataOut.nRdPairs = 0 | |||
self.dataOut.pairsList = [] | |||
self.dataOut.data_spc=None | |||
self.dataOut.noise=[] | |||
self.dataOut.velocityX=[] | |||
self.dataOut.velocityY=[] | |||
self.dataOut.velocityV=[] | |||
def Files2Read(self, fp): | |||
''' | |||
Function that indicates the number of .fdt files that exist in the folder to be read. | |||
It also creates an organized list with the names of the files to read. | |||
''' | |||
#self.__checkPath() | |||
ListaData=os.listdir(fp) #Gets the list of files within the fp address | |||
ListaData=sorted(ListaData) #Sort the list of files from least to largest by names | |||
nFiles=0 #File Counter | |||
FileList=[] #A list is created that will contain the .fdt files | |||
for IndexFile in ListaData : | |||
if '.fdt' in IndexFile: | |||
FileList.append(IndexFile) | |||
nFiles+=1 | |||
#print 'Files2Read' | |||
#print 'Existen '+str(nFiles)+' archivos .fdt' | |||
self.filenameList=FileList #List of files from least to largest by names | |||
def run(self, **kwargs): | |||
''' | |||
This method will be the one that will initiate the data entry, will be called constantly. | |||
You should first verify that your Setup () is set up and then continue to acquire | |||
the data to be processed with getData (). | |||
''' | |||
if not self.isConfig: | |||
self.setup(**kwargs) | |||
self.isConfig = True | |||
self.getData() | |||
#print 'running' | |||
def setup(self, path=None, | |||
startDate=None, | |||
endDate=None, | |||
startTime=None, | |||
endTime=None, | |||
walk=True, | |||
timezone='utc', | |||
code = None, | |||
online=False, | |||
|
r1001 | ReadMode=None, | |
**kwargs): | |||
|
r965 | ||
self.isConfig = True | |||
self.path=path | |||
self.startDate=startDate | |||
self.endDate=endDate | |||
self.startTime=startTime | |||
self.endTime=endTime | |||
self.walk=walk | |||
self.ReadMode=int(ReadMode) | |||
pass | |||
def getData(self): | |||
''' | |||
Before starting this function, you should check that there is still an unread file, | |||
If there are still blocks to read or if the data block is empty. | |||
You should call the file "read". | |||
''' | |||
if self.flagNoMoreFiles: | |||
self.dataOut.flagNoData = True | |||
|
r1157 | #print 'NoData se vuelve true' | |
|
r965 | return 0 | |
self.fp=self.path | |||
self.Files2Read(self.fp) | |||
self.readFile(self.fp) | |||
self.dataOut.data_spc = self.data_spc | |||
self.dataOut.data_cspc =self.data_cspc | |||
self.dataOut.data_output=self.data_output | |||
|
r1157 | #print 'self.dataOut.data_output', shape(self.dataOut.data_output) | |
|
r965 | ||
#self.removeDC() | |||
return self.dataOut.data_spc | |||
def readFile(self,fp): | |||
''' | |||
You must indicate if you are reading in Online or Offline mode and load the | |||
The parameters for this file reading mode. | |||
Then you must do 2 actions: | |||
1. Get the BLTR FileHeader. | |||
2. Start reading the first block. | |||
''' | |||
#The address of the folder is generated the name of the .fdt file that will be read | |||
|
r1157 | #print "File: ",self.fileSelector+1 | |
|
r965 | ||
if self.fileSelector < len(self.filenameList): | |||
self.fpFile=str(fp)+'/'+str(self.filenameList[self.fileSelector]) | |||
#print self.fpFile | |||
fheader = FileHeaderBLTR() | |||
fheader.FHread(self.fpFile) #Bltr FileHeader Reading | |||
self.nFDTdataRecors=fheader.nFDTdataRecors | |||
self.readBlock() #Block reading | |||
else: | |||
|
r1157 | #print 'readFile FlagNoData becomes true' | |
|
r965 | self.flagNoMoreFiles=True | |
self.dataOut.flagNoData = True | |||
return 0 | |||
def getVelRange(self, extrapoints=0): | |||
Lambda= SPEED_OF_LIGHT/50000000 | |||
PRF = self.dataOut.PRF#1./(self.dataOut.ippSeconds * self.dataOut.nCohInt) | |||
Vmax=-Lambda/(4.*(1./PRF)*self.dataOut.nCohInt*2.) | |||
deltafreq = PRF / (self.nProfiles) | |||
deltavel = (Vmax*2) / (self.nProfiles) | |||
freqrange = deltafreq*(numpy.arange(self.nProfiles)-self.nProfiles/2.) - deltafreq/2 | |||
velrange = deltavel*(numpy.arange(self.nProfiles)-self.nProfiles/2.) | |||
return velrange | |||
def readBlock(self): | |||
''' | |||
It should be checked if the block has data, if it is not passed to the next file. | |||
Then the following is done: | |||
1. Read the RecordHeader | |||
2. Fill the buffer with the current block number. | |||
''' | |||
|
r1157 | if self.BlockCounter < self.nFDTdataRecors-1: | |
#print self.nFDTdataRecors, 'CONDICION' | |||
|
r965 | if self.ReadMode==1: | |
rheader = RecordHeaderBLTR(RecCounter=self.BlockCounter+1) | |||
elif self.ReadMode==0: | |||
rheader = RecordHeaderBLTR(RecCounter=self.BlockCounter) | |||
rheader.RHread(self.fpFile) #Bltr FileHeader Reading | |||
self.OffsetStartHeader=rheader.OffsetStartHeader | |||
self.RecCounter=rheader.RecCounter | |||
self.Off2StartNxtRec=rheader.Off2StartNxtRec | |||
self.Off2StartData=rheader.Off2StartData | |||
self.nProfiles=rheader.nProfiles | |||
self.nChannels=rheader.nChannels | |||
self.nHeights=rheader.nHeights | |||
self.frequency=rheader.TransmitFrec | |||
self.DualModeIndex=rheader.DualModeIndex | |||
self.pairsList =[(0,1),(0,2),(1,2)] | |||
self.dataOut.pairsList = self.pairsList | |||
self.nRdPairs=len(self.dataOut.pairsList) | |||
self.dataOut.nRdPairs = self.nRdPairs | |||
self.__firstHeigth=rheader.StartRangeSamp | |||
self.__deltaHeigth=rheader.SampResolution | |||
self.dataOut.heightList= self.__firstHeigth + numpy.array(range(self.nHeights))*self.__deltaHeigth | |||
self.dataOut.channelList = range(self.nChannels) | |||
self.dataOut.nProfiles=rheader.nProfiles | |||
self.dataOut.nIncohInt=rheader.nIncohInt | |||
self.dataOut.nCohInt=rheader.nCohInt | |||
self.dataOut.ippSeconds= 1/float(rheader.PRFhz) | |||
self.dataOut.PRF=rheader.PRFhz | |||
self.dataOut.nFFTPoints=rheader.nProfiles | |||
self.dataOut.utctime=rheader.nUtime | |||
self.dataOut.timeZone=0 | |||
self.dataOut.normFactor= self.dataOut.nProfiles*self.dataOut.nIncohInt*self.dataOut.nCohInt | |||
self.dataOut.outputInterval= self.dataOut.ippSeconds * self.dataOut.nCohInt * self.dataOut.nIncohInt * self.nProfiles | |||
self.data_output=numpy.ones([3,rheader.nHeights])*numpy.NaN | |||
|
r1157 | #print 'self.data_output', shape(self.data_output) | |
|
r965 | self.dataOut.velocityX=[] | |
self.dataOut.velocityY=[] | |||
self.dataOut.velocityV=[] | |||
'''Block Reading, the Block Data is received and Reshape is used to give it | |||
shape. | |||
''' | |||
#Procedure to take the pointer to where the date block starts | |||
startDATA = open(self.fpFile,"rb") | |||
OffDATA= self.OffsetStartHeader + self.RecCounter*self.Off2StartNxtRec+self.Off2StartData | |||
startDATA.seek(OffDATA, os.SEEK_SET) | |||
def moving_average(x, N=2): | |||
return numpy.convolve(x, numpy.ones((N,))/N)[(N-1):] | |||
def gaus(xSamples,a,x0,sigma): | |||
return a*exp(-(xSamples-x0)**2/(2*sigma**2)) | |||
def Find(x,value): | |||
for index in range(len(x)): | |||
if x[index]==value: | |||
return index | |||
def pol2cart(rho, phi): | |||
x = rho * numpy.cos(phi) | |||
y = rho * numpy.sin(phi) | |||
return(x, y) | |||
if self.DualModeIndex==self.ReadMode: | |||
self.data_fft = numpy.fromfile( startDATA, [('complex','<c8')],self.nProfiles*self.nChannels*self.nHeights ) | |||
|
r1157 | # | |
# if len(self.data_fft) is not 101376: | |||
# | |||
# self.data_fft = numpy.empty(101376) | |||
|
r965 | ||
self.data_fft=self.data_fft.astype(numpy.dtype('complex')) | |||
|
r1157 | ||
|
r965 | self.data_block=numpy.reshape(self.data_fft,(self.nHeights, self.nChannels, self.nProfiles )) | |
self.data_block = numpy.transpose(self.data_block, (1,2,0)) | |||
|
r1001 | copy = self.data_block.copy() | |
spc = copy * numpy.conjugate(copy) | |||
|
r965 | ||
self.data_spc = numpy.absolute(spc) # valor absoluto o magnitud | |||
factor = self.dataOut.normFactor | |||
z = self.data_spc.copy()#/factor | |||
z = numpy.where(numpy.isfinite(z), z, numpy.NAN) | |||
#zdB = 10*numpy.log10(z) | |||
|
r1157 | ||
|
r965 | ||
self.dataOut.data_spc=self.data_spc | |||
self.noise = self.dataOut.getNoise(ymin_index=80, ymax_index=132)#/factor | |||
#noisedB = 10*numpy.log10(self.noise) | |||
ySamples=numpy.ones([3,self.nProfiles]) | |||
phase=numpy.ones([3,self.nProfiles]) | |||
CSPCSamples=numpy.ones([3,self.nProfiles],dtype=numpy.complex_) | |||
coherence=numpy.ones([3,self.nProfiles]) | |||
PhaseSlope=numpy.ones(3) | |||
PhaseInter=numpy.ones(3) | |||
'''****** Getting CrossSpectra ******''' | |||
cspc=self.data_block.copy() | |||
self.data_cspc=self.data_block.copy() | |||
xFrec=self.getVelRange(1) | |||
VelRange=self.getVelRange(1) | |||
self.dataOut.VelRange=VelRange | |||
#print ' ' | |||
#print ' ' | |||
#print 'xFrec',xFrec | |||
#print ' ' | |||
#print ' ' | |||
#Height=35 | |||
|
r1027 | ||
|
r965 | for i in range(self.nRdPairs): | |
chan_index0 = self.dataOut.pairsList[i][0] | |||
chan_index1 = self.dataOut.pairsList[i][1] | |||
self.data_cspc[i,:,:]=cspc[chan_index0,:,:] * numpy.conjugate(cspc[chan_index1,:,:]) | |||
'''Getting Eij and Nij''' | |||
(AntennaX0,AntennaY0)=pol2cart(rheader.AntennaCoord0, rheader.AntennaAngl0*numpy.pi/180) | |||
(AntennaX1,AntennaY1)=pol2cart(rheader.AntennaCoord1, rheader.AntennaAngl1*numpy.pi/180) | |||
(AntennaX2,AntennaY2)=pol2cart(rheader.AntennaCoord2, rheader.AntennaAngl2*numpy.pi/180) | |||
E01=AntennaX0-AntennaX1 | |||
N01=AntennaY0-AntennaY1 | |||
E02=AntennaX0-AntennaX2 | |||
N02=AntennaY0-AntennaY2 | |||
E12=AntennaX1-AntennaX2 | |||
N12=AntennaY1-AntennaY2 | |||
self.ChanDist= numpy.array([[E01, N01],[E02,N02],[E12,N12]]) | |||
self.dataOut.ChanDist = self.ChanDist | |||
|
r1158 | ||
self.BlockCounter+=2 | |||
else: | |||
self.fileSelector+=1 | |||
self.BlockCounter=0 | |||
print "Next File" |