jroplot_data.py
819 lines
| 27.6 KiB
| text/x-python
|
PythonLexer
|
r865 | |||
import os | ||||
import time | ||||
|
r1062 | import glob | ||
|
r865 | import datetime | ||
|
r1062 | from multiprocessing import Process | ||
import zmq | ||||
import numpy | ||||
|
r927 | import matplotlib | ||
|
r865 | import matplotlib.pyplot as plt | ||
from mpl_toolkits.axes_grid1 import make_axes_locatable | ||||
|
r1062 | from matplotlib.ticker import FuncFormatter, LinearLocator, MultipleLocator | ||
|
r865 | |||
from schainpy.model.proc.jroproc_base import Operation | ||||
|
r1062 | from schainpy.utils import log | ||
r889 | ||||
r1071 | jet_values = matplotlib.pyplot.get_cmap("jet", 100)(numpy.arange(100))[10:90] | |||
blu_values = matplotlib.pyplot.get_cmap("seismic_r", 20)(numpy.arange(20))[10:15] | ||||
ncmap = matplotlib.colors.LinearSegmentedColormap.from_list("jro", numpy.vstack((blu_values, jet_values))) | ||||
matplotlib.pyplot.register_cmap(cmap=ncmap) | ||||
|
r1004 | |||
r1071 | func = lambda x, pos: '{}'.format(datetime.datetime.fromtimestamp(x).strftime('%H:%M')) | |||
|
r865 | |||
r1071 | UT1970 = datetime.datetime(1970, 1, 1) - datetime.timedelta(seconds=time.timezone) | |||
CMAPS = [plt.get_cmap(s) for s in ('jro', 'jet', 'RdBu_r', 'seismic')] | ||||
|
r865 | |||
r889 | class PlotData(Operation, Process): | |||
|
r1062 | ''' | ||
Base class for Schain plotting operations | ||||
''' | ||||
|
r865 | |||
r889 | CODE = 'Figure' | |||
r922 | colormap = 'jro' | |||
|
r1062 | bgcolor = 'white' | ||
|
r931 | CONFLATE = False | ||
|
r865 | __MAXNUMX = 80 | ||
__missing = 1E30 | ||||
r889 | def __init__(self, **kwargs): | |||
|
r865 | |||
|
r906 | Operation.__init__(self, plot=True, **kwargs) | ||
r889 | Process.__init__(self) | |||
|
r906 | self.kwargs['code'] = self.CODE | ||
r889 | self.mp = False | |||
|
r1062 | self.data = None | ||
self.isConfig = False | ||||
self.figures = [] | ||||
r889 | self.axes = [] | |||
|
r1062 | self.cb_axes = [] | ||
|
r865 | self.localtime = kwargs.pop('localtime', True) | ||
r889 | self.show = kwargs.get('show', True) | |||
self.save = kwargs.get('save', False) | ||||
self.colormap = kwargs.get('colormap', self.colormap) | ||||
r922 | self.colormap_coh = kwargs.get('colormap_coh', 'jet') | |||
self.colormap_phase = kwargs.get('colormap_phase', 'RdBu_r') | ||||
|
r1062 | self.colormaps = kwargs.get('colormaps', None) | ||
self.bgcolor = kwargs.get('bgcolor', self.bgcolor) | ||||
self.showprofile = kwargs.get('showprofile', False) | ||||
self.title = kwargs.get('wintitle', self.CODE.upper()) | ||||
self.cb_label = kwargs.get('cb_label', None) | ||||
self.cb_labels = kwargs.get('cb_labels', None) | ||||
r922 | self.xaxis = kwargs.get('xaxis', 'frequency') | |||
|
r865 | self.zmin = kwargs.get('zmin', None) | ||
self.zmax = kwargs.get('zmax', None) | ||||
|
r1062 | self.zlimits = kwargs.get('zlimits', None) | ||
r1071 | self.xmin = kwargs.get('xmin', None) | |||
r889 | self.xmax = kwargs.get('xmax', None) | |||
self.xrange = kwargs.get('xrange', 24) | ||||
|
r866 | self.ymin = kwargs.get('ymin', None) | ||
self.ymax = kwargs.get('ymax', None) | ||||
|
r1062 | self.xlabel = kwargs.get('xlabel', None) | ||
self.__MAXNUMY = kwargs.get('decimation', 100) | ||||
self.showSNR = kwargs.get('showSNR', False) | ||||
self.oneFigure = kwargs.get('oneFigure', True) | ||||
self.width = kwargs.get('width', None) | ||||
self.height = kwargs.get('height', None) | ||||
self.colorbar = kwargs.get('colorbar', True) | ||||
self.factors = kwargs.get('factors', [1, 1, 1, 1, 1, 1, 1, 1]) | ||||
self.titles = ['' for __ in range(16)] | ||||
def __setup(self): | ||||
''' | ||||
Common setup for all figures, here figures and axes are created | ||||
''' | ||||
self.setup() | ||||
r1071 | self.time_label = 'LT' if self.localtime else 'UTC' | |||
|
r1062 | if self.width is None: | ||
self.width = 8 | ||||
|
r933 | |||
|
r1062 | self.figures = [] | ||
self.axes = [] | ||||
self.cb_axes = [] | ||||
self.pf_axes = [] | ||||
self.cmaps = [] | ||||
size = '15%' if self.ncols==1 else '30%' | ||||
pad = '4%' if self.ncols==1 else '8%' | ||||
if self.oneFigure: | ||||
if self.height is None: | ||||
self.height = 1.4*self.nrows + 1 | ||||
fig = plt.figure(figsize=(self.width, self.height), | ||||
edgecolor='k', | ||||
facecolor='w') | ||||
self.figures.append(fig) | ||||
for n in range(self.nplots): | ||||
ax = fig.add_subplot(self.nrows, self.ncols, n+1) | ||||
ax.tick_params(labelsize=8) | ||||
ax.firsttime = True | ||||
r1071 | ax.index = 0 | |||
|
r1062 | self.axes.append(ax) | ||
if self.showprofile: | ||||
cax = self.__add_axes(ax, size=size, pad=pad) | ||||
cax.tick_params(labelsize=8) | ||||
self.pf_axes.append(cax) | ||||
else: | ||||
if self.height is None: | ||||
self.height = 3 | ||||
for n in range(self.nplots): | ||||
fig = plt.figure(figsize=(self.width, self.height), | ||||
edgecolor='k', | ||||
facecolor='w') | ||||
ax = fig.add_subplot(1, 1, 1) | ||||
ax.tick_params(labelsize=8) | ||||
ax.firsttime = True | ||||
r1071 | ax.index = 0 | |||
|
r1062 | self.figures.append(fig) | ||
self.axes.append(ax) | ||||
if self.showprofile: | ||||
cax = self.__add_axes(ax, size=size, pad=pad) | ||||
cax.tick_params(labelsize=8) | ||||
self.pf_axes.append(cax) | ||||
for n in range(self.nrows): | ||||
if self.colormaps is not None: | ||||
cmap = plt.get_cmap(self.colormaps[n]) | ||||
else: | ||||
cmap = plt.get_cmap(self.colormap) | ||||
cmap.set_bad(self.bgcolor, 1.) | ||||
self.cmaps.append(cmap) | ||||
r1071 | for fig in self.figures: | |||
fig.canvas.mpl_connect('key_press_event', self.event_key_press) | ||||
def event_key_press(self, event): | ||||
''' | ||||
''' | ||||
for ax in self.axes: | ||||
if ax == event.inaxes: | ||||
if event.key == 'down': | ||||
ax.index += 1 | ||||
elif event.key == 'up': | ||||
ax.index -= 1 | ||||
if ax.index < 0: | ||||
ax.index = len(CMAPS) - 1 | ||||
elif ax.index == len(CMAPS): | ||||
ax.index = 0 | ||||
cmap = CMAPS[ax.index] | ||||
ax.cbar.set_cmap(cmap) | ||||
ax.cbar.draw_all() | ||||
ax.plt.set_cmap(cmap) | ||||
ax.cbar.patch.figure.canvas.draw() | ||||
|
r1062 | def __add_axes(self, ax, size='30%', pad='8%'): | ||
|
r964 | ''' | ||
|
r1062 | Add new axes to the given figure | ||
|
r964 | ''' | ||
|
r1062 | divider = make_axes_locatable(ax) | ||
nax = divider.new_horizontal(size=size, pad=pad) | ||||
ax.figure.add_axes(nax) | ||||
return nax | ||||
|
r964 | |||
r1065 | self.setup() | |||
r922 | ||||
|
r1062 | def setup(self): | ||
''' | ||||
This method should be implemented in the child class, the following | ||||
attributes should be set: | ||||
self.nrows: number of rows | ||||
self.ncols: number of cols | ||||
self.nplots: number of plots (channels or pairs) | ||||
self.ylabel: label for Y axes | ||||
self.titles: list of axes title | ||||
''' | ||||
raise(NotImplementedError, 'Implement this method in child class') | ||||
|
r865 | |||
|
r1062 | def fill_gaps(self, x_buffer, y_buffer, z_buffer): | ||
''' | ||||
Create a masked array for missing data | ||||
''' | ||||
|
r865 | if x_buffer.shape[0] < 2: | ||
return x_buffer, y_buffer, z_buffer | ||||
deltas = x_buffer[1:] - x_buffer[0:-1] | ||||
|
r1062 | x_median = numpy.median(deltas) | ||
|
r865 | |||
|
r1062 | index = numpy.where(deltas > 5*x_median) | ||
|
r865 | |||
if len(index[0]) != 0: | ||||
|
r897 | z_buffer[::, index[0], ::] = self.__missing | ||
|
r1062 | z_buffer = numpy.ma.masked_inside(z_buffer, | ||
|
r865 | 0.99*self.__missing, | ||
1.01*self.__missing) | ||||
return x_buffer, y_buffer, z_buffer | ||||
|
r866 | def decimate(self): | ||
r889 | ||||
|
r898 | # dx = int(len(self.x)/self.__MAXNUMX) + 1 | ||
|
r866 | dy = int(len(self.y)/self.__MAXNUMY) + 1 | ||
r889 | ||||
|
r898 | # x = self.x[::dx] | ||
x = self.x | ||||
r889 | y = self.y[::dy] | |||
|
r898 | z = self.z[::, ::, ::dy] | ||
|
r1062 | |||
|
r866 | return x, y, z | ||
|
r1062 | def format(self): | ||
''' | ||||
Set min and max values, labels, ticks and titles | ||||
''' | ||||
|
r983 | |||
|
r1062 | if self.xmin is None: | ||
xmin = self.min_time | ||||
else: | ||||
if self.xaxis is 'time': | ||||
dt = datetime.datetime.fromtimestamp(self.min_time) | ||||
xmin = (datetime.datetime.combine(dt.date(), | ||||
r1071 | datetime.time(int(self.xmin), 0, 0))-UT1970).total_seconds() | |||
|
r1062 | else: | ||
xmin = self.xmin | ||||
|
r983 | |||
|
r1062 | if self.xmax is None: | ||
xmax = xmin+self.xrange*60*60 | ||||
else: | ||||
if self.xaxis is 'time': | ||||
dt = datetime.datetime.fromtimestamp(self.min_time) | ||||
xmax = (datetime.datetime.combine(dt.date(), | ||||
r1071 | datetime.time(int(self.xmax), 0, 0))-UT1970).total_seconds() | |||
|
r1062 | else: | ||
xmax = self.xmax | ||||
ymin = self.ymin if self.ymin else numpy.nanmin(self.y) | ||||
ymax = self.ymax if self.ymax else numpy.nanmax(self.y) | ||||
ystep = 200 if ymax>= 800 else 100 if ymax>=400 else 50 if ymax>=200 else 20 | ||||
for n, ax in enumerate(self.axes): | ||||
if ax.firsttime: | ||||
ax.set_facecolor(self.bgcolor) | ||||
ax.yaxis.set_major_locator(MultipleLocator(ystep)) | ||||
if self.xaxis is 'time': | ||||
ax.xaxis.set_major_formatter(FuncFormatter(func)) | ||||
ax.xaxis.set_major_locator(LinearLocator(9)) | ||||
if self.xlabel is not None: | ||||
ax.set_xlabel(self.xlabel) | ||||
ax.set_ylabel(self.ylabel) | ||||
ax.firsttime = False | ||||
if self.showprofile: | ||||
self.pf_axes[n].set_ylim(ymin, ymax) | ||||
self.pf_axes[n].set_xlim(self.zmin, self.zmax) | ||||
self.pf_axes[n].set_xlabel('dB') | ||||
self.pf_axes[n].grid(b=True, axis='x') | ||||
[tick.set_visible(False) for tick in self.pf_axes[n].get_yticklabels()] | ||||
if self.colorbar: | ||||
r1071 | ax.cbar = plt.colorbar(ax.plt, ax=ax, pad=0.02, aspect=10) | |||
ax.cbar.ax.tick_params(labelsize=8) | ||||
|
r1062 | if self.cb_label: | ||
r1071 | ax.cbar.set_label(self.cb_label, size=8) | |||
|
r1062 | elif self.cb_labels: | ||
r1071 | ax.cbar.set_label(self.cb_labels[n], size=8) | |||
ax.set_title('{} - {} {}'.format( | ||||
|
r1062 | self.titles[n], | ||
r1071 | datetime.datetime.fromtimestamp(self.max_time).strftime('%H:%M:%S'), | |||
self.time_label), | ||||
|
r1062 | size=8) | ||
ax.set_xlim(xmin, xmax) | ||||
ax.set_ylim(ymin, ymax) | ||||
|
r971 | |||
r889 | def __plot(self): | |||
|
r1062 | ''' | ||
''' | ||||
log.success('Plotting', self.name) | ||||
self.plot() | ||||
self.format() | ||||
for n, fig in enumerate(self.figures): | ||||
if self.nrows == 0 or self.nplots == 0: | ||||
log.warning('No data', self.name) | ||||
continue | ||||
|
r964 | if self.show: | ||
|
r1062 | fig.show() | ||
fig.tight_layout() | ||||
fig.canvas.manager.set_window_title('{} - {}'.format(self.title, | ||||
datetime.datetime.fromtimestamp(self.max_time).strftime('%Y/%m/%d'))) | ||||
# fig.canvas.draw() | ||||
if self.save and self.data.ended: | ||||
channels = range(self.nrows) | ||||
if self.oneFigure: | ||||
label = '' | ||||
else: | ||||
label = '_{}'.format(channels[n]) | ||||
figname = os.path.join( | ||||
self.save, | ||||
'{}{}_{}.png'.format( | ||||
self.CODE, | ||||
label, | ||||
datetime.datetime.fromtimestamp(self.saveTime).strftime('%y%m%d_%H%M%S') | ||||
) | ||||
) | ||||
|
r964 | print 'Saving figure: {}'.format(figname) | ||
|
r1062 | fig.savefig(figname) | ||
|
r866 | |||
r889 | def plot(self): | |||
|
r1062 | ''' | ||
''' | ||||
raise(NotImplementedError, 'Implement this method in child class') | ||||
|
r866 | |||
r889 | def run(self): | |||
|
r866 | |||
|
r1062 | log.success('Starting', self.name) | ||
|
r937 | |||
r889 | context = zmq.Context() | |||
receiver = context.socket(zmq.SUB) | ||||
receiver.setsockopt(zmq.SUBSCRIBE, '') | ||||
|
r897 | receiver.setsockopt(zmq.CONFLATE, self.CONFLATE) | ||
|
r962 | |||
|
r937 | if 'server' in self.kwargs['parent']: | ||
receiver.connect('ipc:///tmp/{}.plots'.format(self.kwargs['parent']['server'])) | ||||
else: | ||||
|
r1062 | receiver.connect("ipc:///tmp/zmq.plots") | ||
|
r938 | |||
r889 | while True: | |||
try: | ||||
r1071 | self.data = receiver.recv_pyobj(flags=zmq.NOBLOCK) | |||
if self.localtime: | ||||
self.times = self.data.times - time.timezone | ||||
else: | ||||
self.times = self.data.times | ||||
|
r1062 | |||
r1071 | self.min_time = self.times[0] | |||
self.max_time = self.times[-1] | ||||
|
r866 | |||
r889 | if self.isConfig is False: | |||
|
r1062 | self.__setup() | ||
r889 | self.isConfig = True | |||
|
r1062 | |||
self.__plot() | ||||
r889 | ||||
except zmq.Again as e: | ||||
|
r1062 | log.log('Waiting for data...') | ||
if self.data: | ||||
plt.pause(self.data.throttle) | ||||
else: | ||||
time.sleep(2) | ||||
|
r866 | |||
def close(self): | ||||
|
r1062 | if self.data: | ||
r922 | self.__plot() | |||
r889 | ||||
|
r866 | class PlotSpectraData(PlotData): | ||
|
r1062 | ''' | ||
Plot for Spectra data | ||||
''' | ||||
|
r866 | |||
r889 | CODE = 'spc' | |||
|
r1062 | colormap = 'jro' | ||
r922 | ||||
r889 | def setup(self): | |||
|
r1062 | self.nplots = len(self.data.channels) | ||
self.ncols = int(numpy.sqrt(self.nplots)+ 0.9) | ||||
self.nrows = int((1.0*self.nplots/self.ncols) + 0.9) | ||||
self.width = 3.4*self.ncols | ||||
self.height = 3*self.nrows | ||||
self.cb_label = 'dB' | ||||
if self.showprofile: | ||||
self.width += 0.8*self.ncols | ||||
r889 | ||||
self.ylabel = 'Range [Km]' | ||||
|
r865 | def plot(self): | ||
r889 | if self.xaxis == "frequency": | |||
|
r1062 | x = self.data.xrange[0] | ||
self.xlabel = "Frequency (kHz)" | ||||
r889 | elif self.xaxis == "time": | |||
|
r1062 | x = self.data.xrange[1] | ||
self.xlabel = "Time (ms)" | ||||
r889 | else: | |||
|
r1062 | x = self.data.xrange[2] | ||
self.xlabel = "Velocity (m/s)" | ||||
if self.CODE == 'spc_mean': | ||||
x = self.data.xrange[2] | ||||
self.xlabel = "Velocity (m/s)" | ||||
r889 | ||||
|
r1062 | self.titles = [] | ||
r889 | ||||
|
r1062 | y = self.data.heights | ||
self.y = y | ||||
z = self.data['spc'] | ||||
r889 | for n, ax in enumerate(self.axes): | |||
|
r1062 | noise = self.data['noise'][n][-1] | ||
if self.CODE == 'spc_mean': | ||||
mean = self.data['mean'][n][-1] | ||||
r889 | if ax.firsttime: | |||
|
r1062 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) | ||
r889 | self.xmin = self.xmin if self.xmin else -self.xmax | |||
|
r1062 | self.zmin = self.zmin if self.zmin else numpy.nanmin(z) | ||
self.zmax = self.zmax if self.zmax else numpy.nanmax(z) | ||||
ax.plt = ax.pcolormesh(x, y, z[n].T, | ||||
vmin=self.zmin, | ||||
vmax=self.zmax, | ||||
cmap=plt.get_cmap(self.colormap) | ||||
) | ||||
r889 | ||||
if self.showprofile: | ||||
|
r1062 | ax.plt_profile= self.pf_axes[n].plot(self.data['rti'][n][-1], y)[0] | ||
ax.plt_noise = self.pf_axes[n].plot(numpy.repeat(noise, len(y)), y, | ||||
color="k", linestyle="dashed", lw=1)[0] | ||||
if self.CODE == 'spc_mean': | ||||
ax.plt_mean = ax.plot(mean, y, color='k')[0] | ||||
r889 | else: | |||
|
r1062 | ax.plt.set_array(z[n].T.ravel()) | ||
r889 | if self.showprofile: | |||
|
r1062 | ax.plt_profile.set_data(self.data['rti'][n][-1], y) | ||
ax.plt_noise.set_data(numpy.repeat(noise, len(y)), y) | ||||
if self.CODE == 'spc_mean': | ||||
ax.plt_mean.set_data(mean, y) | ||||
|
r866 | |||
|
r1062 | self.titles.append('CH {}: {:3.2f}dB'.format(n, noise)) | ||
r922 | self.saveTime = self.max_time | |||
class PlotCrossSpectraData(PlotData): | ||||
CODE = 'cspc' | ||||
zmin_coh = None | ||||
zmax_coh = None | ||||
zmin_phase = None | ||||
|
r1062 | zmax_phase = None | ||
r922 | ||||
def setup(self): | ||||
|
r1062 | self.ncols = 4 | ||
self.nrows = len(self.data.pairs) | ||||
self.nplots = self.nrows*4 | ||||
self.width = 3.4*self.ncols | ||||
self.height = 3*self.nrows | ||||
r922 | self.ylabel = 'Range [Km]' | |||
|
r1062 | self.showprofile = False | ||
r922 | ||||
def plot(self): | ||||
if self.xaxis == "frequency": | ||||
|
r1062 | x = self.data.xrange[0] | ||
self.xlabel = "Frequency (kHz)" | ||||
r922 | elif self.xaxis == "time": | |||
|
r1062 | x = self.data.xrange[1] | ||
self.xlabel = "Time (ms)" | ||||
r922 | else: | |||
|
r1062 | x = self.data.xrange[2] | ||
self.xlabel = "Velocity (m/s)" | ||||
self.titles = [] | ||||
r922 | ||||
|
r1062 | y = self.data.heights | ||
self.y = y | ||||
spc = self.data['spc'] | ||||
cspc = self.data['cspc'] | ||||
r922 | ||||
for n in range(self.nrows): | ||||
|
r1062 | noise = self.data['noise'][n][-1] | ||
pair = self.data.pairs[n] | ||||
ax = self.axes[4*n] | ||||
ax3 = self.axes[4*n+3] | ||||
r922 | if ax.firsttime: | |||
|
r1062 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) | ||
r922 | self.xmin = self.xmin if self.xmin else -self.xmax | |||
|
r1062 | self.zmin = self.zmin if self.zmin else numpy.nanmin(spc) | ||
self.zmax = self.zmax if self.zmax else numpy.nanmax(spc) | ||||
ax.plt = ax.pcolormesh(x, y, spc[pair[0]].T, | ||||
vmin=self.zmin, | ||||
vmax=self.zmax, | ||||
cmap=plt.get_cmap(self.colormap) | ||||
) | ||||
r922 | else: | |||
|
r1062 | ax.plt.set_array(spc[pair[0]].T.ravel()) | ||
self.titles.append('CH {}: {:3.2f}dB'.format(n, noise)) | ||||
r922 | ||||
|
r1062 | ax = self.axes[4*n+1] | ||
if ax.firsttime: | ||||
ax.plt = ax.pcolormesh(x, y, spc[pair[1]].T, | ||||
r922 | vmin=self.zmin, | |||
vmax=self.zmax, | ||||
cmap=plt.get_cmap(self.colormap) | ||||
) | ||||
else: | ||||
|
r1062 | ax.plt.set_array(spc[pair[1]].T.ravel()) | ||
self.titles.append('CH {}: {:3.2f}dB'.format(n, noise)) | ||||
out = cspc[n]/numpy.sqrt(spc[pair[0]]*spc[pair[1]]) | ||||
coh = numpy.abs(out) | ||||
phase = numpy.arctan2(out.imag, out.real)*180/numpy.pi | ||||
ax = self.axes[4*n+2] | ||||
if ax.firsttime: | ||||
ax.plt = ax.pcolormesh(x, y, coh.T, | ||||
vmin=0, | ||||
vmax=1, | ||||
cmap=plt.get_cmap(self.colormap_coh) | ||||
) | ||||
else: | ||||
ax.plt.set_array(coh.T.ravel()) | ||||
self.titles.append('Coherence Ch{} * Ch{}'.format(pair[0], pair[1])) | ||||
r922 | ||||
|
r1062 | ax = self.axes[4*n+3] | ||
if ax.firsttime: | ||||
ax.plt = ax.pcolormesh(x, y, phase.T, | ||||
vmin=-180, | ||||
vmax=180, | ||||
cmap=plt.get_cmap(self.colormap_phase) | ||||
) | ||||
else: | ||||
ax.plt.set_array(phase.T.ravel()) | ||||
self.titles.append('Phase CH{} * CH{}'.format(pair[0], pair[1])) | ||||
r922 | self.saveTime = self.max_time | |||
|
r866 | |||
|
r1062 | class PlotSpectraMeanData(PlotSpectraData): | ||
''' | ||||
Plot for Spectra and Mean | ||||
''' | ||||
CODE = 'spc_mean' | ||||
colormap = 'jro' | ||||
|
r866 | class PlotRTIData(PlotData): | ||
|
r1062 | ''' | ||
Plot for RTI data | ||||
''' | ||||
r889 | ||||
CODE = 'rti' | ||||
colormap = 'jro' | ||||
def setup(self): | ||||
|
r1062 | self.xaxis = 'time' | ||
self.ncols = 1 | ||||
self.nrows = len(self.data.channels) | ||||
self.nplots = len(self.data.channels) | ||||
|
r866 | self.ylabel = 'Range [Km]' | ||
|
r1062 | self.cb_label = 'dB' | ||
self.titles = ['{} Channel {}'.format(self.CODE.upper(), x) for x in range(self.nrows)] | ||||
r922 | ||||
|
r866 | def plot(self): | ||
r1071 | self.x = self.times | |||
|
r1062 | self.y = self.data.heights | ||
self.z = self.data[self.CODE] | ||||
self.z = numpy.ma.masked_invalid(self.z) | ||||
|
r865 | |||
|
r1062 | for n, ax in enumerate(self.axes): | ||
x, y, z = self.fill_gaps(*self.decimate()) | ||||
self.zmin = self.zmin if self.zmin else numpy.min(self.z) | ||||
self.zmax = self.zmax if self.zmax else numpy.max(self.z) | ||||
if ax.firsttime: | ||||
ax.plt = ax.pcolormesh(x, y, z[n].T, | ||||
vmin=self.zmin, | ||||
vmax=self.zmax, | ||||
cmap=plt.get_cmap(self.colormap) | ||||
) | ||||
if self.showprofile: | ||||
ax.plot_profile= self.pf_axes[n].plot(self.data['rti'][n][-1], self.y)[0] | ||||
ax.plot_noise = self.pf_axes[n].plot(numpy.repeat(self.data['noise'][n][-1], len(self.y)), self.y, | ||||
color="k", linestyle="dashed", lw=1)[0] | ||||
else: | ||||
ax.collections.remove(ax.collections[0]) | ||||
ax.plt = ax.pcolormesh(x, y, z[n].T, | ||||
vmin=self.zmin, | ||||
vmax=self.zmax, | ||||
cmap=plt.get_cmap(self.colormap) | ||||
) | ||||
if self.showprofile: | ||||
ax.plot_profile.set_data(self.data['rti'][n][-1], self.y) | ||||
ax.plot_noise.set_data(numpy.repeat(self.data['noise'][n][-1], len(self.y)), self.y) | ||||
|
r964 | |||
|
r1062 | self.saveTime = self.min_time | ||
r889 | ||||
class PlotCOHData(PlotRTIData): | ||||
|
r1062 | ''' | ||
Plot for Coherence data | ||||
''' | ||||
r889 | ||||
CODE = 'coh' | ||||
def setup(self): | ||||
|
r1062 | self.xaxis = 'time' | ||
r889 | self.ncols = 1 | |||
|
r1062 | self.nrows = len(self.data.pairs) | ||
self.nplots = len(self.data.pairs) | ||||
self.ylabel = 'Range [Km]' | ||||
if self.CODE == 'coh': | ||||
self.cb_label = '' | ||||
self.titles = ['Coherence Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs] | ||||
r889 | else: | |||
|
r1062 | self.cb_label = 'Degrees' | ||
self.titles = ['Phase Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs] | ||||
r889 | ||||
|
r1062 | |||
class PlotPHASEData(PlotCOHData): | ||||
''' | ||||
Plot for Phase map data | ||||
''' | ||||
CODE = 'phase' | ||||
colormap = 'seismic' | ||||
r889 | ||||
|
r865 | |||
r907 | class PlotNoiseData(PlotData): | |||
|
r1062 | ''' | ||
Plot for noise | ||||
''' | ||||
r907 | CODE = 'noise' | |||
def setup(self): | ||||
|
r1062 | self.xaxis = 'time' | ||
r907 | self.ncols = 1 | |||
self.nrows = 1 | ||||
|
r1062 | self.nplots = 1 | ||
r907 | self.ylabel = 'Intensity [dB]' | |||
self.titles = ['Noise'] | ||||
|
r1062 | self.colorbar = False | ||
r907 | ||||
def plot(self): | ||||
r1071 | x = self.times | |||
r907 | xmin = self.min_time | |||
xmax = xmin+self.xrange*60*60 | ||||
|
r1062 | Y = self.data[self.CODE] | ||
if self.axes[0].firsttime: | ||||
for ch in self.data.channels: | ||||
y = Y[ch] | ||||
self.axes[0].plot(x, y, lw=1, label='Ch{}'.format(ch)) | ||||
r907 | plt.legend() | |||
else: | ||||
|
r1062 | for ch in self.data.channels: | ||
y = Y[ch] | ||||
self.axes[0].lines[ch].set_data(x, y) | ||||
self.ymin = numpy.nanmin(Y) - 5 | ||||
self.ymax = numpy.nanmax(Y) + 5 | ||||
r922 | self.saveTime = self.min_time | |||
r907 | ||||
class PlotSNRData(PlotRTIData): | ||||
|
r1062 | ''' | ||
Plot for SNR Data | ||||
''' | ||||
|
r898 | CODE = 'snr' | ||
r922 | colormap = 'jet' | |||
r889 | ||||
|
r1062 | |||
|
r898 | class PlotDOPData(PlotRTIData): | ||
|
r1062 | ''' | ||
Plot for DOPPLER Data | ||||
''' | ||||
|
r898 | CODE = 'dop' | ||
colormap = 'jet' | ||||
r889 | ||||
r922 | ||||
|
r937 | class PlotSkyMapData(PlotData): | ||
|
r1062 | ''' | ||
Plot for meteors detection data | ||||
''' | ||||
|
r937 | |||
CODE = 'met' | ||||
def setup(self): | ||||
self.ncols = 1 | ||||
self.nrows = 1 | ||||
self.width = 7.2 | ||||
self.height = 7.2 | ||||
self.xlabel = 'Zonal Zenith Angle (deg)' | ||||
self.ylabel = 'Meridional Zenith Angle (deg)' | ||||
if self.figure is None: | ||||
self.figure = plt.figure(figsize=(self.width, self.height), | ||||
edgecolor='k', | ||||
facecolor='w') | ||||
else: | ||||
self.figure.clf() | ||||
self.ax = plt.subplot2grid((self.nrows, self.ncols), (0, 0), 1, 1, polar=True) | ||||
self.ax.firsttime = True | ||||
def plot(self): | ||||
r1071 | arrayParameters = numpy.concatenate([self.data['param'][t] for t in self.times]) | |||
|
r937 | error = arrayParameters[:,-1] | ||
indValid = numpy.where(error == 0)[0] | ||||
finalMeteor = arrayParameters[indValid,:] | ||||
finalAzimuth = finalMeteor[:,3] | ||||
finalZenith = finalMeteor[:,4] | ||||
x = finalAzimuth*numpy.pi/180 | ||||
y = finalZenith | ||||
if self.ax.firsttime: | ||||
self.ax.plot = self.ax.plot(x, y, 'bo', markersize=5)[0] | ||||
self.ax.set_ylim(0,90) | ||||
self.ax.set_yticks(numpy.arange(0,90,20)) | ||||
self.ax.set_xlabel(self.xlabel) | ||||
self.ax.set_ylabel(self.ylabel) | ||||
self.ax.yaxis.labelpad = 40 | ||||
self.ax.firsttime = False | ||||
else: | ||||
self.ax.plot.set_data(x, y) | ||||
dt1 = datetime.datetime.fromtimestamp(self.min_time).strftime('%y/%m/%d %H:%M:%S') | ||||
dt2 = datetime.datetime.fromtimestamp(self.max_time).strftime('%y/%m/%d %H:%M:%S') | ||||
title = 'Meteor Detection Sky Map\n %s - %s \n Number of events: %5.0f\n' % (dt1, | ||||
dt2, | ||||
len(x)) | ||||
self.ax.set_title(title, size=8) | ||||
self.saveTime = self.max_time | ||||
|
r1062 | |||
class PlotParamData(PlotRTIData): | ||||
''' | ||||
Plot for data_param object | ||||
''' | ||||
CODE = 'param' | ||||
colormap = 'seismic' | ||||
def setup(self): | ||||
self.xaxis = 'time' | ||||
self.ncols = 1 | ||||
self.nrows = self.data.shape(self.CODE)[0] | ||||
self.nplots = self.nrows | ||||
if self.showSNR: | ||||
self.nrows += 1 | ||||
r1065 | self.nplots += 1 | |||
|
r1062 | |||
self.ylabel = 'Height [Km]' | ||||
self.titles = self.data.parameters \ | ||||
if self.data.parameters else ['Param {}'.format(x) for x in xrange(self.nrows)] | ||||
if self.showSNR: | ||||
self.titles.append('SNR') | ||||
def plot(self): | ||||
self.data.normalize_heights() | ||||
r1071 | self.x = self.times | |||
|
r1062 | self.y = self.data.heights | ||
if self.showSNR: | ||||
self.z = numpy.concatenate( | ||||
(self.data[self.CODE], self.data['snr']) | ||||
) | ||||
else: | ||||
self.z = self.data[self.CODE] | ||||
self.z = numpy.ma.masked_invalid(self.z) | ||||
for n, ax in enumerate(self.axes): | ||||
x, y, z = self.fill_gaps(*self.decimate()) | ||||
if ax.firsttime: | ||||
if self.zlimits is not None: | ||||
self.zmin, self.zmax = self.zlimits[n] | ||||
self.zmax = self.zmax if self.zmax is not None else numpy.nanmax(abs(self.z[:-1, :])) | ||||
self.zmin = self.zmin if self.zmin is not None else -self.zmax | ||||
ax.plt = ax.pcolormesh(x, y, z[n, :, :].T*self.factors[n], | ||||
vmin=self.zmin, | ||||
vmax=self.zmax, | ||||
cmap=self.cmaps[n] | ||||
) | ||||
else: | ||||
if self.zlimits is not None: | ||||
self.zmin, self.zmax = self.zlimits[n] | ||||
ax.collections.remove(ax.collections[0]) | ||||
ax.plt = ax.pcolormesh(x, y, z[n, :, :].T*self.factors[n], | ||||
vmin=self.zmin, | ||||
vmax=self.zmax, | ||||
cmap=self.cmaps[n] | ||||
) | ||||
self.saveTime = self.min_time | ||||
class PlotOuputData(PlotParamData): | ||||
''' | ||||
Plot data_output object | ||||
''' | ||||
CODE = 'output' | ||||
r1065 | colormap = 'seismic' | |||