jroproc_spectra.py
935 lines
| 33.5 KiB
| text/x-python
|
PythonLexer
|
r487 | import numpy | ||
|
r502 | import math | ||
|
r487 | |||
from jroproc_base import ProcessingUnit, Operation | ||||
from model.data.jrodata import Spectra | ||||
|
r491 | from model.data.jrodata import hildebrand_sekhon | ||
|
r487 | |||
class SpectraProc(ProcessingUnit): | ||||
def __init__(self): | ||||
ProcessingUnit.__init__(self) | ||||
self.buffer = None | ||||
self.firstdatatime = None | ||||
self.profIndex = 0 | ||||
self.dataOut = Spectra() | ||||
|
r495 | self.id_min = None | ||
self.id_max = None | ||||
|
r487 | |||
def __updateObjFromInput(self): | ||||
self.dataOut.timeZone = self.dataIn.timeZone | ||||
self.dataOut.dstFlag = self.dataIn.dstFlag | ||||
self.dataOut.errorCount = self.dataIn.errorCount | ||||
self.dataOut.useLocalTime = self.dataIn.useLocalTime | ||||
self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy() | ||||
self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy() | ||||
self.dataOut.channelList = self.dataIn.channelList | ||||
self.dataOut.heightList = self.dataIn.heightList | ||||
self.dataOut.dtype = numpy.dtype([('real','<f4'),('imag','<f4')]) | ||||
# self.dataOut.nHeights = self.dataIn.nHeights | ||||
# self.dataOut.nChannels = self.dataIn.nChannels | ||||
self.dataOut.nBaud = self.dataIn.nBaud | ||||
self.dataOut.nCode = self.dataIn.nCode | ||||
self.dataOut.code = self.dataIn.code | ||||
self.dataOut.nProfiles = self.dataOut.nFFTPoints | ||||
# self.dataOut.channelIndexList = self.dataIn.channelIndexList | ||||
self.dataOut.flagTimeBlock = self.dataIn.flagTimeBlock | ||||
self.dataOut.utctime = self.firstdatatime | ||||
self.dataOut.flagDecodeData = self.dataIn.flagDecodeData #asumo q la data esta decodificada | ||||
self.dataOut.flagDeflipData = self.dataIn.flagDeflipData #asumo q la data esta sin flip | ||||
# self.dataOut.flagShiftFFT = self.dataIn.flagShiftFFT | ||||
self.dataOut.nCohInt = self.dataIn.nCohInt | ||||
self.dataOut.nIncohInt = 1 | ||||
# self.dataOut.ippSeconds = self.dataIn.ippSeconds | ||||
self.dataOut.windowOfFilter = self.dataIn.windowOfFilter | ||||
|
r528 | # self.dataOut.timeInterval = self.dataIn.timeInterval*self.dataOut.nFFTPoints*self.dataOut.nIncohInt | ||
|
r487 | self.dataOut.frequency = self.dataIn.frequency | ||
self.dataOut.realtime = self.dataIn.realtime | ||||
|
r499 | self.dataOut.azimuth = self.dataIn.azimuth | ||
self.dataOut.zenith = self.dataIn.zenith | ||||
|
r501 | self.dataOut.beam.codeList = self.dataIn.beam.codeList | ||
self.dataOut.beam.azimuthList = self.dataIn.beam.azimuthList | ||||
self.dataOut.beam.zenithList = self.dataIn.beam.zenithList | ||||
|
r487 | def __getFft(self): | ||
""" | ||||
Convierte valores de Voltaje a Spectra | ||||
Affected: | ||||
self.dataOut.data_spc | ||||
self.dataOut.data_cspc | ||||
self.dataOut.data_dc | ||||
self.dataOut.heightList | ||||
self.profIndex | ||||
self.buffer | ||||
self.dataOut.flagNoData | ||||
""" | ||||
fft_volt = numpy.fft.fft(self.buffer,n=self.dataOut.nFFTPoints,axis=1) | ||||
fft_volt = fft_volt.astype(numpy.dtype('complex')) | ||||
dc = fft_volt[:,0,:] | ||||
#calculo de self-spectra | ||||
fft_volt = numpy.fft.fftshift(fft_volt,axes=(1,)) | ||||
spc = fft_volt * numpy.conjugate(fft_volt) | ||||
spc = spc.real | ||||
blocksize = 0 | ||||
blocksize += dc.size | ||||
blocksize += spc.size | ||||
cspc = None | ||||
pairIndex = 0 | ||||
if self.dataOut.pairsList != None: | ||||
#calculo de cross-spectra | ||||
cspc = numpy.zeros((self.dataOut.nPairs, self.dataOut.nFFTPoints, self.dataOut.nHeights), dtype='complex') | ||||
for pair in self.dataOut.pairsList: | ||||
cspc[pairIndex,:,:] = fft_volt[pair[0],:,:] * numpy.conjugate(fft_volt[pair[1],:,:]) | ||||
pairIndex += 1 | ||||
blocksize += cspc.size | ||||
self.dataOut.data_spc = spc | ||||
self.dataOut.data_cspc = cspc | ||||
self.dataOut.data_dc = dc | ||||
self.dataOut.blockSize = blocksize | ||||
self.dataOut.flagShiftFFT = False | ||||
def run(self, nProfiles=None, nFFTPoints=None, pairsList=[], ippFactor=None): | ||||
self.dataOut.flagNoData = True | ||||
if self.dataIn.type == "Spectra": | ||||
self.dataOut.copy(self.dataIn) | ||||
return True | ||||
if self.dataIn.type == "Voltage": | ||||
if nFFTPoints == None: | ||||
raise ValueError, "This SpectraProc.run() need nFFTPoints input variable" | ||||
|
r495 | if nProfiles == None: | ||
raise ValueError, "This SpectraProc.run() need nProfiles input variable" | ||||
|
r487 | |||
if ippFactor == None: | ||||
ippFactor = 1 | ||||
self.dataOut.ippFactor = ippFactor | ||||
self.dataOut.nFFTPoints = nFFTPoints | ||||
self.dataOut.pairsList = pairsList | ||||
|
r495 | |||
|
r487 | if self.buffer == None: | ||
self.buffer = numpy.zeros((self.dataIn.nChannels, | ||||
nProfiles, | ||||
self.dataIn.nHeights), | ||||
|
r495 | dtype='complex') | ||
self.id_min = 0 | ||||
self.id_max = self.dataIn.data.shape[1] | ||||
|
r487 | |||
|
r495 | if len(self.dataIn.data.shape) == 2: | ||
self.buffer[:,self.profIndex,:] = self.dataIn.data.copy() | ||||
self.profIndex += 1 | ||||
else: | ||||
if self.dataIn.data.shape[1] == nProfiles: | ||||
self.buffer = self.dataIn.data.copy() | ||||
self.profIndex = nProfiles | ||||
elif self.dataIn.data.shape[1] < nProfiles: | ||||
self.buffer[:,self.id_min:self.id_max,:] = self.dataIn.data | ||||
self.profIndex += self.dataIn.data.shape[1] | ||||
self.id_min += self.dataIn.data.shape[1] | ||||
self.id_max += self.dataIn.data.shape[1] | ||||
else: | ||||
raise ValueError, "The type object %s has %d profiles, it should be equal to %d profiles"%(self.dataIn.type,self.dataIn.data.shape[1],nProfiles) | ||||
self.dataOut.flagNoData = True | ||||
return 0 | ||||
|
r487 | |||
if self.firstdatatime == None: | ||||
self.firstdatatime = self.dataIn.utctime | ||||
if self.profIndex == nProfiles: | ||||
self.__updateObjFromInput() | ||||
self.__getFft() | ||||
self.dataOut.flagNoData = False | ||||
self.buffer = None | ||||
self.firstdatatime = None | ||||
self.profIndex = 0 | ||||
return True | ||||
raise ValueError, "The type object %s is not valid"%(self.dataIn.type) | ||||
def selectChannels(self, channelList): | ||||
channelIndexList = [] | ||||
for channel in channelList: | ||||
index = self.dataOut.channelList.index(channel) | ||||
channelIndexList.append(index) | ||||
self.selectChannelsByIndex(channelIndexList) | ||||
def selectChannelsByIndex(self, channelIndexList): | ||||
""" | ||||
Selecciona un bloque de datos en base a canales segun el channelIndexList | ||||
Input: | ||||
channelIndexList : lista sencilla de canales a seleccionar por ej. [2,3,7] | ||||
Affected: | ||||
self.dataOut.data_spc | ||||
self.dataOut.channelIndexList | ||||
self.dataOut.nChannels | ||||
Return: | ||||
None | ||||
""" | ||||
for channelIndex in channelIndexList: | ||||
if channelIndex not in self.dataOut.channelIndexList: | ||||
print channelIndexList | ||||
raise ValueError, "The value %d in channelIndexList is not valid" %channelIndex | ||||
# nChannels = len(channelIndexList) | ||||
data_spc = self.dataOut.data_spc[channelIndexList,:] | ||||
self.dataOut.data_spc = data_spc | ||||
self.dataOut.channelList = [self.dataOut.channelList[i] for i in channelIndexList] | ||||
# self.dataOut.nChannels = nChannels | ||||
return 1 | ||||
def selectHeights(self, minHei, maxHei): | ||||
""" | ||||
Selecciona un bloque de datos en base a un grupo de valores de alturas segun el rango | ||||
minHei <= height <= maxHei | ||||
Input: | ||||
minHei : valor minimo de altura a considerar | ||||
maxHei : valor maximo de altura a considerar | ||||
Affected: | ||||
Indirectamente son cambiados varios valores a travez del metodo selectHeightsByIndex | ||||
Return: | ||||
1 si el metodo se ejecuto con exito caso contrario devuelve 0 | ||||
""" | ||||
if (minHei < self.dataOut.heightList[0]) or (minHei > maxHei): | ||||
raise ValueError, "some value in (%d,%d) is not valid" % (minHei, maxHei) | ||||
if (maxHei > self.dataOut.heightList[-1]): | ||||
maxHei = self.dataOut.heightList[-1] | ||||
# raise ValueError, "some value in (%d,%d) is not valid" % (minHei, maxHei) | ||||
minIndex = 0 | ||||
maxIndex = 0 | ||||
heights = self.dataOut.heightList | ||||
inda = numpy.where(heights >= minHei) | ||||
indb = numpy.where(heights <= maxHei) | ||||
try: | ||||
minIndex = inda[0][0] | ||||
except: | ||||
minIndex = 0 | ||||
try: | ||||
maxIndex = indb[0][-1] | ||||
except: | ||||
maxIndex = len(heights) | ||||
self.selectHeightsByIndex(minIndex, maxIndex) | ||||
return 1 | ||||
def getBeaconSignal(self, tauindex = 0, channelindex = 0, hei_ref=None): | ||||
newheis = numpy.where(self.dataOut.heightList>self.dataOut.radarControllerHeaderObj.Taus[tauindex]) | ||||
if hei_ref != None: | ||||
newheis = numpy.where(self.dataOut.heightList>hei_ref) | ||||
minIndex = min(newheis[0]) | ||||
maxIndex = max(newheis[0]) | ||||
data_spc = self.dataOut.data_spc[:,:,minIndex:maxIndex+1] | ||||
heightList = self.dataOut.heightList[minIndex:maxIndex+1] | ||||
# determina indices | ||||
nheis = int(self.dataOut.radarControllerHeaderObj.txB/(self.dataOut.heightList[1]-self.dataOut.heightList[0])) | ||||
avg_dB = 10*numpy.log10(numpy.sum(data_spc[channelindex,:,:],axis=0)) | ||||
beacon_dB = numpy.sort(avg_dB)[-nheis:] | ||||
beacon_heiIndexList = [] | ||||
for val in avg_dB.tolist(): | ||||
if val >= beacon_dB[0]: | ||||
beacon_heiIndexList.append(avg_dB.tolist().index(val)) | ||||
#data_spc = data_spc[:,:,beacon_heiIndexList] | ||||
data_cspc = None | ||||
if self.dataOut.data_cspc != None: | ||||
data_cspc = self.dataOut.data_cspc[:,:,minIndex:maxIndex+1] | ||||
#data_cspc = data_cspc[:,:,beacon_heiIndexList] | ||||
data_dc = None | ||||
if self.dataOut.data_dc != None: | ||||
data_dc = self.dataOut.data_dc[:,minIndex:maxIndex+1] | ||||
#data_dc = data_dc[:,beacon_heiIndexList] | ||||
self.dataOut.data_spc = data_spc | ||||
self.dataOut.data_cspc = data_cspc | ||||
self.dataOut.data_dc = data_dc | ||||
self.dataOut.heightList = heightList | ||||
self.dataOut.beacon_heiIndexList = beacon_heiIndexList | ||||
return 1 | ||||
def selectHeightsByIndex(self, minIndex, maxIndex): | ||||
""" | ||||
Selecciona un bloque de datos en base a un grupo indices de alturas segun el rango | ||||
minIndex <= index <= maxIndex | ||||
Input: | ||||
minIndex : valor de indice minimo de altura a considerar | ||||
maxIndex : valor de indice maximo de altura a considerar | ||||
Affected: | ||||
self.dataOut.data_spc | ||||
self.dataOut.data_cspc | ||||
self.dataOut.data_dc | ||||
self.dataOut.heightList | ||||
Return: | ||||
1 si el metodo se ejecuto con exito caso contrario devuelve 0 | ||||
""" | ||||
if (minIndex < 0) or (minIndex > maxIndex): | ||||
raise ValueError, "some value in (%d,%d) is not valid" % (minIndex, maxIndex) | ||||
if (maxIndex >= self.dataOut.nHeights): | ||||
maxIndex = self.dataOut.nHeights-1 | ||||
# raise ValueError, "some value in (%d,%d) is not valid" % (minIndex, maxIndex) | ||||
# nHeights = maxIndex - minIndex + 1 | ||||
#Spectra | ||||
data_spc = self.dataOut.data_spc[:,:,minIndex:maxIndex+1] | ||||
data_cspc = None | ||||
if self.dataOut.data_cspc != None: | ||||
data_cspc = self.dataOut.data_cspc[:,:,minIndex:maxIndex+1] | ||||
data_dc = None | ||||
if self.dataOut.data_dc != None: | ||||
data_dc = self.dataOut.data_dc[:,minIndex:maxIndex+1] | ||||
self.dataOut.data_spc = data_spc | ||||
self.dataOut.data_cspc = data_cspc | ||||
self.dataOut.data_dc = data_dc | ||||
self.dataOut.heightList = self.dataOut.heightList[minIndex:maxIndex+1] | ||||
return 1 | ||||
def removeDC(self, mode = 2): | ||||
jspectra = self.dataOut.data_spc | ||||
jcspectra = self.dataOut.data_cspc | ||||
num_chan = jspectra.shape[0] | ||||
num_hei = jspectra.shape[2] | ||||
if jcspectra != None: | ||||
jcspectraExist = True | ||||
num_pairs = jcspectra.shape[0] | ||||
else: jcspectraExist = False | ||||
freq_dc = jspectra.shape[1]/2 | ||||
ind_vel = numpy.array([-2,-1,1,2]) + freq_dc | ||||
if ind_vel[0]<0: | ||||
ind_vel[range(0,1)] = ind_vel[range(0,1)] + self.num_prof | ||||
if mode == 1: | ||||
jspectra[:,freq_dc,:] = (jspectra[:,ind_vel[1],:] + jspectra[:,ind_vel[2],:])/2 #CORRECCION | ||||
if jcspectraExist: | ||||
jcspectra[:,freq_dc,:] = (jcspectra[:,ind_vel[1],:] + jcspectra[:,ind_vel[2],:])/2 | ||||
if mode == 2: | ||||
vel = numpy.array([-2,-1,1,2]) | ||||
xx = numpy.zeros([4,4]) | ||||
for fil in range(4): | ||||
xx[fil,:] = vel[fil]**numpy.asarray(range(4)) | ||||
xx_inv = numpy.linalg.inv(xx) | ||||
xx_aux = xx_inv[0,:] | ||||
for ich in range(num_chan): | ||||
yy = jspectra[ich,ind_vel,:] | ||||
jspectra[ich,freq_dc,:] = numpy.dot(xx_aux,yy) | ||||
junkid = jspectra[ich,freq_dc,:]<=0 | ||||
cjunkid = sum(junkid) | ||||
if cjunkid.any(): | ||||
jspectra[ich,freq_dc,junkid.nonzero()] = (jspectra[ich,ind_vel[1],junkid] + jspectra[ich,ind_vel[2],junkid])/2 | ||||
if jcspectraExist: | ||||
for ip in range(num_pairs): | ||||
yy = jcspectra[ip,ind_vel,:] | ||||
jcspectra[ip,freq_dc,:] = numpy.dot(xx_aux,yy) | ||||
self.dataOut.data_spc = jspectra | ||||
self.dataOut.data_cspc = jcspectra | ||||
return 1 | ||||
def removeInterference(self, interf = 2,hei_interf = None, nhei_interf = None, offhei_interf = None): | ||||
jspectra = self.dataOut.data_spc | ||||
jcspectra = self.dataOut.data_cspc | ||||
jnoise = self.dataOut.getNoise() | ||||
num_incoh = self.dataOut.nIncohInt | ||||
num_channel = jspectra.shape[0] | ||||
num_prof = jspectra.shape[1] | ||||
num_hei = jspectra.shape[2] | ||||
#hei_interf | ||||
if hei_interf == None: | ||||
count_hei = num_hei/2 #Como es entero no importa | ||||
hei_interf = numpy.asmatrix(range(count_hei)) + num_hei - count_hei | ||||
hei_interf = numpy.asarray(hei_interf)[0] | ||||
#nhei_interf | ||||
if (nhei_interf == None): | ||||
nhei_interf = 5 | ||||
if (nhei_interf < 1): | ||||
nhei_interf = 1 | ||||
if (nhei_interf > count_hei): | ||||
nhei_interf = count_hei | ||||
if (offhei_interf == None): | ||||
offhei_interf = 0 | ||||
ind_hei = range(num_hei) | ||||
# mask_prof = numpy.asarray(range(num_prof - 2)) + 1 | ||||
# mask_prof[range(num_prof/2 - 1,len(mask_prof))] += 1 | ||||
mask_prof = numpy.asarray(range(num_prof)) | ||||
num_mask_prof = mask_prof.size | ||||
comp_mask_prof = [0, num_prof/2] | ||||
#noise_exist: Determina si la variable jnoise ha sido definida y contiene la informacion del ruido de cada canal | ||||
if (jnoise.size < num_channel or numpy.isnan(jnoise).any()): | ||||
jnoise = numpy.nan | ||||
noise_exist = jnoise[0] < numpy.Inf | ||||
#Subrutina de Remocion de la Interferencia | ||||
for ich in range(num_channel): | ||||
#Se ordena los espectros segun su potencia (menor a mayor) | ||||
power = jspectra[ich,mask_prof,:] | ||||
power = power[:,hei_interf] | ||||
power = power.sum(axis = 0) | ||||
psort = power.ravel().argsort() | ||||
#Se estima la interferencia promedio en los Espectros de Potencia empleando | ||||
junkspc_interf = jspectra[ich,:,hei_interf[psort[range(offhei_interf, nhei_interf + offhei_interf)]]] | ||||
if noise_exist: | ||||
# tmp_noise = jnoise[ich] / num_prof | ||||
tmp_noise = jnoise[ich] | ||||
junkspc_interf = junkspc_interf - tmp_noise | ||||
#junkspc_interf[:,comp_mask_prof] = 0 | ||||
jspc_interf = junkspc_interf.sum(axis = 0) / nhei_interf | ||||
jspc_interf = jspc_interf.transpose() | ||||
#Calculando el espectro de interferencia promedio | ||||
noiseid = numpy.where(jspc_interf <= tmp_noise/ math.sqrt(num_incoh)) | ||||
noiseid = noiseid[0] | ||||
cnoiseid = noiseid.size | ||||
interfid = numpy.where(jspc_interf > tmp_noise/ math.sqrt(num_incoh)) | ||||
interfid = interfid[0] | ||||
cinterfid = interfid.size | ||||
if (cnoiseid > 0): jspc_interf[noiseid] = 0 | ||||
#Expandiendo los perfiles a limpiar | ||||
if (cinterfid > 0): | ||||
new_interfid = (numpy.r_[interfid - 1, interfid, interfid + 1] + num_prof)%num_prof | ||||
new_interfid = numpy.asarray(new_interfid) | ||||
new_interfid = {x for x in new_interfid} | ||||
new_interfid = numpy.array(list(new_interfid)) | ||||
new_cinterfid = new_interfid.size | ||||
else: new_cinterfid = 0 | ||||
for ip in range(new_cinterfid): | ||||
ind = junkspc_interf[:,new_interfid[ip]].ravel().argsort() | ||||
jspc_interf[new_interfid[ip]] = junkspc_interf[ind[nhei_interf/2],new_interfid[ip]] | ||||
jspectra[ich,:,ind_hei] = jspectra[ich,:,ind_hei] - jspc_interf #Corregir indices | ||||
#Removiendo la interferencia del punto de mayor interferencia | ||||
ListAux = jspc_interf[mask_prof].tolist() | ||||
maxid = ListAux.index(max(ListAux)) | ||||
if cinterfid > 0: | ||||
for ip in range(cinterfid*(interf == 2) - 1): | ||||
ind = (jspectra[ich,interfid[ip],:] < tmp_noise*(1 + 1/math.sqrt(num_incoh))).nonzero() | ||||
cind = len(ind) | ||||
if (cind > 0): | ||||
jspectra[ich,interfid[ip],ind] = tmp_noise*(1 + (numpy.random.uniform(cind) - 0.5)/math.sqrt(num_incoh)) | ||||
ind = numpy.array([-2,-1,1,2]) | ||||
xx = numpy.zeros([4,4]) | ||||
for id1 in range(4): | ||||
xx[:,id1] = ind[id1]**numpy.asarray(range(4)) | ||||
xx_inv = numpy.linalg.inv(xx) | ||||
xx = xx_inv[:,0] | ||||
ind = (ind + maxid + num_mask_prof)%num_mask_prof | ||||
yy = jspectra[ich,mask_prof[ind],:] | ||||
jspectra[ich,mask_prof[maxid],:] = numpy.dot(yy.transpose(),xx) | ||||
indAux = (jspectra[ich,:,:] < tmp_noise*(1-1/math.sqrt(num_incoh))).nonzero() | ||||
jspectra[ich,indAux[0],indAux[1]] = tmp_noise * (1 - 1/math.sqrt(num_incoh)) | ||||
#Remocion de Interferencia en el Cross Spectra | ||||
if jcspectra == None: return jspectra, jcspectra | ||||
num_pairs = jcspectra.size/(num_prof*num_hei) | ||||
jcspectra = jcspectra.reshape(num_pairs, num_prof, num_hei) | ||||
for ip in range(num_pairs): | ||||
#------------------------------------------- | ||||
cspower = numpy.abs(jcspectra[ip,mask_prof,:]) | ||||
cspower = cspower[:,hei_interf] | ||||
cspower = cspower.sum(axis = 0) | ||||
cspsort = cspower.ravel().argsort() | ||||
junkcspc_interf = jcspectra[ip,:,hei_interf[cspsort[range(offhei_interf, nhei_interf + offhei_interf)]]] | ||||
junkcspc_interf = junkcspc_interf.transpose() | ||||
jcspc_interf = junkcspc_interf.sum(axis = 1)/nhei_interf | ||||
ind = numpy.abs(jcspc_interf[mask_prof]).ravel().argsort() | ||||
median_real = numpy.median(numpy.real(junkcspc_interf[mask_prof[ind[range(3*num_prof/4)]],:])) | ||||
median_imag = numpy.median(numpy.imag(junkcspc_interf[mask_prof[ind[range(3*num_prof/4)]],:])) | ||||
junkcspc_interf[comp_mask_prof,:] = numpy.complex(median_real, median_imag) | ||||
for iprof in range(num_prof): | ||||
ind = numpy.abs(junkcspc_interf[iprof,:]).ravel().argsort() | ||||
jcspc_interf[iprof] = junkcspc_interf[iprof, ind[nhei_interf/2]] | ||||
#Removiendo la Interferencia | ||||
jcspectra[ip,:,ind_hei] = jcspectra[ip,:,ind_hei] - jcspc_interf | ||||
ListAux = numpy.abs(jcspc_interf[mask_prof]).tolist() | ||||
maxid = ListAux.index(max(ListAux)) | ||||
ind = numpy.array([-2,-1,1,2]) | ||||
xx = numpy.zeros([4,4]) | ||||
for id1 in range(4): | ||||
xx[:,id1] = ind[id1]**numpy.asarray(range(4)) | ||||
xx_inv = numpy.linalg.inv(xx) | ||||
xx = xx_inv[:,0] | ||||
ind = (ind + maxid + num_mask_prof)%num_mask_prof | ||||
yy = jcspectra[ip,mask_prof[ind],:] | ||||
jcspectra[ip,mask_prof[maxid],:] = numpy.dot(yy.transpose(),xx) | ||||
#Guardar Resultados | ||||
self.dataOut.data_spc = jspectra | ||||
self.dataOut.data_cspc = jcspectra | ||||
return 1 | ||||
def setRadarFrequency(self, frequency=None): | ||||
if frequency != None: | ||||
self.dataOut.frequency = frequency | ||||
return 1 | ||||
def getNoise(self, minHei=None, maxHei=None, minVel=None, maxVel=None): | ||||
#validacion de rango | ||||
if minHei == None: | ||||
minHei = self.dataOut.heightList[0] | ||||
if maxHei == None: | ||||
maxHei = self.dataOut.heightList[-1] | ||||
if (minHei < self.dataOut.heightList[0]) or (minHei > maxHei): | ||||
print 'minHei: %.2f is out of the heights range'%(minHei) | ||||
print 'minHei is setting to %.2f'%(self.dataOut.heightList[0]) | ||||
minHei = self.dataOut.heightList[0] | ||||
if (maxHei > self.dataOut.heightList[-1]) or (maxHei < minHei): | ||||
print 'maxHei: %.2f is out of the heights range'%(maxHei) | ||||
print 'maxHei is setting to %.2f'%(self.dataOut.heightList[-1]) | ||||
maxHei = self.dataOut.heightList[-1] | ||||
# validacion de velocidades | ||||
velrange = self.dataOut.getVelRange(1) | ||||
if minVel == None: | ||||
minVel = velrange[0] | ||||
if maxVel == None: | ||||
maxVel = velrange[-1] | ||||
if (minVel < velrange[0]) or (minVel > maxVel): | ||||
print 'minVel: %.2f is out of the velocity range'%(minVel) | ||||
print 'minVel is setting to %.2f'%(velrange[0]) | ||||
minVel = velrange[0] | ||||
if (maxVel > velrange[-1]) or (maxVel < minVel): | ||||
print 'maxVel: %.2f is out of the velocity range'%(maxVel) | ||||
print 'maxVel is setting to %.2f'%(velrange[-1]) | ||||
maxVel = velrange[-1] | ||||
# seleccion de indices para rango | ||||
minIndex = 0 | ||||
maxIndex = 0 | ||||
heights = self.dataOut.heightList | ||||
inda = numpy.where(heights >= minHei) | ||||
indb = numpy.where(heights <= maxHei) | ||||
try: | ||||
minIndex = inda[0][0] | ||||
except: | ||||
minIndex = 0 | ||||
try: | ||||
maxIndex = indb[0][-1] | ||||
except: | ||||
maxIndex = len(heights) | ||||
if (minIndex < 0) or (minIndex > maxIndex): | ||||
raise ValueError, "some value in (%d,%d) is not valid" % (minIndex, maxIndex) | ||||
if (maxIndex >= self.dataOut.nHeights): | ||||
maxIndex = self.dataOut.nHeights-1 | ||||
# seleccion de indices para velocidades | ||||
indminvel = numpy.where(velrange >= minVel) | ||||
indmaxvel = numpy.where(velrange <= maxVel) | ||||
try: | ||||
minIndexVel = indminvel[0][0] | ||||
except: | ||||
minIndexVel = 0 | ||||
try: | ||||
maxIndexVel = indmaxvel[0][-1] | ||||
except: | ||||
maxIndexVel = len(velrange) | ||||
#seleccion del espectro | ||||
data_spc = self.dataOut.data_spc[:,minIndexVel:maxIndexVel+1,minIndex:maxIndex+1] | ||||
#estimacion de ruido | ||||
noise = numpy.zeros(self.dataOut.nChannels) | ||||
for channel in range(self.dataOut.nChannels): | ||||
daux = data_spc[channel,:,:] | ||||
noise[channel] = hildebrand_sekhon(daux, self.dataOut.nIncohInt) | ||||
self.dataOut.noise_estimation = noise.copy() | ||||
return 1 | ||||
class IncohInt(Operation): | ||||
__profIndex = 0 | ||||
__withOverapping = False | ||||
__byTime = False | ||||
__initime = None | ||||
__lastdatatime = None | ||||
__integrationtime = None | ||||
__buffer_spc = None | ||||
__buffer_cspc = None | ||||
__buffer_dc = None | ||||
__dataReady = False | ||||
__timeInterval = None | ||||
n = None | ||||
def __init__(self): | ||||
Operation.__init__(self) | ||||
# self.isConfig = False | ||||
def setup(self, n=None, timeInterval=None, overlapping=False): | ||||
""" | ||||
Set the parameters of the integration class. | ||||
Inputs: | ||||
n : Number of coherent integrations | ||||
timeInterval : Time of integration. If the parameter "n" is selected this one does not work | ||||
overlapping : | ||||
""" | ||||
self.__initime = None | ||||
self.__lastdatatime = 0 | ||||
self.__buffer_spc = None | ||||
self.__buffer_cspc = None | ||||
self.__buffer_dc = None | ||||
self.__dataReady = False | ||||
if n == None and timeInterval == None: | ||||
raise ValueError, "n or timeInterval should be specified ..." | ||||
if n != None: | ||||
self.n = n | ||||
self.__byTime = False | ||||
else: | ||||
self.__integrationtime = timeInterval #if (type(timeInterval)!=integer) -> change this line | ||||
self.n = 9999 | ||||
self.__byTime = True | ||||
if overlapping: | ||||
self.__withOverapping = True | ||||
else: | ||||
self.__withOverapping = False | ||||
self.__buffer_spc = 0 | ||||
self.__buffer_cspc = 0 | ||||
self.__buffer_dc = 0 | ||||
self.__profIndex = 0 | ||||
def putData(self, data_spc, data_cspc, data_dc): | ||||
""" | ||||
Add a profile to the __buffer_spc and increase in one the __profileIndex | ||||
""" | ||||
if not self.__withOverapping: | ||||
self.__buffer_spc += data_spc | ||||
if data_cspc == None: | ||||
self.__buffer_cspc = None | ||||
else: | ||||
self.__buffer_cspc += data_cspc | ||||
if data_dc == None: | ||||
self.__buffer_dc = None | ||||
else: | ||||
self.__buffer_dc += data_dc | ||||
self.__profIndex += 1 | ||||
return | ||||
#Overlapping data | ||||
nChannels, nFFTPoints, nHeis = data_spc.shape | ||||
data_spc = numpy.reshape(data_spc, (1, nChannels, nFFTPoints, nHeis)) | ||||
if data_cspc != None: | ||||
data_cspc = numpy.reshape(data_cspc, (1, -1, nFFTPoints, nHeis)) | ||||
if data_dc != None: | ||||
data_dc = numpy.reshape(data_dc, (1, -1, nHeis)) | ||||
#If the buffer is empty then it takes the data value | ||||
if self.__buffer_spc == None: | ||||
self.__buffer_spc = data_spc | ||||
if data_cspc == None: | ||||
self.__buffer_cspc = None | ||||
else: | ||||
self.__buffer_cspc += data_cspc | ||||
if data_dc == None: | ||||
self.__buffer_dc = None | ||||
else: | ||||
self.__buffer_dc += data_dc | ||||
self.__profIndex += 1 | ||||
return | ||||
#If the buffer length is lower than n then stakcing the data value | ||||
if self.__profIndex < self.n: | ||||
self.__buffer_spc = numpy.vstack((self.__buffer_spc, data_spc)) | ||||
if data_cspc != None: | ||||
self.__buffer_cspc = numpy.vstack((self.__buffer_cspc, data_cspc)) | ||||
if data_dc != None: | ||||
self.__buffer_dc = numpy.vstack((self.__buffer_dc, data_dc)) | ||||
self.__profIndex += 1 | ||||
return | ||||
#If the buffer length is equal to n then replacing the last buffer value with the data value | ||||
self.__buffer_spc = numpy.roll(self.__buffer_spc, -1, axis=0) | ||||
self.__buffer_spc[self.n-1] = data_spc | ||||
if data_cspc != None: | ||||
self.__buffer_cspc = numpy.roll(self.__buffer_cspc, -1, axis=0) | ||||
self.__buffer_cspc[self.n-1] = data_cspc | ||||
if data_dc != None: | ||||
self.__buffer_dc = numpy.roll(self.__buffer_dc, -1, axis=0) | ||||
self.__buffer_dc[self.n-1] = data_dc | ||||
self.__profIndex = self.n | ||||
return | ||||
def pushData(self): | ||||
""" | ||||
Return the sum of the last profiles and the profiles used in the sum. | ||||
Affected: | ||||
self.__profileIndex | ||||
""" | ||||
data_spc = None | ||||
data_cspc = None | ||||
data_dc = None | ||||
if not self.__withOverapping: | ||||
data_spc = self.__buffer_spc | ||||
data_cspc = self.__buffer_cspc | ||||
data_dc = self.__buffer_dc | ||||
n = self.__profIndex | ||||
self.__buffer_spc = 0 | ||||
self.__buffer_cspc = 0 | ||||
self.__buffer_dc = 0 | ||||
self.__profIndex = 0 | ||||
return data_spc, data_cspc, data_dc, n | ||||
#Integration with Overlapping | ||||
data_spc = numpy.sum(self.__buffer_spc, axis=0) | ||||
if self.__buffer_cspc != None: | ||||
data_cspc = numpy.sum(self.__buffer_cspc, axis=0) | ||||
if self.__buffer_dc != None: | ||||
data_dc = numpy.sum(self.__buffer_dc, axis=0) | ||||
n = self.__profIndex | ||||
return data_spc, data_cspc, data_dc, n | ||||
def byProfiles(self, *args): | ||||
self.__dataReady = False | ||||
avgdata_spc = None | ||||
avgdata_cspc = None | ||||
avgdata_dc = None | ||||
# n = None | ||||
self.putData(*args) | ||||
if self.__profIndex == self.n: | ||||
avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() | ||||
self.__dataReady = True | ||||
return avgdata_spc, avgdata_cspc, avgdata_dc | ||||
def byTime(self, datatime, *args): | ||||
self.__dataReady = False | ||||
avgdata_spc = None | ||||
avgdata_cspc = None | ||||
avgdata_dc = None | ||||
n = None | ||||
self.putData(*args) | ||||
if (datatime - self.__initime) >= self.__integrationtime: | ||||
avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() | ||||
self.n = n | ||||
self.__dataReady = True | ||||
return avgdata_spc, avgdata_cspc, avgdata_dc | ||||
def integrate(self, datatime, *args): | ||||
if self.__initime == None: | ||||
self.__initime = datatime | ||||
if self.__byTime: | ||||
avgdata_spc, avgdata_cspc, avgdata_dc = self.byTime(datatime, *args) | ||||
else: | ||||
avgdata_spc, avgdata_cspc, avgdata_dc = self.byProfiles(*args) | ||||
self.__lastdatatime = datatime | ||||
if avgdata_spc == None: | ||||
return None, None, None, None | ||||
avgdatatime = self.__initime | ||||
try: | ||||
self.__timeInterval = (self.__lastdatatime - self.__initime)/(self.n - 1) | ||||
except: | ||||
self.__timeInterval = self.__lastdatatime - self.__initime | ||||
deltatime = datatime -self.__lastdatatime | ||||
if not self.__withOverapping: | ||||
self.__initime = datatime | ||||
else: | ||||
self.__initime += deltatime | ||||
return avgdatatime, avgdata_spc, avgdata_cspc, avgdata_dc | ||||
def run(self, dataOut, n=None, timeInterval=None, overlapping=False): | ||||
if n==1: | ||||
dataOut.flagNoData = False | ||||
return | ||||
if not self.isConfig: | ||||
self.setup(n, timeInterval, overlapping) | ||||
self.isConfig = True | ||||
avgdatatime, avgdata_spc, avgdata_cspc, avgdata_dc = self.integrate(dataOut.utctime, | ||||
dataOut.data_spc, | ||||
dataOut.data_cspc, | ||||
dataOut.data_dc) | ||||
# dataOut.timeInterval *= n | ||||
dataOut.flagNoData = True | ||||
if self.__dataReady: | ||||
dataOut.data_spc = avgdata_spc | ||||
dataOut.data_cspc = avgdata_cspc | ||||
dataOut.data_dc = avgdata_dc | ||||
dataOut.nIncohInt *= self.n | ||||
dataOut.utctime = avgdatatime | ||||
#dataOut.timeInterval = dataOut.ippSeconds * dataOut.nCohInt * dataOut.nIncohInt * dataOut.nFFTPoints | ||||
|
r528 | # dataOut.timeInterval = self.__timeInterval*self.n | ||
|
r487 | dataOut.flagNoData = False | ||