jroproc_parameters.py
1779 lines
| 70.7 KiB
| text/x-python
|
PythonLexer
|
r502 | import numpy | |
import math | |||
from scipy import optimize | |||
from scipy import interpolate | |||
from scipy import signal | |||
from scipy import stats | |||
import re | |||
import datetime | |||
import copy | |||
|
r513 | import sys | |
import importlib | |||
import itertools | |||
|
r502 | ||
from jroproc_base import ProcessingUnit, Operation | |||
|
r568 | from schainpy.model.data.jrodata import Parameters | |
|
r502 | ||
class ParametersProc(ProcessingUnit): | |||
nSeconds = None | |||
def __init__(self): | |||
ProcessingUnit.__init__(self) | |||
|
r543 | # self.objectDict = {} | |
|
r502 | self.buffer = None | |
self.firstdatatime = None | |||
self.profIndex = 0 | |||
self.dataOut = Parameters() | |||
def __updateObjFromInput(self): | |||
self.dataOut.inputUnit = self.dataIn.type | |||
self.dataOut.timeZone = self.dataIn.timeZone | |||
self.dataOut.dstFlag = self.dataIn.dstFlag | |||
self.dataOut.errorCount = self.dataIn.errorCount | |||
self.dataOut.useLocalTime = self.dataIn.useLocalTime | |||
self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy() | |||
self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy() | |||
self.dataOut.channelList = self.dataIn.channelList | |||
self.dataOut.heightList = self.dataIn.heightList | |||
self.dataOut.dtype = numpy.dtype([('real','<f4'),('imag','<f4')]) | |||
# self.dataOut.nHeights = self.dataIn.nHeights | |||
# self.dataOut.nChannels = self.dataIn.nChannels | |||
self.dataOut.nBaud = self.dataIn.nBaud | |||
self.dataOut.nCode = self.dataIn.nCode | |||
self.dataOut.code = self.dataIn.code | |||
# self.dataOut.nProfiles = self.dataOut.nFFTPoints | |||
|
r568 | self.dataOut.flagDiscontinuousBlock = self.dataIn.flagDiscontinuousBlock | |
|
r502 | self.dataOut.utctime = self.firstdatatime | |
self.dataOut.flagDecodeData = self.dataIn.flagDecodeData #asumo q la data esta decodificada | |||
self.dataOut.flagDeflipData = self.dataIn.flagDeflipData #asumo q la data esta sin flip | |||
# self.dataOut.nCohInt = self.dataIn.nCohInt | |||
# self.dataOut.nIncohInt = 1 | |||
self.dataOut.ippSeconds = self.dataIn.ippSeconds | |||
# self.dataOut.windowOfFilter = self.dataIn.windowOfFilter | |||
self.dataOut.timeInterval = self.dataIn.timeInterval | |||
|
r543 | self.dataOut.heightList = self.dataIn.getHeiRange() | |
|
r502 | self.dataOut.frequency = self.dataIn.frequency | |
def run(self, nSeconds = None, nProfiles = None): | |||
|
r513 | ||
|
r502 | ||
if self.firstdatatime == None: | |||
self.firstdatatime = self.dataIn.utctime | |||
#---------------------- Voltage Data --------------------------- | |||
if self.dataIn.type == "Voltage": | |||
|
r513 | self.dataOut.flagNoData = True | |
|
r502 | if nSeconds != None: | |
self.nSeconds = nSeconds | |||
self.nProfiles= int(numpy.floor(nSeconds/(self.dataIn.ippSeconds*self.dataIn.nCohInt))) | |||
if self.buffer == None: | |||
self.buffer = numpy.zeros((self.dataIn.nChannels, | |||
self.nProfiles, | |||
self.dataIn.nHeights), | |||
dtype='complex') | |||
self.buffer[:,self.profIndex,:] = self.dataIn.data.copy() | |||
self.profIndex += 1 | |||
if self.profIndex == self.nProfiles: | |||
self.__updateObjFromInput() | |||
self.dataOut.data_pre = self.buffer.copy() | |||
self.dataOut.paramInterval = nSeconds | |||
self.dataOut.flagNoData = False | |||
self.buffer = None | |||
self.firstdatatime = None | |||
self.profIndex = 0 | |||
|
r511 | return | |
|
r502 | ||
#---------------------- Spectra Data --------------------------- | |||
if self.dataIn.type == "Spectra": | |||
self.dataOut.data_pre = self.dataIn.data_spc.copy() | |||
|
r543 | self.dataOut.abscissaList = self.dataIn.getVelRange(1) | |
|
r502 | self.dataOut.noise = self.dataIn.getNoise() | |
self.dataOut.normFactor = self.dataIn.normFactor | |||
|
r549 | self.dataOut.groupList = self.dataIn.pairsList | |
|
r513 | self.dataOut.flagNoData = False | |
|
r511 | ||
|
r502 | #---------------------- Correlation Data --------------------------- | |
if self.dataIn.type == "Correlation": | |||
lagRRange = self.dataIn.lagR | |||
indR = numpy.where(lagRRange == 0)[0][0] | |||
self.dataOut.data_pre = self.dataIn.data_corr.copy()[:,:,indR,:] | |||
|
r543 | self.dataOut.abscissaList = self.dataIn.getLagTRange(1) | |
|
r502 | self.dataOut.noise = self.dataIn.noise | |
self.dataOut.normFactor = self.dataIn.normFactor | |||
|
r514 | self.dataOut.data_SNR = self.dataIn.SNR | |
|
r513 | self.dataOut.groupList = self.dataIn.pairsList | |
|
r543 | self.dataOut.flagNoData = False | |
#---------------------- Correlation Data --------------------------- | |||
if self.dataIn.type == "Parameters": | |||
self.dataOut.copy(self.dataIn) | |||
|
r513 | self.dataOut.flagNoData = False | |
|
r502 | ||
|
r543 | return True | |
|
r511 | ||
self.__updateObjFromInput() | |||
self.firstdatatime = None | |||
|
r543 | self.dataOut.utctimeInit = self.dataIn.utctime | |
|
r513 | self.dataOut.outputInterval = self.dataIn.timeInterval | |
|
r502 | ||
#------------------- Get Moments ---------------------------------- | |||
def GetMoments(self, channelList = None): | |||
''' | |||
Function GetMoments() | |||
Input: | |||
channelList : simple channel list to select e.g. [2,3,7] | |||
self.dataOut.data_pre | |||
|
r543 | self.dataOut.abscissaList | |
|
r502 | self.dataOut.noise | |
Affected: | |||
self.dataOut.data_param | |||
|
r514 | self.dataOut.data_SNR | |
|
r502 | ||
''' | |||
data = self.dataOut.data_pre | |||
|
r543 | absc = self.dataOut.abscissaList[:-1] | |
|
r502 | noise = self.dataOut.noise | |
data_param = numpy.zeros((data.shape[0], 4, data.shape[2])) | |||
|
r511 | if channelList== None: | |
channelList = self.dataIn.channelList | |||
self.dataOut.channelList = channelList | |||
|
r502 | ||
for ind in channelList: | |||
data_param[ind,:,:] = self.__calculateMoments(data[ind,:,:], absc, noise[ind]) | |||
|
r511 | ||
self.dataOut.data_param = data_param[:,1:,:] | |||
|
r514 | self.dataOut.data_SNR = data_param[:,0] | |
|
r502 | return | |
def __calculateMoments(self, oldspec, oldfreq, n0, nicoh = None, graph = None, smooth = None, type1 = None, fwindow = None, snrth = None, dc = None, aliasing = None, oldfd = None, wwauto = None): | |||
if (nicoh == None): nicoh = 1 | |||
if (graph == None): graph = 0 | |||
if (smooth == None): smooth = 0 | |||
elif (self.smooth < 3): smooth = 0 | |||
if (type1 == None): type1 = 0 | |||
if (fwindow == None): fwindow = numpy.zeros(oldfreq.size) + 1 | |||
if (snrth == None): snrth = -3 | |||
if (dc == None): dc = 0 | |||
if (aliasing == None): aliasing = 0 | |||
if (oldfd == None): oldfd = 0 | |||
if (wwauto == None): wwauto = 0 | |||
if (n0 < 1.e-20): n0 = 1.e-20 | |||
freq = oldfreq | |||
vec_power = numpy.zeros(oldspec.shape[1]) | |||
vec_fd = numpy.zeros(oldspec.shape[1]) | |||
vec_w = numpy.zeros(oldspec.shape[1]) | |||
vec_snr = numpy.zeros(oldspec.shape[1]) | |||
for ind in range(oldspec.shape[1]): | |||
spec = oldspec[:,ind] | |||
aux = spec*fwindow | |||
max_spec = aux.max() | |||
m = list(aux).index(max_spec) | |||
#Smooth | |||
if (smooth == 0): spec2 = spec | |||
else: spec2 = scipy.ndimage.filters.uniform_filter1d(spec,size=smooth) | |||
# Calculo de Momentos | |||
bb = spec2[range(m,spec2.size)] | |||
bb = (bb<n0).nonzero() | |||
bb = bb[0] | |||
ss = spec2[range(0,m + 1)] | |||
ss = (ss<n0).nonzero() | |||
ss = ss[0] | |||
if (bb.size == 0): | |||
bb0 = spec.size - 1 - m | |||
else: | |||
bb0 = bb[0] - 1 | |||
if (bb0 < 0): | |||
bb0 = 0 | |||
if (ss.size == 0): ss1 = 1 | |||
else: ss1 = max(ss) + 1 | |||
if (ss1 > m): ss1 = m | |||
valid = numpy.asarray(range(int(m + bb0 - ss1 + 1))) + ss1 | |||
power = ((spec2[valid] - n0)*fwindow[valid]).sum() | |||
fd = ((spec2[valid]- n0)*freq[valid]*fwindow[valid]).sum()/power | |||
w = math.sqrt(((spec2[valid] - n0)*fwindow[valid]*(freq[valid]- fd)**2).sum()/power) | |||
snr = (spec2.mean()-n0)/n0 | |||
if (snr < 1.e-20) : | |||
snr = 1.e-20 | |||
vec_power[ind] = power | |||
vec_fd[ind] = fd | |||
vec_w[ind] = w | |||
vec_snr[ind] = snr | |||
moments = numpy.vstack((vec_snr, vec_power, vec_fd, vec_w)) | |||
return moments | |||
|
r549 | #------------------ Get SA Parameters -------------------------- | |
def GetSAParameters(self): | |||
data = self.dataOut.data_pre | |||
crossdata = self.dataIn.data_cspc | |||
a = 1 | |||
|
r502 | #------------------- Get Lags ---------------------------------- | |
def GetLags(self): | |||
''' | |||
Function GetMoments() | |||
Input: | |||
self.dataOut.data_pre | |||
|
r543 | self.dataOut.abscissaList | |
|
r502 | self.dataOut.noise | |
self.dataOut.normFactor | |||
|
r514 | self.dataOut.data_SNR | |
|
r513 | self.dataOut.groupList | |
|
r502 | self.dataOut.nChannels | |
Affected: | |||
self.dataOut.data_param | |||
''' | |||
|
r549 | ||
|
r502 | data = self.dataOut.data_pre | |
normFactor = self.dataOut.normFactor | |||
nHeights = self.dataOut.nHeights | |||
|
r543 | absc = self.dataOut.abscissaList[:-1] | |
|
r502 | noise = self.dataOut.noise | |
|
r514 | SNR = self.dataOut.data_SNR | |
|
r513 | pairsList = self.dataOut.groupList | |
|
r502 | nChannels = self.dataOut.nChannels | |
pairsAutoCorr, pairsCrossCorr = self.__getPairsAutoCorr(pairsList, nChannels) | |||
self.dataOut.data_param = numpy.zeros((len(pairsCrossCorr)*2 + 1, nHeights)) | |||
dataNorm = numpy.abs(data) | |||
for l in range(len(pairsList)): | |||
dataNorm[l,:,:] = dataNorm[l,:,:]/normFactor[l,:] | |||
self.dataOut.data_param[:-1,:] = self.__calculateTaus(dataNorm, pairsCrossCorr, pairsAutoCorr, absc) | |||
self.dataOut.data_param[-1,:] = self.__calculateLag1Phase(data, pairsAutoCorr, absc) | |||
return | |||
def __getPairsAutoCorr(self, pairsList, nChannels): | |||
pairsAutoCorr = numpy.zeros(nChannels, dtype = 'int')*numpy.nan | |||
for l in range(len(pairsList)): | |||
firstChannel = pairsList[l][0] | |||
secondChannel = pairsList[l][1] | |||
#Obteniendo pares de Autocorrelacion | |||
if firstChannel == secondChannel: | |||
pairsAutoCorr[firstChannel] = int(l) | |||
pairsAutoCorr = pairsAutoCorr.astype(int) | |||
pairsCrossCorr = range(len(pairsList)) | |||
pairsCrossCorr = numpy.delete(pairsCrossCorr,pairsAutoCorr) | |||
return pairsAutoCorr, pairsCrossCorr | |||
def __calculateTaus(self, data, pairsCrossCorr, pairsAutoCorr, lagTRange): | |||
Pt0 = data.shape[1]/2 | |||
#Funcion de Autocorrelacion | |||
dataAutoCorr = stats.nanmean(data[pairsAutoCorr,:,:], axis = 0) | |||
#Obtencion Indice de TauCross | |||
indCross = data[pairsCrossCorr,:,:].argmax(axis = 1) | |||
#Obtencion Indice de TauAuto | |||
indAuto = numpy.zeros(indCross.shape,dtype = 'int') | |||
CCValue = data[pairsCrossCorr,Pt0,:] | |||
for i in range(pairsCrossCorr.size): | |||
indAuto[i,:] = numpy.abs(dataAutoCorr - CCValue[i,:]).argmin(axis = 0) | |||
#Obtencion de TauCross y TauAuto | |||
tauCross = lagTRange[indCross] | |||
tauAuto = lagTRange[indAuto] | |||
Nan1, Nan2 = numpy.where(tauCross == lagTRange[0]) | |||
tauCross[Nan1,Nan2] = numpy.nan | |||
tauAuto[Nan1,Nan2] = numpy.nan | |||
tau = numpy.vstack((tauCross,tauAuto)) | |||
return tau | |||
def __calculateLag1Phase(self, data, pairs, lagTRange): | |||
data1 = stats.nanmean(data[pairs,:,:], axis = 0) | |||
lag1 = numpy.where(lagTRange == 0)[0][0] + 1 | |||
phase = numpy.angle(data1[lag1,:]) | |||
return phase | |||
#------------------- Detect Meteors ------------------------------ | |||
def DetectMeteors(self, hei_ref = None, tauindex = 0, | |||
predefinedPhaseShifts = None, centerReceiverIndex = 2, | |||
cohDetection = False, cohDet_timeStep = 1, cohDet_thresh = 25, | |||
noise_timeStep = 4, noise_multiple = 4, | |||
multDet_timeLimit = 1, multDet_rangeLimit = 3, | |||
phaseThresh = 20, SNRThresh = 8, | |||
hmin = 70, hmax=110, azimuth = 0) : | |||
''' | |||
Function DetectMeteors() | |||
Project developed with paper: | |||
HOLDSWORTH ET AL. 2004 | |||
Input: | |||
self.dataOut.data_pre | |||
centerReceiverIndex: From the channels, which is the center receiver | |||
hei_ref: Height reference for the Beacon signal extraction | |||
tauindex: | |||
predefinedPhaseShifts: Predefined phase offset for the voltge signals | |||
cohDetection: Whether to user Coherent detection or not | |||
cohDet_timeStep: Coherent Detection calculation time step | |||
cohDet_thresh: Coherent Detection phase threshold to correct phases | |||
noise_timeStep: Noise calculation time step | |||
noise_multiple: Noise multiple to define signal threshold | |||
multDet_timeLimit: Multiple Detection Removal time limit in seconds | |||
multDet_rangeLimit: Multiple Detection Removal range limit in km | |||
phaseThresh: Maximum phase difference between receiver to be consider a meteor | |||
SNRThresh: Minimum SNR threshold of the meteor signal to be consider a meteor | |||
hmin: Minimum Height of the meteor to use it in the further wind estimations | |||
hmax: Maximum Height of the meteor to use it in the further wind estimations | |||
azimuth: Azimuth angle correction | |||
Affected: | |||
self.dataOut.data_param | |||
Rejection Criteria (Errors): | |||
0: No error; analysis OK | |||
1: SNR < SNR threshold | |||
2: angle of arrival (AOA) ambiguously determined | |||
3: AOA estimate not feasible | |||
4: Large difference in AOAs obtained from different antenna baselines | |||
5: echo at start or end of time series | |||
6: echo less than 5 examples long; too short for analysis | |||
7: echo rise exceeds 0.3s | |||
8: echo decay time less than twice rise time | |||
9: large power level before echo | |||
10: large power level after echo | |||
11: poor fit to amplitude for estimation of decay time | |||
12: poor fit to CCF phase variation for estimation of radial drift velocity | |||
13: height unresolvable echo: not valid height within 70 to 110 km | |||
14: height ambiguous echo: more then one possible height within 70 to 110 km | |||
15: radial drift velocity or projected horizontal velocity exceeds 200 m/s | |||
16: oscilatory echo, indicating event most likely not an underdense echo | |||
17: phase difference in meteor Reestimation | |||
Data Storage: | |||
Meteors for Wind Estimation (8): | |||
Day Hour | Range Height | |||
Azimuth Zenith errorCosDir | |||
VelRad errorVelRad | |||
TypeError | |||
''' | |||
#Get Beacon signal | |||
newheis = numpy.where(self.dataOut.heightList>self.dataOut.radarControllerHeaderObj.Taus[tauindex]) | |||
if hei_ref != None: | |||
newheis = numpy.where(self.dataOut.heightList>hei_ref) | |||
heiRang = self.dataOut.getHeiRange() | |||
#Pairs List | |||
pairslist = [] | |||
nChannel = self.dataOut.nChannels | |||
for i in range(nChannel): | |||
if i != centerReceiverIndex: | |||
pairslist.append((centerReceiverIndex,i)) | |||
#****************REMOVING HARDWARE PHASE DIFFERENCES*************** | |||
# see if the user put in pre defined phase shifts | |||
voltsPShift = self.dataOut.data_pre.copy() | |||
if predefinedPhaseShifts != None: | |||
hardwarePhaseShifts = numpy.array(predefinedPhaseShifts)*numpy.pi/180 | |||
else: | |||
#get hardware phase shifts using beacon signal | |||
hardwarePhaseShifts = self.__getHardwarePhaseDiff(self.dataOut.data_pre, pairslist, newheis, 10) | |||
hardwarePhaseShifts = numpy.insert(hardwarePhaseShifts,centerReceiverIndex,0) | |||
voltsPShift = numpy.zeros((self.dataOut.data_pre.shape[0],self.dataOut.data_pre.shape[1],self.dataOut.data_pre.shape[2]), dtype = 'complex') | |||
for i in range(self.dataOut.data_pre.shape[0]): | |||
voltsPShift[i,:,:] = self.__shiftPhase(self.dataOut.data_pre[i,:,:], hardwarePhaseShifts[i]) | |||
#******************END OF REMOVING HARDWARE PHASE DIFFERENCES********* | |||
#Remove DC | |||
voltsDC = numpy.mean(voltsPShift,1) | |||
voltsDC = numpy.mean(voltsDC,1) | |||
for i in range(voltsDC.shape[0]): | |||
voltsPShift[i] = voltsPShift[i] - voltsDC[i] | |||
#Don't considerate last heights, theyre used to calculate Hardware Phase Shift | |||
voltsPShift = voltsPShift[:,:,:newheis[0][0]] | |||
#************ FIND POWER OF DATA W/COH OR NON COH DETECTION (3.4) ********** | |||
#Coherent Detection | |||
if cohDetection: | |||
#use coherent detection to get the net power | |||
cohDet_thresh = cohDet_thresh*numpy.pi/180 | |||
voltsPShift = self.__coherentDetection(voltsPShift, cohDet_timeStep, self.dataOut.timeInterval, pairslist, cohDet_thresh) | |||
#Non-coherent detection! | |||
powerNet = numpy.nansum(numpy.abs(voltsPShift[:,:,:])**2,0) | |||
#********** END OF COH/NON-COH POWER CALCULATION********************** | |||
#********** FIND THE NOISE LEVEL AND POSSIBLE METEORS **************** | |||
#Get noise | |||
noise, noise1 = self.__getNoise(powerNet, noise_timeStep, self.dataOut.timeInterval) | |||
# noise = self.getNoise1(powerNet, noise_timeStep, self.dataOut.timeInterval) | |||
#Get signal threshold | |||
signalThresh = noise_multiple*noise | |||
#Meteor echoes detection | |||
listMeteors = self.__findMeteors(powerNet, signalThresh) | |||
#******* END OF NOISE LEVEL AND POSSIBLE METEORS CACULATION ********** | |||
#************** REMOVE MULTIPLE DETECTIONS (3.5) *************************** | |||
#Parameters | |||
heiRange = self.dataOut.getHeiRange() | |||
rangeInterval = heiRange[1] - heiRange[0] | |||
rangeLimit = multDet_rangeLimit/rangeInterval | |||
timeLimit = multDet_timeLimit/self.dataOut.timeInterval | |||
#Multiple detection removals | |||
listMeteors1 = self.__removeMultipleDetections(listMeteors, rangeLimit, timeLimit) | |||
#************ END OF REMOVE MULTIPLE DETECTIONS ********************** | |||
#********************* METEOR REESTIMATION (3.7, 3.8, 3.9, 3.10) ******************** | |||
#Parameters | |||
phaseThresh = phaseThresh*numpy.pi/180 | |||
thresh = [phaseThresh, noise_multiple, SNRThresh] | |||
#Meteor reestimation (Errors N 1, 6, 12, 17) | |||
listMeteors2, listMeteorsPower, listMeteorsVolts = self.__meteorReestimation(listMeteors1, voltsPShift, pairslist, thresh, noise, self.dataOut.timeInterval, self.dataOut.frequency) | |||
# listMeteors2, listMeteorsPower, listMeteorsVolts = self.meteorReestimation3(listMeteors2, listMeteorsPower, listMeteorsVolts, voltsPShift, pairslist, thresh, noise) | |||
#Estimation of decay times (Errors N 7, 8, 11) | |||
listMeteors3 = self.__estimateDecayTime(listMeteors2, listMeteorsPower, self.dataOut.timeInterval, self.dataOut.frequency) | |||
#******************* END OF METEOR REESTIMATION ******************* | |||
#********************* METEOR PARAMETERS CALCULATION (3.11, 3.12, 3.13) ************************** | |||
#Calculating Radial Velocity (Error N 15) | |||
radialStdThresh = 10 | |||
listMeteors4 = self.__getRadialVelocity(listMeteors3, listMeteorsVolts, radialStdThresh, pairslist, self.dataOut.timeInterval) | |||
if len(listMeteors4) > 0: | |||
#Setting New Array | |||
date = repr(self.dataOut.datatime) | |||
arrayMeteors4, arrayParameters = self.__setNewArrays(listMeteors4, date, heiRang) | |||
#Calculate AOA (Error N 3, 4) | |||
#JONES ET AL. 1998 | |||
AOAthresh = numpy.pi/8 | |||
error = arrayParameters[:,-1] | |||
phases = -arrayMeteors4[:,9:13] | |||
pairsList = [] | |||
pairsList.append((0,3)) | |||
pairsList.append((1,2)) | |||
arrayParameters[:,4:7], arrayParameters[:,-1] = self.__getAOA(phases, pairsList, error, AOAthresh, azimuth) | |||
#Calculate Heights (Error N 13 and 14) | |||
error = arrayParameters[:,-1] | |||
Ranges = arrayParameters[:,2] | |||
zenith = arrayParameters[:,5] | |||
arrayParameters[:,3], arrayParameters[:,-1] = self.__getHeights(Ranges, zenith, error, hmin, hmax) | |||
#********************* END OF PARAMETERS CALCULATION ************************** | |||
#***************************+ SAVE DATA IN HDF5 FORMAT ********************** | |||
self.dataOut.data_param = arrayParameters | |||
return | |||
def __getHardwarePhaseDiff(self, voltage0, pairslist, newheis, n): | |||
minIndex = min(newheis[0]) | |||
maxIndex = max(newheis[0]) | |||
voltage = voltage0[:,:,minIndex:maxIndex+1] | |||
nLength = voltage.shape[1]/n | |||
nMin = 0 | |||
nMax = 0 | |||
phaseOffset = numpy.zeros((len(pairslist),n)) | |||
for i in range(n): | |||
nMax += nLength | |||
phaseCCF = -numpy.angle(self.__calculateCCF(voltage[:,nMin:nMax,:], pairslist, [0])) | |||
phaseCCF = numpy.mean(phaseCCF, axis = 2) | |||
phaseOffset[:,i] = phaseCCF.transpose() | |||
nMin = nMax | |||
# phaseDiff, phaseArrival = self.estimatePhaseDifference(voltage, pairslist) | |||
#Remove Outliers | |||
factor = 2 | |||
wt = phaseOffset - signal.medfilt(phaseOffset,(1,5)) | |||
dw = numpy.std(wt,axis = 1) | |||
dw = dw.reshape((dw.size,1)) | |||
ind = numpy.where(numpy.logical_or(wt>dw*factor,wt<-dw*factor)) | |||
phaseOffset[ind] = numpy.nan | |||
phaseOffset = stats.nanmean(phaseOffset, axis=1) | |||
return phaseOffset | |||
def __shiftPhase(self, data, phaseShift): | |||
#this will shift the phase of a complex number | |||
dataShifted = numpy.abs(data) * numpy.exp((numpy.angle(data)+phaseShift)*1j) | |||
return dataShifted | |||
def __estimatePhaseDifference(self, array, pairslist): | |||
nChannel = array.shape[0] | |||
nHeights = array.shape[2] | |||
numPairs = len(pairslist) | |||
# phaseCCF = numpy.zeros((nChannel, 5, nHeights)) | |||
phaseCCF = numpy.angle(self.__calculateCCF(array, pairslist, [-2,-1,0,1,2])) | |||
#Correct phases | |||
derPhaseCCF = phaseCCF[:,1:,:] - phaseCCF[:,0:-1,:] | |||
indDer = numpy.where(numpy.abs(derPhaseCCF) > numpy.pi) | |||
if indDer[0].shape[0] > 0: | |||
for i in range(indDer[0].shape[0]): | |||
signo = -numpy.sign(derPhaseCCF[indDer[0][i],indDer[1][i],indDer[2][i]]) | |||
phaseCCF[indDer[0][i],indDer[1][i]+1:,:] += signo*2*numpy.pi | |||
# for j in range(numSides): | |||
# phaseCCFAux = self.calculateCCF(arrayCenter, arraySides[j,:,:], [-2,1,0,1,2]) | |||
# phaseCCF[j,:,:] = numpy.angle(phaseCCFAux) | |||
# | |||
#Linear | |||
phaseInt = numpy.zeros((numPairs,1)) | |||
angAllCCF = phaseCCF[:,[0,1,3,4],0] | |||
for j in range(numPairs): | |||
fit = stats.linregress([-2,-1,1,2],angAllCCF[j,:]) | |||
phaseInt[j] = fit[1] | |||
#Phase Differences | |||
phaseDiff = phaseInt - phaseCCF[:,2,:] | |||
phaseArrival = phaseInt.reshape(phaseInt.size) | |||
#Dealias | |||
indAlias = numpy.where(phaseArrival > numpy.pi) | |||
phaseArrival[indAlias] -= 2*numpy.pi | |||
indAlias = numpy.where(phaseArrival < -numpy.pi) | |||
phaseArrival[indAlias] += 2*numpy.pi | |||
return phaseDiff, phaseArrival | |||
def __coherentDetection(self, volts, timeSegment, timeInterval, pairslist, thresh): | |||
#this function will run the coherent detection used in Holdworth et al. 2004 and return the net power | |||
#find the phase shifts of each channel over 1 second intervals | |||
#only look at ranges below the beacon signal | |||
numProfPerBlock = numpy.ceil(timeSegment/timeInterval) | |||
numBlocks = int(volts.shape[1]/numProfPerBlock) | |||
numHeights = volts.shape[2] | |||
nChannel = volts.shape[0] | |||
voltsCohDet = volts.copy() | |||
pairsarray = numpy.array(pairslist) | |||
indSides = pairsarray[:,1] | |||
# indSides = numpy.array(range(nChannel)) | |||
# indSides = numpy.delete(indSides, indCenter) | |||
# | |||
# listCenter = numpy.array_split(volts[indCenter,:,:], numBlocks, 0) | |||
listBlocks = numpy.array_split(volts, numBlocks, 1) | |||
startInd = 0 | |||
endInd = 0 | |||
for i in range(numBlocks): | |||
startInd = endInd | |||
endInd = endInd + listBlocks[i].shape[1] | |||
arrayBlock = listBlocks[i] | |||
# arrayBlockCenter = listCenter[i] | |||
#Estimate the Phase Difference | |||
phaseDiff, aux = self.__estimatePhaseDifference(arrayBlock, pairslist) | |||
#Phase Difference RMS | |||
arrayPhaseRMS = numpy.abs(phaseDiff) | |||
phaseRMSaux = numpy.sum(arrayPhaseRMS < thresh,0) | |||
indPhase = numpy.where(phaseRMSaux==4) | |||
#Shifting | |||
if indPhase[0].shape[0] > 0: | |||
for j in range(indSides.size): | |||
arrayBlock[indSides[j],:,indPhase] = self.__shiftPhase(arrayBlock[indSides[j],:,indPhase], phaseDiff[j,indPhase].transpose()) | |||
voltsCohDet[:,startInd:endInd,:] = arrayBlock | |||
return voltsCohDet | |||
def __calculateCCF(self, volts, pairslist ,laglist): | |||
nHeights = volts.shape[2] | |||
nPoints = volts.shape[1] | |||
voltsCCF = numpy.zeros((len(pairslist), len(laglist), nHeights),dtype = 'complex') | |||
for i in range(len(pairslist)): | |||
volts1 = volts[pairslist[i][0]] | |||
volts2 = volts[pairslist[i][1]] | |||
for t in range(len(laglist)): | |||
idxT = laglist[t] | |||
if idxT >= 0: | |||
vStacked = numpy.vstack((volts2[idxT:,:], | |||
numpy.zeros((idxT, nHeights),dtype='complex'))) | |||
else: | |||
vStacked = numpy.vstack((numpy.zeros((-idxT, nHeights),dtype='complex'), | |||
volts2[:(nPoints + idxT),:])) | |||
voltsCCF[i,t,:] = numpy.sum((numpy.conjugate(volts1)*vStacked),axis=0) | |||
vStacked = None | |||
return voltsCCF | |||
def __getNoise(self, power, timeSegment, timeInterval): | |||
numProfPerBlock = numpy.ceil(timeSegment/timeInterval) | |||
numBlocks = int(power.shape[0]/numProfPerBlock) | |||
numHeights = power.shape[1] | |||
listPower = numpy.array_split(power, numBlocks, 0) | |||
noise = numpy.zeros((power.shape[0], power.shape[1])) | |||
noise1 = numpy.zeros((power.shape[0], power.shape[1])) | |||
startInd = 0 | |||
endInd = 0 | |||
for i in range(numBlocks): #split por canal | |||
startInd = endInd | |||
endInd = endInd + listPower[i].shape[0] | |||
arrayBlock = listPower[i] | |||
noiseAux = numpy.mean(arrayBlock, 0) | |||
# noiseAux = numpy.median(noiseAux) | |||
# noiseAux = numpy.mean(arrayBlock) | |||
noise[startInd:endInd,:] = noise[startInd:endInd,:] + noiseAux | |||
noiseAux1 = numpy.mean(arrayBlock) | |||
noise1[startInd:endInd,:] = noise1[startInd:endInd,:] + noiseAux1 | |||
return noise, noise1 | |||
def __findMeteors(self, power, thresh): | |||
nProf = power.shape[0] | |||
nHeights = power.shape[1] | |||
listMeteors = [] | |||
for i in range(nHeights): | |||
powerAux = power[:,i] | |||
threshAux = thresh[:,i] | |||
indUPthresh = numpy.where(powerAux > threshAux)[0] | |||
indDNthresh = numpy.where(powerAux <= threshAux)[0] | |||
j = 0 | |||
while (j < indUPthresh.size - 2): | |||
if (indUPthresh[j + 2] == indUPthresh[j] + 2): | |||
indDNAux = numpy.where(indDNthresh > indUPthresh[j]) | |||
indDNthresh = indDNthresh[indDNAux] | |||
if (indDNthresh.size > 0): | |||
indEnd = indDNthresh[0] - 1 | |||
indInit = indUPthresh[j] | |||
meteor = powerAux[indInit:indEnd + 1] | |||
indPeak = meteor.argmax() + indInit | |||
FLA = sum(numpy.conj(meteor)*numpy.hstack((meteor[1:],0))) | |||
listMeteors.append(numpy.array([i,indInit,indPeak,indEnd,FLA])) #CHEQUEAR!!!!! | |||
j = numpy.where(indUPthresh == indEnd)[0] + 1 | |||
else: j+=1 | |||
else: j+=1 | |||
return listMeteors | |||
def __removeMultipleDetections(self,listMeteors, rangeLimit, timeLimit): | |||
arrayMeteors = numpy.asarray(listMeteors) | |||
listMeteors1 = [] | |||
while arrayMeteors.shape[0] > 0: | |||
FLAs = arrayMeteors[:,4] | |||
maxFLA = FLAs.argmax() | |||
listMeteors1.append(arrayMeteors[maxFLA,:]) | |||
MeteorInitTime = arrayMeteors[maxFLA,1] | |||
MeteorEndTime = arrayMeteors[maxFLA,3] | |||
MeteorHeight = arrayMeteors[maxFLA,0] | |||
#Check neighborhood | |||
maxHeightIndex = MeteorHeight + rangeLimit | |||
minHeightIndex = MeteorHeight - rangeLimit | |||
minTimeIndex = MeteorInitTime - timeLimit | |||
maxTimeIndex = MeteorEndTime + timeLimit | |||
#Check Heights | |||
indHeight = numpy.logical_and(arrayMeteors[:,0] >= minHeightIndex, arrayMeteors[:,0] <= maxHeightIndex) | |||
indTime = numpy.logical_and(arrayMeteors[:,3] >= minTimeIndex, arrayMeteors[:,1] <= maxTimeIndex) | |||
indBoth = numpy.where(numpy.logical_and(indTime,indHeight)) | |||
arrayMeteors = numpy.delete(arrayMeteors, indBoth, axis = 0) | |||
return listMeteors1 | |||
def __meteorReestimation(self, listMeteors, volts, pairslist, thresh, noise, timeInterval,frequency): | |||
numHeights = volts.shape[2] | |||
nChannel = volts.shape[0] | |||
thresholdPhase = thresh[0] | |||
thresholdNoise = thresh[1] | |||
thresholdDB = float(thresh[2]) | |||
thresholdDB1 = 10**(thresholdDB/10) | |||
pairsarray = numpy.array(pairslist) | |||
indSides = pairsarray[:,1] | |||
pairslist1 = list(pairslist) | |||
pairslist1.append((0,1)) | |||
pairslist1.append((3,4)) | |||
listMeteors1 = [] | |||
listPowerSeries = [] | |||
listVoltageSeries = [] | |||
#volts has the war data | |||
if frequency == 30e6: | |||
timeLag = 45*10**-3 | |||
else: | |||
timeLag = 15*10**-3 | |||
lag = numpy.ceil(timeLag/timeInterval) | |||
for i in range(len(listMeteors)): | |||
###################### 3.6 - 3.7 PARAMETERS REESTIMATION ######################### | |||
meteorAux = numpy.zeros(16) | |||
#Loading meteor Data (mHeight, mStart, mPeak, mEnd) | |||
mHeight = listMeteors[i][0] | |||
mStart = listMeteors[i][1] | |||
mPeak = listMeteors[i][2] | |||
mEnd = listMeteors[i][3] | |||
#get the volt data between the start and end times of the meteor | |||
meteorVolts = volts[:,mStart:mEnd+1,mHeight] | |||
meteorVolts = meteorVolts.reshape(meteorVolts.shape[0], meteorVolts.shape[1], 1) | |||
#3.6. Phase Difference estimation | |||
phaseDiff, aux = self.__estimatePhaseDifference(meteorVolts, pairslist) | |||
#3.7. Phase difference removal & meteor start, peak and end times reestimated | |||
#meteorVolts0.- all Channels, all Profiles | |||
meteorVolts0 = volts[:,:,mHeight] | |||
meteorThresh = noise[:,mHeight]*thresholdNoise | |||
meteorNoise = noise[:,mHeight] | |||
meteorVolts0[indSides,:] = self.__shiftPhase(meteorVolts0[indSides,:], phaseDiff) #Phase Shifting | |||
powerNet0 = numpy.nansum(numpy.abs(meteorVolts0)**2, axis = 0) #Power | |||
#Times reestimation | |||
mStart1 = numpy.where(powerNet0[:mPeak] < meteorThresh[:mPeak])[0] | |||
if mStart1.size > 0: | |||
mStart1 = mStart1[-1] + 1 | |||
else: | |||
mStart1 = mPeak | |||
mEnd1 = numpy.where(powerNet0[mPeak:] < meteorThresh[mPeak:])[0][0] + mPeak - 1 | |||
mEndDecayTime1 = numpy.where(powerNet0[mPeak:] < meteorNoise[mPeak:])[0] | |||
if mEndDecayTime1.size == 0: | |||
mEndDecayTime1 = powerNet0.size | |||
else: | |||
mEndDecayTime1 = mEndDecayTime1[0] + mPeak - 1 | |||
# mPeak1 = meteorVolts0[mStart1:mEnd1 + 1].argmax() | |||
#meteorVolts1.- all Channels, from start to end | |||
meteorVolts1 = meteorVolts0[:,mStart1:mEnd1 + 1] | |||
meteorVolts2 = meteorVolts0[:,mPeak + lag:mEnd1 + 1] | |||
if meteorVolts2.shape[1] == 0: | |||
meteorVolts2 = meteorVolts0[:,mPeak:mEnd1 + 1] | |||
meteorVolts1 = meteorVolts1.reshape(meteorVolts1.shape[0], meteorVolts1.shape[1], 1) | |||
meteorVolts2 = meteorVolts2.reshape(meteorVolts2.shape[0], meteorVolts2.shape[1], 1) | |||
##################### END PARAMETERS REESTIMATION ######################### | |||
##################### 3.8 PHASE DIFFERENCE REESTIMATION ######################## | |||
# if mEnd1 - mStart1 > 4: #Error Number 6: echo less than 5 samples long; too short for analysis | |||
if meteorVolts2.shape[1] > 0: | |||
#Phase Difference re-estimation | |||
phaseDiff1, phaseDiffint = self.__estimatePhaseDifference(meteorVolts2, pairslist1) #Phase Difference Estimation | |||
# phaseDiff1, phaseDiffint = self.estimatePhaseDifference(meteorVolts2, pairslist) | |||
meteorVolts2 = meteorVolts2.reshape(meteorVolts2.shape[0], meteorVolts2.shape[1]) | |||
phaseDiff11 = numpy.reshape(phaseDiff1, (phaseDiff1.shape[0],1)) | |||
meteorVolts2[indSides,:] = self.__shiftPhase(meteorVolts2[indSides,:], phaseDiff11[0:4]) #Phase Shifting | |||
#Phase Difference RMS | |||
phaseRMS1 = numpy.sqrt(numpy.mean(numpy.square(phaseDiff1))) | |||
powerNet1 = numpy.nansum(numpy.abs(meteorVolts1[:,:])**2,0) | |||
#Data from Meteor | |||
mPeak1 = powerNet1.argmax() + mStart1 | |||
mPeakPower1 = powerNet1.max() | |||
noiseAux = sum(noise[mStart1:mEnd1 + 1,mHeight]) | |||
mSNR1 = (sum(powerNet1)-noiseAux)/noiseAux | |||
Meteor1 = numpy.array([mHeight, mStart1, mPeak1, mEnd1, mPeakPower1, mSNR1, phaseRMS1]) | |||
Meteor1 = numpy.hstack((Meteor1,phaseDiffint)) | |||
PowerSeries = powerNet0[mStart1:mEndDecayTime1 + 1] | |||
#Vectorize | |||
meteorAux[0:7] = [mHeight, mStart1, mPeak1, mEnd1, mPeakPower1, mSNR1, phaseRMS1] | |||
meteorAux[7:11] = phaseDiffint[0:4] | |||
#Rejection Criterions | |||
if phaseRMS1 > thresholdPhase: #Error Number 17: Phase variation | |||
meteorAux[-1] = 17 | |||
elif mSNR1 < thresholdDB1: #Error Number 1: SNR < threshold dB | |||
meteorAux[-1] = 1 | |||
else: | |||
meteorAux[0:4] = [mHeight, mStart, mPeak, mEnd] | |||
meteorAux[-1] = 6 #Error Number 6: echo less than 5 samples long; too short for analysis | |||
PowerSeries = 0 | |||
listMeteors1.append(meteorAux) | |||
listPowerSeries.append(PowerSeries) | |||
listVoltageSeries.append(meteorVolts1) | |||
return listMeteors1, listPowerSeries, listVoltageSeries | |||
def __estimateDecayTime(self, listMeteors, listPower, timeInterval, frequency): | |||
threshError = 10 | |||
#Depending if it is 30 or 50 MHz | |||
if frequency == 30e6: | |||
timeLag = 45*10**-3 | |||
else: | |||
timeLag = 15*10**-3 | |||
lag = numpy.ceil(timeLag/timeInterval) | |||
listMeteors1 = [] | |||
for i in range(len(listMeteors)): | |||
meteorPower = listPower[i] | |||
meteorAux = listMeteors[i] | |||
if meteorAux[-1] == 0: | |||
try: | |||
indmax = meteorPower.argmax() | |||
indlag = indmax + lag | |||
y = meteorPower[indlag:] | |||
x = numpy.arange(0, y.size)*timeLag | |||
#first guess | |||
a = y[0] | |||
tau = timeLag | |||
#exponential fit | |||
popt, pcov = optimize.curve_fit(self.__exponential_function, x, y, p0 = [a, tau]) | |||
y1 = self.__exponential_function(x, *popt) | |||
#error estimation | |||
error = sum((y - y1)**2)/(numpy.var(y)*(y.size - popt.size)) | |||
decayTime = popt[1] | |||
riseTime = indmax*timeInterval | |||
meteorAux[11:13] = [decayTime, error] | |||
#Table items 7, 8 and 11 | |||
if (riseTime > 0.3): #Number 7: Echo rise exceeds 0.3s | |||
meteorAux[-1] = 7 | |||
elif (decayTime < 2*riseTime) : #Number 8: Echo decay time less than than twice rise time | |||
meteorAux[-1] = 8 | |||
if (error > threshError): #Number 11: Poor fit to amplitude for estimation of decay time | |||
meteorAux[-1] = 11 | |||
except: | |||
meteorAux[-1] = 11 | |||
listMeteors1.append(meteorAux) | |||
return listMeteors1 | |||
#Exponential Function | |||
def __exponential_function(self, x, a, tau): | |||
y = a*numpy.exp(-x/tau) | |||
return y | |||
def __getRadialVelocity(self, listMeteors, listVolts, radialStdThresh, pairslist, timeInterval): | |||
pairslist1 = list(pairslist) | |||
pairslist1.append((0,1)) | |||
pairslist1.append((3,4)) | |||
numPairs = len(pairslist1) | |||
#Time Lag | |||
timeLag = 45*10**-3 | |||
c = 3e8 | |||
lag = numpy.ceil(timeLag/timeInterval) | |||
freq = 30e6 | |||
listMeteors1 = [] | |||
for i in range(len(listMeteors)): | |||
meteor = listMeteors[i] | |||
meteorAux = numpy.hstack((meteor[:-1], 0, 0, meteor[-1])) | |||
if meteor[-1] == 0: | |||
mStart = listMeteors[i][1] | |||
mPeak = listMeteors[i][2] | |||
mLag = mPeak - mStart + lag | |||
#get the volt data between the start and end times of the meteor | |||
meteorVolts = listVolts[i] | |||
meteorVolts = meteorVolts.reshape(meteorVolts.shape[0], meteorVolts.shape[1], 1) | |||
#Get CCF | |||
allCCFs = self.__calculateCCF(meteorVolts, pairslist1, [-2,-1,0,1,2]) | |||
#Method 2 | |||
slopes = numpy.zeros(numPairs) | |||
time = numpy.array([-2,-1,1,2])*timeInterval | |||
angAllCCF = numpy.angle(allCCFs[:,[0,1,3,4],0]) | |||
#Correct phases | |||
derPhaseCCF = angAllCCF[:,1:] - angAllCCF[:,0:-1] | |||
indDer = numpy.where(numpy.abs(derPhaseCCF) > numpy.pi) | |||
if indDer[0].shape[0] > 0: | |||
for i in range(indDer[0].shape[0]): | |||
signo = -numpy.sign(derPhaseCCF[indDer[0][i],indDer[1][i]]) | |||
angAllCCF[indDer[0][i],indDer[1][i]+1:] += signo*2*numpy.pi | |||
# fit = scipy.stats.linregress(numpy.array([-2,-1,1,2])*timeInterval, numpy.array([phaseLagN2s[i],phaseLagN1s[i],phaseLag1s[i],phaseLag2s[i]])) | |||
for j in range(numPairs): | |||
fit = stats.linregress(time, angAllCCF[j,:]) | |||
slopes[j] = fit[0] | |||
#Remove Outlier | |||
# indOut = numpy.argmax(numpy.abs(slopes - numpy.mean(slopes))) | |||
# slopes = numpy.delete(slopes,indOut) | |||
# indOut = numpy.argmax(numpy.abs(slopes - numpy.mean(slopes))) | |||
# slopes = numpy.delete(slopes,indOut) | |||
radialVelocity = -numpy.mean(slopes)*(0.25/numpy.pi)*(c/freq) | |||
radialError = numpy.std(slopes)*(0.25/numpy.pi)*(c/freq) | |||
meteorAux[-2] = radialError | |||
meteorAux[-3] = radialVelocity | |||
#Setting Error | |||
#Number 15: Radial Drift velocity or projected horizontal velocity exceeds 200 m/s | |||
if numpy.abs(radialVelocity) > 200: | |||
meteorAux[-1] = 15 | |||
#Number 12: Poor fit to CCF variation for estimation of radial drift velocity | |||
elif radialError > radialStdThresh: | |||
meteorAux[-1] = 12 | |||
listMeteors1.append(meteorAux) | |||
return listMeteors1 | |||
def __setNewArrays(self, listMeteors, date, heiRang): | |||
#New arrays | |||
arrayMeteors = numpy.array(listMeteors) | |||
arrayParameters = numpy.zeros((len(listMeteors),10)) | |||
#Date inclusion | |||
date = re.findall(r'\((.*?)\)', date) | |||
date = date[0].split(',') | |||
date = map(int, date) | |||
date = [date[0]*10000 + date[1]*100 + date[2], date[3]*10000 + date[4]*100 + date[5]] | |||
arrayDate = numpy.tile(date, (len(listMeteors), 1)) | |||
#Meteor array | |||
arrayMeteors[:,0] = heiRang[arrayMeteors[:,0].astype(int)] | |||
arrayMeteors = numpy.hstack((arrayDate, arrayMeteors)) | |||
#Parameters Array | |||
arrayParameters[:,0:3] = arrayMeteors[:,0:3] | |||
arrayParameters[:,-3:] = arrayMeteors[:,-3:] | |||
return arrayMeteors, arrayParameters | |||
def __getAOA(self, phases, pairsList, error, AOAthresh, azimuth): | |||
arrayAOA = numpy.zeros((phases.shape[0],3)) | |||
cosdir0, cosdir = self.__getDirectionCosines(phases, pairsList) | |||
arrayAOA[:,:2] = self.__calculateAOA(cosdir, azimuth) | |||
cosDirError = numpy.sum(numpy.abs(cosdir0 - cosdir), axis = 1) | |||
arrayAOA[:,2] = cosDirError | |||
azimuthAngle = arrayAOA[:,0] | |||
zenithAngle = arrayAOA[:,1] | |||
#Setting Error | |||
#Number 3: AOA not fesible | |||
indInvalid = numpy.where(numpy.logical_and((numpy.logical_or(numpy.isnan(zenithAngle), numpy.isnan(azimuthAngle))),error == 0))[0] | |||
error[indInvalid] = 3 | |||
#Number 4: Large difference in AOAs obtained from different antenna baselines | |||
indInvalid = numpy.where(numpy.logical_and(cosDirError > AOAthresh,error == 0))[0] | |||
error[indInvalid] = 4 | |||
return arrayAOA, error | |||
def __getDirectionCosines(self, arrayPhase, pairsList): | |||
#Initializing some variables | |||
ang_aux = numpy.array([-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8])*2*numpy.pi | |||
ang_aux = ang_aux.reshape(1,ang_aux.size) | |||
cosdir = numpy.zeros((arrayPhase.shape[0],2)) | |||
cosdir0 = numpy.zeros((arrayPhase.shape[0],2)) | |||
for i in range(2): | |||
#First Estimation | |||
phi0_aux = arrayPhase[:,pairsList[i][0]] + arrayPhase[:,pairsList[i][1]] | |||
#Dealias | |||
indcsi = numpy.where(phi0_aux > numpy.pi) | |||
phi0_aux[indcsi] -= 2*numpy.pi | |||
indcsi = numpy.where(phi0_aux < -numpy.pi) | |||
phi0_aux[indcsi] += 2*numpy.pi | |||
#Direction Cosine 0 | |||
cosdir0[:,i] = -(phi0_aux)/(2*numpy.pi*0.5) | |||
#Most-Accurate Second Estimation | |||
phi1_aux = arrayPhase[:,pairsList[i][0]] - arrayPhase[:,pairsList[i][1]] | |||
phi1_aux = phi1_aux.reshape(phi1_aux.size,1) | |||
#Direction Cosine 1 | |||
cosdir1 = -(phi1_aux + ang_aux)/(2*numpy.pi*4.5) | |||
#Searching the correct Direction Cosine | |||
cosdir0_aux = cosdir0[:,i] | |||
cosdir0_aux = cosdir0_aux.reshape(cosdir0_aux.size,1) | |||
#Minimum Distance | |||
cosDiff = (cosdir1 - cosdir0_aux)**2 | |||
indcos = cosDiff.argmin(axis = 1) | |||
#Saving Value obtained | |||
cosdir[:,i] = cosdir1[numpy.arange(len(indcos)),indcos] | |||
return cosdir0, cosdir | |||
def __calculateAOA(self, cosdir, azimuth): | |||
cosdirX = cosdir[:,0] | |||
cosdirY = cosdir[:,1] | |||
zenithAngle = numpy.arccos(numpy.sqrt(1 - cosdirX**2 - cosdirY**2))*180/numpy.pi | |||
azimuthAngle = numpy.arctan2(cosdirX,cosdirY)*180/numpy.pi + azimuth #0 deg north, 90 deg east | |||
angles = numpy.vstack((azimuthAngle, zenithAngle)).transpose() | |||
return angles | |||
def __getHeights(self, Ranges, zenith, error, minHeight, maxHeight): | |||
Ramb = 375 #Ramb = c/(2*PRF) | |||
Re = 6371 #Earth Radius | |||
heights = numpy.zeros(Ranges.shape) | |||
R_aux = numpy.array([0,1,2])*Ramb | |||
R_aux = R_aux.reshape(1,R_aux.size) | |||
Ranges = Ranges.reshape(Ranges.size,1) | |||
Ri = Ranges + R_aux | |||
hi = numpy.sqrt(Re**2 + Ri**2 + (2*Re*numpy.cos(zenith*numpy.pi/180)*Ri.transpose()).transpose()) - Re | |||
#Check if there is a height between 70 and 110 km | |||
h_bool = numpy.sum(numpy.logical_and(hi > minHeight, hi < maxHeight), axis = 1) | |||
ind_h = numpy.where(h_bool == 1)[0] | |||
hCorr = hi[ind_h, :] | |||
ind_hCorr = numpy.where(numpy.logical_and(hi > minHeight, hi < maxHeight)) | |||
hCorr = hi[ind_hCorr] | |||
heights[ind_h] = hCorr | |||
#Setting Error | |||
#Number 13: Height unresolvable echo: not valid height within 70 to 110 km | |||
#Number 14: Height ambiguous echo: more than one possible height within 70 to 110 km | |||
indInvalid2 = numpy.where(numpy.logical_and(h_bool > 1, error == 0))[0] | |||
error[indInvalid2] = 14 | |||
indInvalid1 = numpy.where(numpy.logical_and(h_bool == 0, error == 0))[0] | |||
error[indInvalid1] = 13 | |||
return heights, error | |||
|
r513 | def SpectralFitting(self, getSNR = True, path=None, file=None, groupList=None): | |
''' | |||
Function GetMoments() | |||
Input: | |||
Output: | |||
Variables modified: | |||
''' | |||
if path != None: | |||
sys.path.append(path) | |||
self.dataOut.library = importlib.import_module(file) | |||
#To be inserted as a parameter | |||
groupArray = numpy.array(groupList) | |||
# groupArray = numpy.array([[0,1],[2,3]]) | |||
self.dataOut.groupList = groupArray | |||
nGroups = groupArray.shape[0] | |||
nChannels = self.dataIn.nChannels | |||
nHeights=self.dataIn.heightList.size | |||
#Parameters Array | |||
self.dataOut.data_param = None | |||
#Set constants | |||
constants = self.dataOut.library.setConstants(self.dataIn) | |||
self.dataOut.constants = constants | |||
M = self.dataIn.normFactor | |||
N = self.dataIn.nFFTPoints | |||
ippSeconds = self.dataIn.ippSeconds | |||
K = self.dataIn.nIncohInt | |||
pairsArray = numpy.array(self.dataIn.pairsList) | |||
#List of possible combinations | |||
listComb = itertools.combinations(numpy.arange(groupArray.shape[1]),2) | |||
indCross = numpy.zeros(len(list(listComb)), dtype = 'int') | |||
if getSNR: | |||
listChannels = groupArray.reshape((groupArray.size)) | |||
listChannels.sort() | |||
noise = self.dataIn.getNoise() | |||
|
r514 | self.dataOut.data_SNR = self.__getSNR(self.dataIn.data_spc[listChannels,:,:], noise[listChannels]) | |
|
r513 | ||
for i in range(nGroups): | |||
coord = groupArray[i,:] | |||
#Input data array | |||
data = self.dataIn.data_spc[coord,:,:]/(M*N) | |||
data = data.reshape((data.shape[0]*data.shape[1],data.shape[2])) | |||
#Cross Spectra data array for Covariance Matrixes | |||
ind = 0 | |||
for pairs in listComb: | |||
pairsSel = numpy.array([coord[x],coord[y]]) | |||
indCross[ind] = int(numpy.where(numpy.all(pairsArray == pairsSel, axis = 1))[0][0]) | |||
ind += 1 | |||
dataCross = self.dataIn.data_cspc[indCross,:,:]/(M*N) | |||
dataCross = dataCross**2/K | |||
for h in range(nHeights): | |||
# print self.dataOut.heightList[h] | |||
#Input | |||
d = data[:,h] | |||
#Covariance Matrix | |||
D = numpy.diag(d**2/K) | |||
ind = 0 | |||
for pairs in listComb: | |||
#Coordinates in Covariance Matrix | |||
x = pairs[0] | |||
y = pairs[1] | |||
#Channel Index | |||
S12 = dataCross[ind,:,h] | |||
D12 = numpy.diag(S12) | |||
#Completing Covariance Matrix with Cross Spectras | |||
D[x*N:(x+1)*N,y*N:(y+1)*N] = D12 | |||
D[y*N:(y+1)*N,x*N:(x+1)*N] = D12 | |||
ind += 1 | |||
Dinv=numpy.linalg.inv(D) | |||
L=numpy.linalg.cholesky(Dinv) | |||
LT=L.T | |||
dp = numpy.dot(LT,d) | |||
#Initial values | |||
data_spc = self.dataIn.data_spc[coord,:,h] | |||
|
r543 | ||
if (h>0)and(error1[3]<5): | |||
p0 = self.dataOut.data_param[i,:,h-1] | |||
else: | |||
p0 = numpy.array(self.dataOut.library.initialValuesFunction(data_spc, constants, i)) | |||
|
r513 | ||
|
r514 | try: | |
#Least Squares | |||
minp,covp,infodict,mesg,ier = optimize.leastsq(self.__residFunction,p0,args=(dp,LT,constants),full_output=True) | |||
# minp,covp = optimize.leastsq(self.__residFunction,p0,args=(dp,LT,constants)) | |||
#Chi square error | |||
error0 = numpy.sum(infodict['fvec']**2)/(2*N) | |||
#Error with Jacobian | |||
error1 = self.dataOut.library.errorFunction(minp,constants,LT) | |||
except: | |||
minp = p0*numpy.nan | |||
error0 = numpy.nan | |||
error1 = p0*numpy.nan | |||
|
r513 | #Save | |
if self.dataOut.data_param == None: | |||
|
r514 | self.dataOut.data_param = numpy.zeros((nGroups, p0.size, nHeights))*numpy.nan | |
self.dataOut.data_error = numpy.zeros((nGroups, p0.size + 1, nHeights))*numpy.nan | |||
|
r513 | ||
|
r514 | self.dataOut.data_error[i,:,h] = numpy.hstack((error0,error1)) | |
|
r513 | self.dataOut.data_param[i,:,h] = minp | |
return | |||
def __residFunction(self, p, dp, LT, constants): | |||
fm = self.dataOut.library.modelFunction(p, constants) | |||
fmp=numpy.dot(LT,fm) | |||
return dp-fmp | |||
def __getSNR(self, z, noise): | |||
avg = numpy.average(z, axis=1) | |||
SNR = (avg.T-noise)/noise | |||
SNR = SNR.T | |||
return SNR | |||
def __chisq(p,chindex,hindex): | |||
#similar to Resid but calculates CHI**2 | |||
[LT,d,fm]=setupLTdfm(p,chindex,hindex) | |||
dp=numpy.dot(LT,d) | |||
fmp=numpy.dot(LT,fm) | |||
chisq=numpy.dot((dp-fmp).T,(dp-fmp)) | |||
return chisq | |||
|
r502 | ||
class WindProfiler(Operation): | |||
__isConfig = False | |||
__initime = None | |||
__lastdatatime = None | |||
__integrationtime = None | |||
__buffer = None | |||
__dataReady = False | |||
__firstdata = None | |||
n = None | |||
def __init__(self): | |||
Operation.__init__(self) | |||
|
r503 | def __calculateCosDir(self, elev, azim): | |
zen = (90 - elev)*numpy.pi/180 | |||
azim = azim*numpy.pi/180 | |||
cosDirX = numpy.sqrt((1-numpy.cos(zen)**2)/((1+numpy.tan(azim)**2))) | |||
cosDirY = numpy.sqrt(1-numpy.cos(zen)**2-cosDirX**2) | |||
signX = numpy.sign(numpy.cos(azim)) | |||
signY = numpy.sign(numpy.sin(azim)) | |||
cosDirX = numpy.copysign(cosDirX, signX) | |||
cosDirY = numpy.copysign(cosDirY, signY) | |||
return cosDirX, cosDirY | |||
|
r502 | def __calculateAngles(self, theta_x, theta_y, azimuth): | |
dir_cosw = numpy.sqrt(1-theta_x**2-theta_y**2) | |||
zenith_arr = numpy.arccos(dir_cosw) | |||
azimuth_arr = numpy.arctan2(theta_x,theta_y) + azimuth*math.pi/180 | |||
dir_cosu = numpy.sin(azimuth_arr)*numpy.sin(zenith_arr) | |||
dir_cosv = numpy.cos(azimuth_arr)*numpy.sin(zenith_arr) | |||
return azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw | |||
def __calculateMatA(self, dir_cosu, dir_cosv, dir_cosw, horOnly): | |||
# | |||
if horOnly: | |||
A = numpy.c_[dir_cosu,dir_cosv] | |||
else: | |||
A = numpy.c_[dir_cosu,dir_cosv,dir_cosw] | |||
A = numpy.asmatrix(A) | |||
A1 = numpy.linalg.inv(A.transpose()*A)*A.transpose() | |||
return A1 | |||
def __correctValues(self, heiRang, phi, velRadial, SNR): | |||
listPhi = phi.tolist() | |||
maxid = listPhi.index(max(listPhi)) | |||
minid = listPhi.index(min(listPhi)) | |||
rango = range(len(phi)) | |||
# rango = numpy.delete(rango,maxid) | |||
heiRang1 = heiRang*math.cos(phi[maxid]) | |||
heiRangAux = heiRang*math.cos(phi[minid]) | |||
indOut = (heiRang1 < heiRangAux[0]).nonzero() | |||
heiRang1 = numpy.delete(heiRang1,indOut) | |||
velRadial1 = numpy.zeros([len(phi),len(heiRang1)]) | |||
SNR1 = numpy.zeros([len(phi),len(heiRang1)]) | |||
for i in rango: | |||
x = heiRang*math.cos(phi[i]) | |||
y1 = velRadial[i,:] | |||
f1 = interpolate.interp1d(x,y1,kind = 'cubic') | |||
x1 = heiRang1 | |||
y11 = f1(x1) | |||
y2 = SNR[i,:] | |||
f2 = interpolate.interp1d(x,y2,kind = 'cubic') | |||
y21 = f2(x1) | |||
velRadial1[i,:] = y11 | |||
SNR1[i,:] = y21 | |||
return heiRang1, velRadial1, SNR1 | |||
def __calculateVelUVW(self, A, velRadial): | |||
#Operacion Matricial | |||
# velUVW = numpy.zeros((velRadial.shape[1],3)) | |||
# for ind in range(velRadial.shape[1]): | |||
# velUVW[ind,:] = numpy.dot(A,velRadial[:,ind]) | |||
# velUVW = velUVW.transpose() | |||
velUVW = numpy.zeros((A.shape[0],velRadial.shape[1])) | |||
velUVW[:,:] = numpy.dot(A,velRadial) | |||
return velUVW | |||
def techniqueDBS(self, velRadial0, dirCosx, disrCosy, azimuth, correct, horizontalOnly, heiRang, SNR0): | |||
""" | |||
Function that implements Doppler Beam Swinging (DBS) technique. | |||
Input: Radial velocities, Direction cosines (x and y) of the Beam, Antenna azimuth, | |||
Direction correction (if necessary), Ranges and SNR | |||
Output: Winds estimation (Zonal, Meridional and Vertical) | |||
Parameters affected: Winds, height range, SNR | |||
""" | |||
azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw = self.__calculateAngles(dirCosx, disrCosy, azimuth) | |||
heiRang1, velRadial1, SNR1 = self.__correctValues(heiRang, zenith_arr, correct*velRadial0, SNR0) | |||
A = self.__calculateMatA(dir_cosu, dir_cosv, dir_cosw, horizontalOnly) | |||
#Calculo de Componentes de la velocidad con DBS | |||
winds = self.__calculateVelUVW(A,velRadial1) | |||
return winds, heiRang1, SNR1 | |||
def __calculateDistance(self, posx, posy, pairsCrossCorr, pairsList, pairs, azimuth = None): | |||
posx = numpy.asarray(posx) | |||
posy = numpy.asarray(posy) | |||
#Rotacion Inversa para alinear con el azimuth | |||
if azimuth!= None: | |||
azimuth = azimuth*math.pi/180 | |||
posx1 = posx*math.cos(azimuth) + posy*math.sin(azimuth) | |||
posy1 = -posx*math.sin(azimuth) + posy*math.cos(azimuth) | |||
else: | |||
posx1 = posx | |||
posy1 = posy | |||
#Calculo de Distancias | |||
distx = numpy.zeros(pairsCrossCorr.size) | |||
disty = numpy.zeros(pairsCrossCorr.size) | |||
dist = numpy.zeros(pairsCrossCorr.size) | |||
ang = numpy.zeros(pairsCrossCorr.size) | |||
for i in range(pairsCrossCorr.size): | |||
distx[i] = posx1[pairsList[pairsCrossCorr[i]][1]] - posx1[pairsList[pairsCrossCorr[i]][0]] | |||
disty[i] = posy1[pairsList[pairsCrossCorr[i]][1]] - posy1[pairsList[pairsCrossCorr[i]][0]] | |||
dist[i] = numpy.sqrt(distx[i]**2 + disty[i]**2) | |||
ang[i] = numpy.arctan2(disty[i],distx[i]) | |||
#Calculo de Matrices | |||
nPairs = len(pairs) | |||
ang1 = numpy.zeros((nPairs, 2, 1)) | |||
dist1 = numpy.zeros((nPairs, 2, 1)) | |||
for j in range(nPairs): | |||
dist1[j,0,0] = dist[pairs[j][0]] | |||
dist1[j,1,0] = dist[pairs[j][1]] | |||
ang1[j,0,0] = ang[pairs[j][0]] | |||
ang1[j,1,0] = ang[pairs[j][1]] | |||
return distx,disty, dist1,ang1 | |||
def __calculateVelVer(self, phase, lagTRange, _lambda): | |||
Ts = lagTRange[1] - lagTRange[0] | |||
velW = -_lambda*phase/(4*math.pi*Ts) | |||
return velW | |||
def __calculateVelHorDir(self, dist, tau1, tau2, ang): | |||
nPairs = tau1.shape[0] | |||
vel = numpy.zeros((nPairs,3,tau1.shape[2])) | |||
angCos = numpy.cos(ang) | |||
angSin = numpy.sin(ang) | |||
vel0 = dist*tau1/(2*tau2**2) | |||
vel[:,0,:] = (vel0*angCos).sum(axis = 1) | |||
vel[:,1,:] = (vel0*angSin).sum(axis = 1) | |||
ind = numpy.where(numpy.isinf(vel)) | |||
vel[ind] = numpy.nan | |||
return vel | |||
def __getPairsAutoCorr(self, pairsList, nChannels): | |||
pairsAutoCorr = numpy.zeros(nChannels, dtype = 'int')*numpy.nan | |||
for l in range(len(pairsList)): | |||
firstChannel = pairsList[l][0] | |||
secondChannel = pairsList[l][1] | |||
#Obteniendo pares de Autocorrelacion | |||
if firstChannel == secondChannel: | |||
pairsAutoCorr[firstChannel] = int(l) | |||
pairsAutoCorr = pairsAutoCorr.astype(int) | |||
pairsCrossCorr = range(len(pairsList)) | |||
pairsCrossCorr = numpy.delete(pairsCrossCorr,pairsAutoCorr) | |||
return pairsAutoCorr, pairsCrossCorr | |||
def techniqueSA(self, pairsSelected, pairsList, nChannels, tau, azimuth, _lambda, position_x, position_y, lagTRange, correctFactor): | |||
""" | |||
Function that implements Spaced Antenna (SA) technique. | |||
Input: Radial velocities, Direction cosines (x and y) of the Beam, Antenna azimuth, | |||
Direction correction (if necessary), Ranges and SNR | |||
Output: Winds estimation (Zonal, Meridional and Vertical) | |||
Parameters affected: Winds | |||
""" | |||
#Cross Correlation pairs obtained | |||
pairsAutoCorr, pairsCrossCorr = self.__getPairsAutoCorr(pairsList, nChannels) | |||
pairsArray = numpy.array(pairsList)[pairsCrossCorr] | |||
pairsSelArray = numpy.array(pairsSelected) | |||
pairs = [] | |||
#Wind estimation pairs obtained | |||
for i in range(pairsSelArray.shape[0]/2): | |||
ind1 = numpy.where(numpy.all(pairsArray == pairsSelArray[2*i], axis = 1))[0][0] | |||
ind2 = numpy.where(numpy.all(pairsArray == pairsSelArray[2*i + 1], axis = 1))[0][0] | |||
pairs.append((ind1,ind2)) | |||
indtau = tau.shape[0]/2 | |||
tau1 = tau[:indtau,:] | |||
tau2 = tau[indtau:-1,:] | |||
tau1 = tau1[pairs,:] | |||
tau2 = tau2[pairs,:] | |||
phase1 = tau[-1,:] | |||
#--------------------------------------------------------------------- | |||
#Metodo Directo | |||
distx, disty, dist, ang = self.__calculateDistance(position_x, position_y, pairsCrossCorr, pairsList, pairs,azimuth) | |||
winds = self.__calculateVelHorDir(dist, tau1, tau2, ang) | |||
winds = stats.nanmean(winds, axis=0) | |||
#--------------------------------------------------------------------- | |||
#Metodo General | |||
# distx, disty, dist = self.calculateDistance(position_x,position_y,pairsCrossCorr, pairsList, azimuth) | |||
# #Calculo Coeficientes de Funcion de Correlacion | |||
# F,G,A,B,H = self.calculateCoef(tau1,tau2,distx,disty,n) | |||
# #Calculo de Velocidades | |||
# winds = self.calculateVelUV(F,G,A,B,H) | |||
#--------------------------------------------------------------------- | |||
winds[2,:] = self.__calculateVelVer(phase1, lagTRange, _lambda) | |||
winds = correctFactor*winds | |||
return winds | |||
|
r513 | def __checkTime(self, currentTime, paramInterval, outputInterval): | |
|
r502 | ||
dataTime = currentTime + paramInterval | |||
deltaTime = dataTime - self.__initime | |||
|
r513 | if deltaTime >= outputInterval or deltaTime < 0: | |
|
r502 | self.__dataReady = True | |
return | |||
def techniqueMeteors(self, arrayMeteor, meteorThresh, heightMin, heightMax): | |||
''' | |||
Function that implements winds estimation technique with detected meteors. | |||
Input: Detected meteors, Minimum meteor quantity to wind estimation | |||
Output: Winds estimation (Zonal and Meridional) | |||
Parameters affected: Winds | |||
''' | |||
#Settings | |||
nInt = (heightMax - heightMin)/2 | |||
winds = numpy.zeros((2,nInt))*numpy.nan | |||
#Filter errors | |||
error = numpy.where(arrayMeteor[:,-1] == 0)[0] | |||
finalMeteor = arrayMeteor[error,:] | |||
#Meteor Histogram | |||
finalHeights = finalMeteor[:,3] | |||
hist = numpy.histogram(finalHeights, bins = nInt, range = (heightMin,heightMax)) | |||
nMeteorsPerI = hist[0] | |||
heightPerI = hist[1] | |||
#Sort of meteors | |||
indSort = finalHeights.argsort() | |||
finalMeteor2 = finalMeteor[indSort,:] | |||
# Calculating winds | |||
ind1 = 0 | |||
ind2 = 0 | |||
for i in range(nInt): | |||
nMet = nMeteorsPerI[i] | |||
ind1 = ind2 | |||
ind2 = ind1 + nMet | |||
meteorAux = finalMeteor2[ind1:ind2,:] | |||
if meteorAux.shape[0] >= meteorThresh: | |||
vel = meteorAux[:, 7] | |||
zen = meteorAux[:, 5]*numpy.pi/180 | |||
azim = meteorAux[:, 4]*numpy.pi/180 | |||
n = numpy.cos(zen) | |||
# m = (1 - n**2)/(1 - numpy.tan(azim)**2) | |||
# l = m*numpy.tan(azim) | |||
l = numpy.sin(zen)*numpy.sin(azim) | |||
m = numpy.sin(zen)*numpy.cos(azim) | |||
A = numpy.vstack((l, m)).transpose() | |||
A1 = numpy.dot(numpy.linalg.inv( numpy.dot(A.transpose(),A) ),A.transpose()) | |||
windsAux = numpy.dot(A1, vel) | |||
winds[0,i] = windsAux[0] | |||
winds[1,i] = windsAux[1] | |||
return winds, heightPerI[:-1] | |||
def run(self, dataOut, technique, **kwargs): | |||
param = dataOut.data_param | |||
|
r543 | if dataOut.abscissaList != None: | |
absc = dataOut.abscissaList[:-1] | |||
|
r502 | noise = dataOut.noise | |
|
r543 | heightList = dataOut.getHeiRange() | |
|
r514 | SNR = dataOut.data_SNR | |
|
r502 | ||
if technique == 'DBS': | |||
|
r503 | if kwargs.has_key('dirCosx') and kwargs.has_key('dirCosy'): | |
theta_x = numpy.array(kwargs['dirCosx']) | |||
theta_y = numpy.array(kwargs['dirCosy']) | |||
else: | |||
elev = numpy.array(kwargs['elevation']) | |||
azim = numpy.array(kwargs['azimuth']) | |||
theta_x, theta_y = self.__calculateCosDir(elev, azim) | |||
azimuth = kwargs['correctAzimuth'] | |||
|
r502 | if kwargs.has_key('horizontalOnly'): | |
horizontalOnly = kwargs['horizontalOnly'] | |||
else: horizontalOnly = False | |||
if kwargs.has_key('correctFactor'): | |||
correctFactor = kwargs['correctFactor'] | |||
else: correctFactor = 1 | |||
if kwargs.has_key('channelList'): | |||
channelList = kwargs['channelList'] | |||
if len(channelList) == 2: | |||
horizontalOnly = True | |||
arrayChannel = numpy.array(channelList) | |||
param = param[arrayChannel,:,:] | |||
theta_x = theta_x[arrayChannel] | |||
theta_y = theta_y[arrayChannel] | |||
velRadial0 = param[:,1,:] #Radial velocity | |||
|
r543 | dataOut.data_output, dataOut.heightList, dataOut.data_SNR = self.techniqueDBS(velRadial0, theta_x, theta_y, azimuth, correctFactor, horizontalOnly, heightList, SNR) #DBS Function | |
dataOut.utctimeInit = dataOut.utctime | |||
dataOut.outputInterval = dataOut.timeInterval | |||
|
r502 | ||
elif technique == 'SA': | |||
#Parameters | |||
position_x = kwargs['positionX'] | |||
position_y = kwargs['positionY'] | |||
azimuth = kwargs['azimuth'] | |||
if kwargs.has_key('crosspairsList'): | |||
pairs = kwargs['crosspairsList'] | |||
else: | |||
pairs = None | |||
if kwargs.has_key('correctFactor'): | |||
correctFactor = kwargs['correctFactor'] | |||
else: | |||
correctFactor = 1 | |||
tau = dataOut.data_param | |||
_lambda = dataOut.C/dataOut.frequency | |||
|
r513 | pairsList = dataOut.groupList | |
|
r502 | nChannels = dataOut.nChannels | |
|
r513 | dataOut.data_output = self.techniqueSA(pairs, pairsList, nChannels, tau, azimuth, _lambda, position_x, position_y, absc, correctFactor) | |
|
r543 | dataOut.utctimeInit = dataOut.utctime | |
|
r513 | dataOut.outputInterval = dataOut.timeInterval | |
|
r502 | ||
elif technique == 'Meteors': | |||
dataOut.flagNoData = True | |||
self.__dataReady = False | |||
if kwargs.has_key('nHours'): | |||
nHours = kwargs['nHours'] | |||
else: | |||
nHours = 1 | |||
if kwargs.has_key('meteorsPerBin'): | |||
meteorThresh = kwargs['meteorsPerBin'] | |||
else: | |||
meteorThresh = 6 | |||
if kwargs.has_key('hmin'): | |||
hmin = kwargs['hmin'] | |||
else: hmin = 70 | |||
if kwargs.has_key('hmax'): | |||
hmax = kwargs['hmax'] | |||
else: hmax = 110 | |||
|
r513 | dataOut.outputInterval = nHours*3600 | |
|
r502 | ||
if self.__isConfig == False: | |||
# self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03) | |||
#Get Initial LTC time | |||
|
r543 | self.__initime = datetime.datetime.utcfromtimestamp(self.dataOut.utctime) | |
self.__initime = (self.__initime.replace(minute = 0, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds() | |||
|
r502 | self.__isConfig = True | |
if self.__buffer == None: | |||
self.__buffer = dataOut.data_param | |||
self.__firstdata = copy.copy(dataOut) | |||
else: | |||
self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param)) | |||
|
r543 | self.__checkTime(dataOut.utctime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready | |
|
r502 | ||
if self.__dataReady: | |||
|
r543 | dataOut.utctimeInit = self.__initime | |
self.__initime += dataOut.outputInterval #to erase time offset | |||
|
r502 | ||
|
r543 | dataOut.data_output, dataOut.heightList = self.techniqueMeteors(self.__buffer, meteorThresh, hmin, hmax) | |
|
r502 | dataOut.flagNoData = False | |
self.__buffer = None | |||
|
r513 | return | |
class EWDriftsEstimation(Operation): | |||
def __init__(self): | |||
Operation.__init__(self) | |||
def __correctValues(self, heiRang, phi, velRadial, SNR): | |||
listPhi = phi.tolist() | |||
maxid = listPhi.index(max(listPhi)) | |||
minid = listPhi.index(min(listPhi)) | |||
rango = range(len(phi)) | |||
# rango = numpy.delete(rango,maxid) | |||
heiRang1 = heiRang*math.cos(phi[maxid]) | |||
heiRangAux = heiRang*math.cos(phi[minid]) | |||
indOut = (heiRang1 < heiRangAux[0]).nonzero() | |||
heiRang1 = numpy.delete(heiRang1,indOut) | |||
velRadial1 = numpy.zeros([len(phi),len(heiRang1)]) | |||
SNR1 = numpy.zeros([len(phi),len(heiRang1)]) | |||
for i in rango: | |||
x = heiRang*math.cos(phi[i]) | |||
y1 = velRadial[i,:] | |||
f1 = interpolate.interp1d(x,y1,kind = 'cubic') | |||
x1 = heiRang1 | |||
y11 = f1(x1) | |||
y2 = SNR[i,:] | |||
f2 = interpolate.interp1d(x,y2,kind = 'cubic') | |||
y21 = f2(x1) | |||
velRadial1[i,:] = y11 | |||
SNR1[i,:] = y21 | |||
return heiRang1, velRadial1, SNR1 | |||
def run(self, dataOut, zenith, zenithCorrection): | |||
heiRang = dataOut.heightList | |||
velRadial = dataOut.data_param[:,3,:] | |||
|
r514 | SNR = dataOut.data_SNR | |
|
r513 | ||
zenith = numpy.array(zenith) | |||
zenith -= zenithCorrection | |||
zenith *= numpy.pi/180 | |||
heiRang1, velRadial1, SNR1 = self.__correctValues(heiRang, numpy.abs(zenith), velRadial, SNR) | |||
alp = zenith[0] | |||
bet = zenith[1] | |||
w_w = velRadial1[0,:] | |||
w_e = velRadial1[1,:] | |||
w = (w_w*numpy.sin(bet) - w_e*numpy.sin(alp))/(numpy.cos(alp)*numpy.sin(bet) - numpy.cos(bet)*numpy.sin(alp)) | |||
u = (w_w*numpy.cos(bet) - w_e*numpy.cos(alp))/(numpy.sin(alp)*numpy.cos(bet) - numpy.sin(bet)*numpy.cos(alp)) | |||
winds = numpy.vstack((u,w)) | |||
dataOut.heightList = heiRang1 | |||
dataOut.data_output = winds | |||
|
r514 | dataOut.data_SNR = SNR1 | |
|
r513 | ||
|
r543 | dataOut.utctimeInit = dataOut.utctime | |
|
r513 | dataOut.outputInterval = dataOut.timeInterval | |
return | |||