##// END OF EJS Templates
Bug fixed: crossSpectraPlot, noise variable was called as method "noise()"
Bug fixed: crossSpectraPlot, noise variable was called as method "noise()"

File last commit:

r514:f095b959308c
r525:315efed252d3
Show More
jrodata.py
983 lines | 24.0 KiB | text/x-python | PythonLexer
Daniel Valdez
This is the new organization by packages and scripts for Signal Chain, this version contains new features and bugs fixed until August 2014
r487 '''
$Author: murco $
$Id: JROData.py 173 2012-11-20 15:06:21Z murco $
'''
import copy
import numpy
import datetime
from jroheaderIO import SystemHeader, RadarControllerHeader
def getNumpyDtype(dataTypeCode):
if dataTypeCode == 0:
numpyDtype = numpy.dtype([('real','<i1'),('imag','<i1')])
elif dataTypeCode == 1:
numpyDtype = numpy.dtype([('real','<i2'),('imag','<i2')])
elif dataTypeCode == 2:
numpyDtype = numpy.dtype([('real','<i4'),('imag','<i4')])
elif dataTypeCode == 3:
numpyDtype = numpy.dtype([('real','<i8'),('imag','<i8')])
elif dataTypeCode == 4:
numpyDtype = numpy.dtype([('real','<f4'),('imag','<f4')])
elif dataTypeCode == 5:
numpyDtype = numpy.dtype([('real','<f8'),('imag','<f8')])
else:
raise ValueError, 'dataTypeCode was not defined'
return numpyDtype
def getDataTypeCode(numpyDtype):
if numpyDtype == numpy.dtype([('real','<i1'),('imag','<i1')]):
datatype = 0
elif numpyDtype == numpy.dtype([('real','<i2'),('imag','<i2')]):
datatype = 1
elif numpyDtype == numpy.dtype([('real','<i4'),('imag','<i4')]):
datatype = 2
elif numpyDtype == numpy.dtype([('real','<i8'),('imag','<i8')]):
datatype = 3
elif numpyDtype == numpy.dtype([('real','<f4'),('imag','<f4')]):
datatype = 4
elif numpyDtype == numpy.dtype([('real','<f8'),('imag','<f8')]):
datatype = 5
else:
datatype = None
return datatype
def hildebrand_sekhon(data, navg):
data = data.copy()
sortdata = numpy.sort(data,axis=None)
lenOfData = len(sortdata)
nums_min = lenOfData/10
if (lenOfData/10) > 2:
nums_min = lenOfData/10
else:
nums_min = 2
sump = 0.
sumq = 0.
j = 0
cont = 1
while((cont==1)and(j<lenOfData)):
sump += sortdata[j]
sumq += sortdata[j]**2
j += 1
if j > nums_min:
rtest = float(j)/(j-1) + 1.0/navg
if ((sumq*j) > (rtest*sump**2)):
j = j - 1
sump = sump - sortdata[j]
sumq = sumq - sortdata[j]**2
cont = 0
lnoise = sump /j
stdv = numpy.sqrt((sumq - lnoise**2)/(j - 1))
return lnoise
Daniel Valdez
ProfileToChannels this is a new Operation to get data with dimensions [nchannels,nsamples]
r501 class Beam:
def __init__(self):
self.codeList = []
self.azimuthList = []
self.zenithList = []
Daniel Valdez
This is the new organization by packages and scripts for Signal Chain, this version contains new features and bugs fixed until August 2014
r487 class GenericData(object):
flagNoData = True
def __init__(self):
raise ValueError, "This class has not been implemented"
def copy(self, inputObj=None):
if inputObj == None:
return copy.deepcopy(self)
for key in inputObj.__dict__.keys():
self.__dict__[key] = inputObj.__dict__[key]
def deepcopy(self):
return copy.deepcopy(self)
def isEmpty(self):
return self.flagNoData
class JROData(GenericData):
# m_BasicHeader = BasicHeader()
# m_ProcessingHeader = ProcessingHeader()
systemHeaderObj = SystemHeader()
radarControllerHeaderObj = RadarControllerHeader()
# data = None
type = None
datatype = None #dtype but in string
# dtype = None
# nChannels = None
# nHeights = None
nProfiles = None
heightList = None
channelList = None
flagTimeBlock = False
useLocalTime = False
utctime = None
timeZone = None
dstFlag = None
errorCount = None
blocksize = None
nCode = None
nBaud = None
code = None
flagDecodeData = False #asumo q la data no esta decodificada
flagDeflipData = False #asumo q la data no esta sin flip
flagShiftFFT = False
# ippSeconds = None
timeInterval = None
nCohInt = None
noise = None
windowOfFilter = 1
#Speed of ligth
C = 3e8
frequency = 49.92e6
realtime = False
beacon_heiIndexList = None
last_block = None
blocknow = None
Daniel Valdez
Filtering AMISR files for Datetime Range...
r499 azimuth = None
zenith = None
Daniel Valdez
ProfileToChannels this is a new Operation to get data with dimensions [nchannels,nsamples]
r501 beam = Beam()
Daniel Valdez
This is the new organization by packages and scripts for Signal Chain, this version contains new features and bugs fixed until August 2014
r487 def __init__(self):
raise ValueError, "This class has not been implemented"
def getNoise(self):
raise ValueError, "Not implemented"
def getNChannels(self):
return len(self.channelList)
def getChannelIndexList(self):
return range(self.nChannels)
def getNHeights(self):
return len(self.heightList)
def getHeiRange(self, extrapoints=0):
heis = self.heightList
# deltah = self.heightList[1] - self.heightList[0]
#
# heis.append(self.heightList[-1])
return heis
def getltctime(self):
if self.useLocalTime:
return self.utctime - self.timeZone*60
return self.utctime
def getDatatime(self):
datatimeValue = datetime.datetime.utcfromtimestamp(self.ltctime)
return datatimeValue
def getTimeRange(self):
datatime = []
datatime.append(self.ltctime)
datatime.append(self.ltctime + self.timeInterval)
datatime = numpy.array(datatime)
return datatime
def getFmax(self):
PRF = 1./(self.ippSeconds * self.nCohInt)
fmax = PRF/2.
return fmax
def getVmax(self):
_lambda = self.C/self.frequency
vmax = self.getFmax() * _lambda
return vmax
def get_ippSeconds(self):
'''
'''
return self.radarControllerHeaderObj.ippSeconds
def set_ippSeconds(self, ippSeconds):
'''
'''
self.radarControllerHeaderObj.ippSeconds = ippSeconds
return
def get_dtype(self):
'''
'''
return getNumpyDtype(self.datatype)
def set_dtype(self, numpyDtype):
'''
'''
self.datatype = getDataTypeCode(numpyDtype)
nChannels = property(getNChannels, "I'm the 'nChannel' property.")
channelIndexList = property(getChannelIndexList, "I'm the 'channelIndexList' property.")
nHeights = property(getNHeights, "I'm the 'nHeights' property.")
#noise = property(getNoise, "I'm the 'nHeights' property.")
datatime = property(getDatatime, "I'm the 'datatime' property")
ltctime = property(getltctime, "I'm the 'ltctime' property")
ippSeconds = property(get_ippSeconds, set_ippSeconds)
dtype = property(get_dtype, set_dtype)
class Voltage(JROData):
#data es un numpy array de 2 dmensiones (canales, alturas)
data = None
def __init__(self):
'''
Constructor
'''
self.radarControllerHeaderObj = RadarControllerHeader()
self.systemHeaderObj = SystemHeader()
self.type = "Voltage"
self.data = None
# self.dtype = None
# self.nChannels = 0
# self.nHeights = 0
self.nProfiles = None
self.heightList = None
self.channelList = None
# self.channelIndexList = None
self.flagNoData = True
self.flagTimeBlock = False
self.utctime = None
self.timeZone = None
self.dstFlag = None
self.errorCount = None
self.nCohInt = None
self.blocksize = None
self.flagDecodeData = False #asumo q la data no esta decodificada
self.flagDeflipData = False #asumo q la data no esta sin flip
self.flagShiftFFT = False
def getNoisebyHildebrand(self):
"""
Determino el nivel de ruido usando el metodo Hildebrand-Sekhon
Return:
noiselevel
"""
for channel in range(self.nChannels):
daux = self.data_spc[channel,:,:]
self.noise[channel] = hildebrand_sekhon(daux, self.nCohInt)
return self.noise
def getNoise(self, type = 1):
self.noise = numpy.zeros(self.nChannels)
if type == 1:
noise = self.getNoisebyHildebrand()
return 10*numpy.log10(noise)
noise = property(getNoise, "I'm the 'nHeights' property.")
class Spectra(JROData):
#data es un numpy array de 2 dmensiones (canales, perfiles, alturas)
data_spc = None
#data es un numpy array de 2 dmensiones (canales, pares, alturas)
data_cspc = None
#data es un numpy array de 2 dmensiones (canales, alturas)
data_dc = None
nFFTPoints = None
# nPairs = None
pairsList = None
nIncohInt = None
wavelength = None #Necesario para cacular el rango de velocidad desde la frecuencia
nCohInt = None #se requiere para determinar el valor de timeInterval
ippFactor = None
def __init__(self):
'''
Constructor
'''
self.radarControllerHeaderObj = RadarControllerHeader()
self.systemHeaderObj = SystemHeader()
self.type = "Spectra"
# self.data = None
# self.dtype = None
# self.nChannels = 0
# self.nHeights = 0
self.nProfiles = None
self.heightList = None
self.channelList = None
# self.channelIndexList = None
self.pairsList = None
self.flagNoData = True
self.flagTimeBlock = False
self.utctime = None
self.nCohInt = None
self.nIncohInt = None
self.blocksize = None
self.nFFTPoints = None
self.wavelength = None
self.flagDecodeData = False #asumo q la data no esta decodificada
self.flagDeflipData = False #asumo q la data no esta sin flip
self.flagShiftFFT = False
self.ippFactor = 1
#self.noise = None
self.beacon_heiIndexList = []
self.noise_estimation = None
def getNoisebyHildebrand(self):
"""
Determino el nivel de ruido usando el metodo Hildebrand-Sekhon
Return:
noiselevel
"""
noise = numpy.zeros(self.nChannels)
for channel in range(self.nChannels):
daux = self.data_spc[channel,:,:]
noise[channel] = hildebrand_sekhon(daux, self.nIncohInt)
return noise
def getNoise(self):
if self.noise_estimation != None:
return self.noise_estimation #this was estimated by getNoise Operation defined in jroproc_spectra.py
else:
noise = self.getNoisebyHildebrand()
return noise
def getFreqRange(self, extrapoints=0):
deltafreq = self.getFmax() / (self.nFFTPoints*self.ippFactor)
freqrange = deltafreq*(numpy.arange(self.nFFTPoints+extrapoints)-self.nFFTPoints/2.) - deltafreq/2
return freqrange
def getVelRange(self, extrapoints=0):
deltav = self.getVmax() / (self.nFFTPoints*self.ippFactor)
velrange = deltav*(numpy.arange(self.nFFTPoints+extrapoints)-self.nFFTPoints/2.) - deltav/2
return velrange
def getNPairs(self):
return len(self.pairsList)
def getPairsIndexList(self):
return range(self.nPairs)
def getNormFactor(self):
pwcode = 1
if self.flagDecodeData:
pwcode = numpy.sum(self.code[0]**2)
#normFactor = min(self.nFFTPoints,self.nProfiles)*self.nIncohInt*self.nCohInt*pwcode*self.windowOfFilter
normFactor = self.nProfiles*self.nIncohInt*self.nCohInt*pwcode*self.windowOfFilter
return normFactor
def getFlagCspc(self):
if self.data_cspc == None:
return True
return False
def getFlagDc(self):
if self.data_dc == None:
return True
return False
nPairs = property(getNPairs, "I'm the 'nPairs' property.")
pairsIndexList = property(getPairsIndexList, "I'm the 'pairsIndexList' property.")
normFactor = property(getNormFactor, "I'm the 'getNormFactor' property.")
flag_cspc = property(getFlagCspc)
flag_dc = property(getFlagDc)
noise = property(getNoise, "I'm the 'nHeights' property.")
class SpectraHeis(Spectra):
data_spc = None
data_cspc = None
data_dc = None
nFFTPoints = None
# nPairs = None
pairsList = None
nIncohInt = None
def __init__(self):
self.radarControllerHeaderObj = RadarControllerHeader()
self.systemHeaderObj = SystemHeader()
self.type = "SpectraHeis"
# self.dtype = None
# self.nChannels = 0
# self.nHeights = 0
self.nProfiles = None
self.heightList = None
self.channelList = None
# self.channelIndexList = None
self.flagNoData = True
self.flagTimeBlock = False
# self.nPairs = 0
self.utctime = None
self.blocksize = None
Daniel Valdez
The Spectra-1d Plot shows the normalized power.
r496
def getNormFactor(self):
pwcode = 1
if self.flagDecodeData:
pwcode = numpy.sum(self.code[0]**2)
normFactor = self.nIncohInt*self.nCohInt*pwcode
return normFactor
normFactor = property(getNormFactor, "I'm the 'getNormFactor' property.")
Daniel Valdez
This is the new organization by packages and scripts for Signal Chain, this version contains new features and bugs fixed until August 2014
r487
class Fits:
heightList = None
channelList = None
flagNoData = True
flagTimeBlock = False
useLocalTime = False
utctime = None
timeZone = None
# ippSeconds = None
timeInterval = None
nCohInt = None
nIncohInt = None
noise = None
windowOfFilter = 1
#Speed of ligth
C = 3e8
frequency = 49.92e6
realtime = False
def __init__(self):
self.type = "Fits"
self.nProfiles = None
self.heightList = None
self.channelList = None
# self.channelIndexList = None
self.flagNoData = True
self.utctime = None
self.nCohInt = None
self.nIncohInt = None
self.useLocalTime = True
# self.utctime = None
# self.timeZone = None
# self.ltctime = None
# self.timeInterval = None
# self.header = None
# self.data_header = None
# self.data = None
# self.datatime = None
# self.flagNoData = False
# self.expName = ''
# self.nChannels = None
# self.nSamples = None
# self.dataBlocksPerFile = None
# self.comments = ''
#
def getltctime(self):
if self.useLocalTime:
return self.utctime - self.timeZone*60
return self.utctime
def getDatatime(self):
datatime = datetime.datetime.utcfromtimestamp(self.ltctime)
return datatime
def getTimeRange(self):
datatime = []
datatime.append(self.ltctime)
datatime.append(self.ltctime + self.timeInterval)
datatime = numpy.array(datatime)
return datatime
def getHeiRange(self):
heis = self.heightList
return heis
def isEmpty(self):
return self.flagNoData
def getNHeights(self):
return len(self.heightList)
def getNChannels(self):
return len(self.channelList)
def getChannelIndexList(self):
return range(self.nChannels)
def getNoise(self, type = 1):
self.noise = numpy.zeros(self.nChannels)
if type == 1:
noise = self.getNoisebyHildebrand()
if type == 2:
noise = self.getNoisebySort()
if type == 3:
noise = self.getNoisebyWindow()
return noise
datatime = property(getDatatime, "I'm the 'datatime' property")
nHeights = property(getNHeights, "I'm the 'nHeights' property.")
nChannels = property(getNChannels, "I'm the 'nChannel' property.")
channelIndexList = property(getChannelIndexList, "I'm the 'channelIndexList' property.")
noise = property(getNoise, "I'm the 'nHeights' property.")
datatime = property(getDatatime, "I'm the 'datatime' property")
ltctime = property(getltctime, "I'm the 'ltctime' property")
Julio Valdez
Processing Modules added:...
r502
class Correlation(JROData):
noise = None
SNR = None
pairsAutoCorr = None #Pairs of Autocorrelation
#--------------------------------------------------
data_corr = None
data_volt = None
lagT = None # each element value is a profileIndex
lagR = None # each element value is in km
pairsList = None
calculateVelocity = None
nPoints = None
nAvg = None
bufferSize = None
def __init__(self):
'''
Constructor
'''
self.radarControllerHeaderObj = RadarControllerHeader()
self.systemHeaderObj = SystemHeader()
self.type = "Correlation"
self.data = None
self.dtype = None
self.nProfiles = None
self.heightList = None
self.channelList = None
self.flagNoData = True
self.flagTimeBlock = False
self.utctime = None
self.timeZone = None
self.dstFlag = None
self.errorCount = None
self.blocksize = None
self.flagDecodeData = False #asumo q la data no esta decodificada
self.flagDeflipData = False #asumo q la data no esta sin flip
self.pairsList = None
self.nPoints = None
def getLagTRange(self, extrapoints=0):
lagTRange = self.lagT
diff = lagTRange[1] - lagTRange[0]
extra = numpy.arange(1,extrapoints + 1)*diff + lagTRange[-1]
lagTRange = numpy.hstack((lagTRange, extra))
return lagTRange
def getLagRRange(self, extrapoints=0):
return self.lagR
def getPairsList(self):
return self.pairsList
def getCalculateVelocity(self):
return self.calculateVelocity
def getNPoints(self):
return self.nPoints
def getNAvg(self):
return self.nAvg
def getBufferSize(self):
return self.bufferSize
def getPairsAutoCorr(self):
pairsList = self.pairsList
pairsAutoCorr = numpy.zeros(self.nChannels, dtype = 'int')*numpy.nan
for l in range(len(pairsList)):
firstChannel = pairsList[l][0]
secondChannel = pairsList[l][1]
#Obteniendo pares de Autocorrelacion
if firstChannel == secondChannel:
pairsAutoCorr[firstChannel] = int(l)
pairsAutoCorr = pairsAutoCorr.astype(int)
return pairsAutoCorr
def getNoise(self, mode = 2):
indR = numpy.where(self.lagR == 0)[0][0]
indT = numpy.where(self.lagT == 0)[0][0]
jspectra0 = self.data_corr[:,:,indR,:]
jspectra = copy.copy(jspectra0)
num_chan = jspectra.shape[0]
num_hei = jspectra.shape[2]
freq_dc = jspectra.shape[1]/2
ind_vel = numpy.array([-2,-1,1,2]) + freq_dc
if ind_vel[0]<0:
ind_vel[range(0,1)] = ind_vel[range(0,1)] + self.num_prof
if mode == 1:
jspectra[:,freq_dc,:] = (jspectra[:,ind_vel[1],:] + jspectra[:,ind_vel[2],:])/2 #CORRECCION
if mode == 2:
vel = numpy.array([-2,-1,1,2])
xx = numpy.zeros([4,4])
for fil in range(4):
xx[fil,:] = vel[fil]**numpy.asarray(range(4))
xx_inv = numpy.linalg.inv(xx)
xx_aux = xx_inv[0,:]
for ich in range(num_chan):
yy = jspectra[ich,ind_vel,:]
jspectra[ich,freq_dc,:] = numpy.dot(xx_aux,yy)
junkid = jspectra[ich,freq_dc,:]<=0
cjunkid = sum(junkid)
if cjunkid.any():
jspectra[ich,freq_dc,junkid.nonzero()] = (jspectra[ich,ind_vel[1],junkid] + jspectra[ich,ind_vel[2],junkid])/2
noise = jspectra0[:,freq_dc,:] - jspectra[:,freq_dc,:]
return noise
# pairsList = property(getPairsList, "I'm the 'pairsList' property.")
# nPoints = property(getNPoints, "I'm the 'nPoints' property.")
calculateVelocity = property(getCalculateVelocity, "I'm the 'calculateVelocity' property.")
nAvg = property(getNAvg, "I'm the 'nAvg' property.")
bufferSize = property(getBufferSize, "I'm the 'bufferSize' property.")
class Parameters(JROData):
Julio Valdez
First Spectral Fitting and EW Drifts operative module inside Signal Chain TRUNK
r513 #Information from previous data
Julio Valdez
Processing Modules added:...
r502 inputUnit = None #Type of data to be processed
operation = None #Type of operation to parametrize
Julio Valdez
First Spectral Fitting and EW Drifts operative module inside Signal Chain TRUNK
r513 normFactor = None #Normalization Factor
groupList = None #List of Pairs, Groups, etc
#Parameters
Julio Valdez
Processing Modules added:...
r502 data_param = None #Parameters obtained
data_pre = None #Data Pre Parametrization
Daniel Valdez
This is the new organization by packages and scripts for Signal Chain, this version contains new features and bugs fixed until August 2014
r487
Julio Valdez
First Draft HDF5 IO module
r514 data_SNR = None #Signal to Noise Ratio
Julio Valdez
Processing Modules added:...
r502 heightRange = None #Heights
abscissaRange = None #Abscissa, can be velocities, lags or time
noise = None #Noise Potency
initUtcTime = None #Initial UTC time
paramInterval = None #Time interval to calculate Parameters in seconds
Julio Valdez
First Spectral Fitting and EW Drifts operative module inside Signal Chain TRUNK
r513 #Fitting
Julio Valdez
First Draft HDF5 IO module
r514 data_error = None #Error of the estimation
constants = None
Julio Valdez
First Spectral Fitting and EW Drifts operative module inside Signal Chain TRUNK
r513
library = None
#Output signal
outputInterval = None #Time interval to calculate output signal in seconds
data_output = None #Out signal
Julio Valdez
Processing Modules added:...
r502
def __init__(self):
'''
Constructor
'''
self.radarControllerHeaderObj = RadarControllerHeader()
self.systemHeaderObj = SystemHeader()
self.type = "Parameters"
def getTimeRange1(self):
datatime = []
datatime.append(self.initUtcTime)
Julio Valdez
First Spectral Fitting and EW Drifts operative module inside Signal Chain TRUNK
r513 datatime.append(self.initUtcTime + self.outputInterval - 1)
Julio Valdez
Processing Modules added:...
r502
datatime = numpy.array(datatime)
return datatime