##// END OF EJS Templates
Se agrego manejo de excepciones para la lectura del header de los archivos en formato Jicamarca....
Se agrego manejo de excepciones para la lectura del header de los archivos en formato Jicamarca. Se agrego el atributo type a los Datos (Voltaje y Espectra)

File last commit:

r52:1dd31bd293df
r52:1dd31bd293df
Show More
JROHeader.py
404 lines | 13.7 KiB | text/x-python | PythonLexer
Miguel Valdez
El modelo de datos ha sido actualizado para trabajar con clases absolutas padres de donde se derivan las demas clases.
r39 '''
Created on 23/01/2012
@author $Author: vsarmiento $
@version $Id: HeaderIO.py 37 2012-03-26 22:55:13Z vsarmiento $
'''
import numpy
import copy
class Header:
def __init__(self):
raise
def copy(self):
return copy.deepcopy(self)
def read():
pass
def write():
pass
class BasicHeader(Header):
size = None
version = None
dataBlock = None
utc = None
miliSecond = None
timeZone = None
dstFlag = None
errorCount = None
struct = None
def __init__(self):
self.size = 0
self.version = 0
self.dataBlock = 0
self.utc = 0
self.miliSecond = 0
self.timeZone = 0
self.dstFlag = 0
self.errorCount = 0
self.struct = numpy.dtype([
('nSize','<u4'),
('nVersion','<u2'),
('nDataBlockId','<u4'),
('nUtime','<u4'),
('nMilsec','<u2'),
('nTimezone','<i2'),
('nDstflag','<i2'),
('nErrorCount','<u4')
])
pass
def read(self, fp):
Miguel Valdez
Se agrego manejo de excepciones para la lectura del header de los archivos en formato Jicamarca....
r52 try:
header = numpy.fromfile(fp, self.struct,1)
self.size = header['nSize'][0]
self.version = header['nVersion'][0]
self.dataBlock = header['nDataBlockId'][0]
self.utc = header['nUtime'][0]
self.miliSecond = header['nMilsec'][0]
self.timeZone = header['nTimezone'][0]
self.dstFlag = header['nDstflag'][0]
self.errorCount = header['nErrorCount'][0]
except:
return 0
Miguel Valdez
El modelo de datos ha sido actualizado para trabajar con clases absolutas padres de donde se derivan las demas clases.
r39
return 1
def write(self, fp):
headerTuple = (self.size,self.version,self.dataBlock,self.utc,self.miliSecond,self.timeZone,self.dstFlag,self.errorCount)
header = numpy.array(headerTuple,self.struct)
header.tofile(fp)
return 1
class SystemHeader(Header):
size = None
numSamples = None
numProfiles = None
numChannels = None
adcResolution = None
pciDioBusWidth = None
struct = None
def __init__(self):
self.size = 0
self.numSamples = 0
self.numProfiles = 0
self.numChannels = 0
self.adcResolution = 0
self.pciDioBusWidth = 0
self.struct = numpy.dtype([
('nSize','<u4'),
('nNumSamples','<u4'),
('nNumProfiles','<u4'),
('nNumChannels','<u4'),
('nADCResolution','<u4'),
('nPCDIOBusWidth','<u4'),
])
def read(self, fp):
Miguel Valdez
Se agrego manejo de excepciones para la lectura del header de los archivos en formato Jicamarca....
r52 try:
header = numpy.fromfile(fp,self.struct,1)
self.size = header['nSize'][0]
self.numSamples = header['nNumSamples'][0]
self.numProfiles = header['nNumProfiles'][0]
self.numChannels = header['nNumChannels'][0]
self.adcResolution = header['nADCResolution'][0]
self.pciDioBusWidth = header['nPCDIOBusWidth'][0]
except:
return 0
Miguel Valdez
El modelo de datos ha sido actualizado para trabajar con clases absolutas padres de donde se derivan las demas clases.
r39
return 1
def write(self, fp):
headerTuple = (self.size,self.numSamples,self.numProfiles,self.numChannels,self.adcResolution,self.pciDioBusWidth)
header = numpy.array(headerTuple,self.struct)
header.tofile(fp)
return 1
class RadarControllerHeader(Header):
size = None
expType = None
nTx = None
ipp = None
txA = None
txB = None
numWindows = None
numTaus = None
codeType = None
line6Function = None
line5Function = None
fClock = None
prePulseBefore = None
prePulserAfter = None
rangeIpp = None
rangeTxA = None
rangeTxB = None
struct = None
def __init__(self):
self.size = 0
self.expType = 0
self.nTx = 0
self.ipp = 0
self.txA = 0
self.txB = 0
self.numWindows = 0
self.numTaus = 0
self.codeType = 0
self.line6Function = 0
self.line5Function = 0
self.fClock = 0
self.prePulseBefore = 0
self.prePulserAfter = 0
self.rangeIpp = 0
self.rangeTxA = 0
self.rangeTxB = 0
self.struct = numpy.dtype([
('nSize','<u4'),
('nExpType','<u4'),
('nNTx','<u4'),
('fIpp','<f4'),
('fTxA','<f4'),
('fTxB','<f4'),
('nNumWindows','<u4'),
('nNumTaus','<u4'),
('nCodeType','<u4'),
('nLine6Function','<u4'),
('nLine5Function','<u4'),
('fClock','<f4'),
('nPrePulseBefore','<u4'),
('nPrePulseAfter','<u4'),
('sRangeIPP','<a20'),
('sRangeTxA','<a20'),
('sRangeTxB','<a20'),
])
self.dynamic = numpy.array([],numpy.dtype('byte'))
def read(self, fp):
Miguel Valdez
Se agrego manejo de excepciones para la lectura del header de los archivos en formato Jicamarca....
r52 try:
header = numpy.fromfile(fp,self.struct,1)
self.size = header['nSize'][0]
self.expType = header['nExpType'][0]
self.nTx = header['nNTx'][0]
self.ipp = header['fIpp'][0]
self.txA = header['fTxA'][0]
self.txB = header['fTxB'][0]
self.numWindows = header['nNumWindows'][0]
self.numTaus = header['nNumTaus'][0]
self.codeType = header['nCodeType'][0]
self.line6Function = header['nLine6Function'][0]
self.line5Function = header['nLine5Function'][0]
self.fClock = header['fClock'][0]
self.prePulseBefore = header['nPrePulseBefore'][0]
self.prePulserAfter = header['nPrePulseAfter'][0]
self.rangeIpp = header['sRangeIPP'][0]
self.rangeTxA = header['sRangeTxA'][0]
self.rangeTxB = header['sRangeTxB'][0]
# jump Dynamic Radar Controller Header
jumpHeader = self.size - 116
self.dynamic = numpy.fromfile(fp,numpy.dtype('byte'),jumpHeader)
except:
return 0
Miguel Valdez
El modelo de datos ha sido actualizado para trabajar con clases absolutas padres de donde se derivan las demas clases.
r39
return 1
def write(self, fp):
headerTuple = (self.size,
self.expType,
self.nTx,
self.ipp,
self.txA,
self.txB,
self.numWindows,
self.numTaus,
self.codeType,
self.line6Function,
self.line5Function,
self.fClock,
self.prePulseBefore,
self.prePulserAfter,
self.rangeIpp,
self.rangeTxA,
self.rangeTxB)
header = numpy.array(headerTuple,self.struct)
header.tofile(fp)
dynamic = self.dynamic
dynamic.tofile(fp)
return 1
class ProcessingHeader(Header):
size = None
dataType = None
blockSize = None
profilesPerBlock = None
dataBlocksPerFile = None
numWindows = None
processFlags = None
coherentInt = None
incoherentInt = None
totalSpectra = None
struct = None
def __init__(self):
self.size = 0
self.dataType = 0
self.blockSize = 0
self.profilesPerBlock = 0
self.dataBlocksPerFile = 0
self.numWindows = 0
self.processFlags = 0
self.coherentInt = 0
self.incoherentInt = 0
self.totalSpectra = 0
self.struct = numpy.dtype([
('nSize','<u4'),
('nDataType','<u4'),
('nSizeOfDataBlock','<u4'),
('nProfilesperBlock','<u4'),
('nDataBlocksperFile','<u4'),
('nNumWindows','<u4'),
('nProcessFlags','<u4'),
('nCoherentIntegrations','<u4'),
('nIncoherentIntegrations','<u4'),
('nTotalSpectra','<u4')
])
self.samplingWindow = 0
self.structSamplingWindow = numpy.dtype([('h0','<f4'),('dh','<f4'),('nsa','<u4')])
self.numHeights = 0
self.firstHeight = 0
self.deltaHeight = 0
self.samplesWin = 0
self.spectraComb = 0
self.numCode = 0
self.codes = 0
self.numBaud = 0
self.shif_fft = False
def read(self, fp):
Miguel Valdez
Se agrego manejo de excepciones para la lectura del header de los archivos en formato Jicamarca....
r52 try:
header = numpy.fromfile(fp,self.struct,1)
self.size = header['nSize'][0]
self.dataType = header['nDataType'][0]
self.blockSize = header['nSizeOfDataBlock'][0]
self.profilesPerBlock = header['nProfilesperBlock'][0]
self.dataBlocksPerFile = header['nDataBlocksperFile'][0]
self.numWindows = header['nNumWindows'][0]
self.processFlags = header['nProcessFlags']
self.coherentInt = header['nCoherentIntegrations'][0]
self.incoherentInt = header['nIncoherentIntegrations'][0]
self.totalSpectra = header['nTotalSpectra'][0]
self.samplingWindow = numpy.fromfile(fp,self.structSamplingWindow,self.numWindows)
self.numHeights = numpy.sum(self.samplingWindow['nsa'])
self.firstHeight = self.samplingWindow['h0']
self.deltaHeight = self.samplingWindow['dh']
self.samplesWin = self.samplingWindow['nsa']
self.spectraComb = numpy.fromfile(fp,'u1',2*self.totalSpectra)
if self.processFlags & PROCFLAG.DEFINE_PROCESS_CODE == PROCFLAG.DEFINE_PROCESS_CODE:
self.numCode = numpy.fromfile(fp,'<u4',1)
self.numBaud = numpy.fromfile(fp,'<u4',1)
self.codes = numpy.fromfile(fp,'<f4',self.numCode*self.numBaud).reshape(self.numBaud,self.numCode)
Miguel Valdez
El modelo de datos ha sido actualizado para trabajar con clases absolutas padres de donde se derivan las demas clases.
r39
Miguel Valdez
Se agrego manejo de excepciones para la lectura del header de los archivos en formato Jicamarca....
r52 if self.processFlags & PROCFLAG.SHIFT_FFT_DATA == PROCFLAG.SHIFT_FFT_DATA:
self.shif_fft = True
else:
self.shif_fft = False
except:
return 0
Miguel Valdez
El modelo de datos ha sido actualizado para trabajar con clases absolutas padres de donde se derivan las demas clases.
r39
return 1
def write(self, fp):
headerTuple = (self.size,
self.dataType,
self.blockSize,
self.profilesPerBlock,
self.dataBlocksPerFile,
self.numWindows,
self.processFlags,
self.coherentInt,
self.incoherentInt,
self.totalSpectra)
header = numpy.array(headerTuple,self.struct)
header.tofile(fp)
if self.numWindows != 0:
sampleWindowTuple = (self.firstHeight,self.deltaHeight,self.samplesWin)
samplingWindow = numpy.array(sampleWindowTuple,self.structSamplingWindow)
samplingWindow.tofile(fp)
if self.totalSpectra != 0:
spectraComb = numpy.array([],numpy.dtype('u1'))
spectraComb = self.spectraComb
spectraComb.tofile(fp)
if self.processFlags & PROCFLAG.DEFINE_PROCESS_CODE == PROCFLAG.DEFINE_PROCESS_CODE:
numCode = self.numCode
numCode.tofile(fp)
numBaud = self.numBaud
numBaud.tofile(fp)
codes = self.codes.reshape(numCode*numBaud)
codes.tofile(fp)
return 1
class PROCFLAG:
COHERENT_INTEGRATION = numpy.uint32(0x00000001)
DECODE_DATA = numpy.uint32(0x00000002)
SPECTRA_CALC = numpy.uint32(0x00000004)
INCOHERENT_INTEGRATION = numpy.uint32(0x00000008)
POST_COHERENT_INTEGRATION = numpy.uint32(0x00000010)
SHIFT_FFT_DATA = numpy.uint32(0x00000020)
DATATYPE_CHAR = numpy.uint32(0x00000040)
DATATYPE_SHORT = numpy.uint32(0x00000080)
DATATYPE_LONG = numpy.uint32(0x00000100)
DATATYPE_INT64 = numpy.uint32(0x00000200)
DATATYPE_FLOAT = numpy.uint32(0x00000400)
DATATYPE_DOUBLE = numpy.uint32(0x00000800)
DATAARRANGE_CONTIGUOUS_CH = numpy.uint32(0x00001000)
DATAARRANGE_CONTIGUOUS_H = numpy.uint32(0x00002000)
DATAARRANGE_CONTIGUOUS_P = numpy.uint32(0x00004000)
SAVE_CHANNELS_DC = numpy.uint32(0x00008000)
DEFLIP_DATA = numpy.uint32(0x00010000)
DEFINE_PROCESS_CODE = numpy.uint32(0x00020000)
ACQ_SYS_NATALIA = numpy.uint32(0x00040000)
ACQ_SYS_ECHOTEK = numpy.uint32(0x00080000)
ACQ_SYS_ADRXD = numpy.uint32(0x000C0000)
ACQ_SYS_JULIA = numpy.uint32(0x00100000)
ACQ_SYS_XXXXXX = numpy.uint32(0x00140000)
EXP_NAME_ESP = numpy.uint32(0x00200000)
CHANNEL_NAMES_ESP = numpy.uint32(0x00400000)
OPERATION_MASK = numpy.uint32(0x0000003F)
DATATYPE_MASK = numpy.uint32(0x00000FC0)
DATAARRANGE_MASK = numpy.uint32(0x00007000)
ACQ_SYS_MASK = numpy.uint32(0x001C0000)