bltrIO_spectra.py
466 lines
| 18.7 KiB
| text/x-python
|
PythonLexer
|
r1199 | import os | ||
import sys | ||||
import glob | ||||
import fnmatch | ||||
import datetime | ||||
import time | ||||
import re | ||||
import h5py | ||||
import numpy | ||||
import pylab as plb | ||||
from scipy.optimize import curve_fit | ||||
from scipy import asarray as ar, exp | ||||
SPEED_OF_LIGHT = 299792458 | ||||
SPEED_OF_LIGHT = 3e8 | ||||
try: | ||||
from gevent import sleep | ||||
except: | ||||
from time import sleep | ||||
from .utils import folder_in_range | ||||
from schainpy.model.data.jrodata import Spectra | ||||
from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation, MPDecorator | ||||
from schainpy.utils import log | ||||
from schainpy.model.io.jroIO_base import JRODataReader | ||||
def pol2cart(rho, phi): | ||||
x = rho * numpy.cos(phi) | ||||
y = rho * numpy.sin(phi) | ||||
return(x, y) | ||||
FILE_STRUCTURE = numpy.dtype([ # HEADER 48bytes | ||||
('FileMgcNumber', '<u4'), # 0x23020100 | ||||
('nFDTdataRecors', '<u4'), | ||||
('OffsetStartHeader', '<u4'), | ||||
('RadarUnitId', '<u4'), | ||||
('SiteName', 'S32'), # Null terminated | ||||
]) | ||||
class FileHeaderBLTR(): | ||||
def __init__(self, fo): | ||||
self.fo = fo | ||||
self.size = 48 | ||||
self.read() | ||||
def read(self): | ||||
header = numpy.fromfile(self.fo, FILE_STRUCTURE, 1) | ||||
self.FileMgcNumber = hex(header['FileMgcNumber'][0]) | ||||
self.nFDTdataRecors = int(header['nFDTdataRecors'][0]) | ||||
self.RadarUnitId = int(header['RadarUnitId'][0]) | ||||
self.OffsetStartHeader = int(header['OffsetStartHeader'][0]) | ||||
self.SiteName = header['SiteName'][0] | ||||
def write(self, fp): | ||||
headerTuple = (self.FileMgcNumber, | ||||
self.nFDTdataRecors, | ||||
self.RadarUnitId, | ||||
self.SiteName, | ||||
self.size) | ||||
header = numpy.array(headerTuple, FILE_STRUCTURE) | ||||
header.tofile(fp) | ||||
''' ndarray.tofile(fid, sep, format) Write array to a file as text or binary (default). | ||||
fid : file or str | ||||
An open file object, or a string containing a filename. | ||||
sep : str | ||||
Separator between array items for text output. If "" (empty), a binary file is written, | ||||
equivalent to file.write(a.tobytes()). | ||||
format : str | ||||
Format string for text file output. Each entry in the array is formatted to text by | ||||
first converting it to the closest Python type, and then using "format" % item. | ||||
''' | ||||
return 1 | ||||
RECORD_STRUCTURE = numpy.dtype([ # RECORD HEADER 180+20N bytes | ||||
('RecMgcNumber', '<u4'), # 0x23030001 | ||||
('RecCounter', '<u4'), # Record counter(0,1, ...) | ||||
# Offset to start of next record form start of this record | ||||
('Off2StartNxtRec', '<u4'), | ||||
# Offset to start of data from start of this record | ||||
('Off2StartData', '<u4'), | ||||
# Epoch time stamp of start of acquisition (seconds) | ||||
('nUtime', '<i4'), | ||||
# Millisecond component of time stamp (0,...,999) | ||||
('nMilisec', '<u4'), | ||||
# Experiment tag name (null terminated) | ||||
('ExpTagName', 'S32'), | ||||
# Experiment comment (null terminated) | ||||
('ExpComment', 'S32'), | ||||
# Site latitude (from GPS) in degrees (positive implies North) | ||||
('SiteLatDegrees', '<f4'), | ||||
# Site longitude (from GPS) in degrees (positive implies East) | ||||
('SiteLongDegrees', '<f4'), | ||||
# RTC GPS engine status (0=SEEK, 1=LOCK, 2=NOT FITTED, 3=UNAVAILABLE) | ||||
('RTCgpsStatus', '<u4'), | ||||
('TransmitFrec', '<u4'), # Transmit frequency (Hz) | ||||
('ReceiveFrec', '<u4'), # Receive frequency | ||||
# First local oscillator frequency (Hz) | ||||
('FirstOsciFrec', '<u4'), | ||||
# (0="O", 1="E", 2="linear 1", 3="linear2") | ||||
('Polarisation', '<u4'), | ||||
# Receiver filter settings (0,1,2,3) | ||||
('ReceiverFiltSett', '<u4'), | ||||
# Number of modes in use (1 or 2) | ||||
('nModesInUse', '<u4'), | ||||
# Dual Mode index number for these data (0 or 1) | ||||
('DualModeIndex', '<u4'), | ||||
# Dual Mode range correction for these data (m) | ||||
('DualModeRange', '<u4'), | ||||
# Number of digital channels acquired (2*N) | ||||
('nDigChannels', '<u4'), | ||||
# Sampling resolution (meters) | ||||
('SampResolution', '<u4'), | ||||
# Number of range gates sampled | ||||
('nHeights', '<u4'), | ||||
# Start range of sampling (meters) | ||||
('StartRangeSamp', '<u4'), | ||||
('PRFhz', '<u4'), # PRF (Hz) | ||||
('nCohInt', '<u4'), # Integrations | ||||
# Number of data points transformed | ||||
('nProfiles', '<u4'), | ||||
# Number of receive beams stored in file (1 or N) | ||||
('nChannels', '<u4'), | ||||
('nIncohInt', '<u4'), # Number of spectral averages | ||||
# FFT windowing index (0 = no window) | ||||
('FFTwindowingInd', '<u4'), | ||||
# Beam steer angle (azimuth) in degrees (clockwise from true North) | ||||
('BeamAngleAzim', '<f4'), | ||||
# Beam steer angle (zenith) in degrees (0=> vertical) | ||||
('BeamAngleZen', '<f4'), | ||||
# Antenna coordinates (Range(meters), Bearing(degrees)) - N pairs | ||||
('AntennaCoord0', '<f4'), | ||||
# Antenna coordinates (Range(meters), Bearing(degrees)) - N pairs | ||||
('AntennaAngl0', '<f4'), | ||||
# Antenna coordinates (Range(meters), Bearing(degrees)) - N pairs | ||||
('AntennaCoord1', '<f4'), | ||||
# Antenna coordinates (Range(meters), Bearing(degrees)) - N pairs | ||||
('AntennaAngl1', '<f4'), | ||||
# Antenna coordinates (Range(meters), Bearing(degrees)) - N pairs | ||||
('AntennaCoord2', '<f4'), | ||||
# Antenna coordinates (Range(meters), Bearing(degrees)) - N pairs | ||||
('AntennaAngl2', '<f4'), | ||||
# Receiver phase calibration (degrees) - N values | ||||
('RecPhaseCalibr0', '<f4'), | ||||
# Receiver phase calibration (degrees) - N values | ||||
('RecPhaseCalibr1', '<f4'), | ||||
# Receiver phase calibration (degrees) - N values | ||||
('RecPhaseCalibr2', '<f4'), | ||||
# Receiver amplitude calibration (ratio relative to receiver one) - N values | ||||
('RecAmpCalibr0', '<f4'), | ||||
# Receiver amplitude calibration (ratio relative to receiver one) - N values | ||||
('RecAmpCalibr1', '<f4'), | ||||
# Receiver amplitude calibration (ratio relative to receiver one) - N values | ||||
('RecAmpCalibr2', '<f4'), | ||||
# Receiver gains in dB - N values | ||||
('ReceiverGaindB0', '<i4'), | ||||
# Receiver gains in dB - N values | ||||
('ReceiverGaindB1', '<i4'), | ||||
# Receiver gains in dB - N values | ||||
('ReceiverGaindB2', '<i4'), | ||||
]) | ||||
class RecordHeaderBLTR(): | ||||
def __init__(self, fo): | ||||
self.fo = fo | ||||
self.OffsetStartHeader = 48 | ||||
self.Off2StartNxtRec = 811248 | ||||
def read(self, block): | ||||
OffRHeader = self.OffsetStartHeader + block * self.Off2StartNxtRec | ||||
self.fo.seek(OffRHeader, os.SEEK_SET) | ||||
header = numpy.fromfile(self.fo, RECORD_STRUCTURE, 1) | ||||
self.RecMgcNumber = hex(header['RecMgcNumber'][0]) # 0x23030001 | ||||
self.RecCounter = int(header['RecCounter'][0]) | ||||
self.Off2StartNxtRec = int(header['Off2StartNxtRec'][0]) | ||||
self.Off2StartData = int(header['Off2StartData'][0]) | ||||
self.nUtime = header['nUtime'][0] | ||||
self.nMilisec = header['nMilisec'][0] | ||||
self.ExpTagName = '' # str(header['ExpTagName'][0]) | ||||
self.ExpComment = '' # str(header['ExpComment'][0]) | ||||
self.SiteLatDegrees = header['SiteLatDegrees'][0] | ||||
self.SiteLongDegrees = header['SiteLongDegrees'][0] | ||||
self.RTCgpsStatus = header['RTCgpsStatus'][0] | ||||
self.TransmitFrec = header['TransmitFrec'][0] | ||||
self.ReceiveFrec = header['ReceiveFrec'][0] | ||||
self.FirstOsciFrec = header['FirstOsciFrec'][0] | ||||
self.Polarisation = header['Polarisation'][0] | ||||
self.ReceiverFiltSett = header['ReceiverFiltSett'][0] | ||||
self.nModesInUse = header['nModesInUse'][0] | ||||
self.DualModeIndex = header['DualModeIndex'][0] | ||||
self.DualModeRange = header['DualModeRange'][0] | ||||
self.nDigChannels = header['nDigChannels'][0] | ||||
self.SampResolution = header['SampResolution'][0] | ||||
self.nHeights = header['nHeights'][0] | ||||
self.StartRangeSamp = header['StartRangeSamp'][0] | ||||
self.PRFhz = header['PRFhz'][0] | ||||
self.nCohInt = header['nCohInt'][0] | ||||
self.nProfiles = header['nProfiles'][0] | ||||
self.nChannels = header['nChannels'][0] | ||||
self.nIncohInt = header['nIncohInt'][0] | ||||
self.FFTwindowingInd = header['FFTwindowingInd'][0] | ||||
self.BeamAngleAzim = header['BeamAngleAzim'][0] | ||||
self.BeamAngleZen = header['BeamAngleZen'][0] | ||||
self.AntennaCoord0 = header['AntennaCoord0'][0] | ||||
self.AntennaAngl0 = header['AntennaAngl0'][0] | ||||
self.AntennaCoord1 = header['AntennaCoord1'][0] | ||||
self.AntennaAngl1 = header['AntennaAngl1'][0] | ||||
self.AntennaCoord2 = header['AntennaCoord2'][0] | ||||
self.AntennaAngl2 = header['AntennaAngl2'][0] | ||||
self.RecPhaseCalibr0 = header['RecPhaseCalibr0'][0] | ||||
self.RecPhaseCalibr1 = header['RecPhaseCalibr1'][0] | ||||
self.RecPhaseCalibr2 = header['RecPhaseCalibr2'][0] | ||||
self.RecAmpCalibr0 = header['RecAmpCalibr0'][0] | ||||
self.RecAmpCalibr1 = header['RecAmpCalibr1'][0] | ||||
self.RecAmpCalibr2 = header['RecAmpCalibr2'][0] | ||||
self.ReceiverGaindB0 = header['ReceiverGaindB0'][0] | ||||
self.ReceiverGaindB1 = header['ReceiverGaindB1'][0] | ||||
self.ReceiverGaindB2 = header['ReceiverGaindB2'][0] | ||||
self.ipp = 0.5 * (SPEED_OF_LIGHT / self.PRFhz) | ||||
self.RHsize = 180 + 20 * self.nChannels | ||||
self.Datasize = self.nProfiles * self.nChannels * self.nHeights * 2 * 4 | ||||
endFp = self.OffsetStartHeader + self.RecCounter * self.Off2StartNxtRec | ||||
if OffRHeader > endFp: | ||||
sys.stderr.write( | ||||
"Warning %s: Size value read from System Header is lower than it has to be\n" % fp) | ||||
return 0 | ||||
if OffRHeader < endFp: | ||||
sys.stderr.write( | ||||
"Warning %s: Size value read from System Header size is greater than it has to be\n" % fp) | ||||
return 0 | ||||
return 1 | ||||
@MPDecorator | ||||
class BLTRSpectraReader (ProcessingUnit): | ||||
def __init__(self): | ||||
ProcessingUnit.__init__(self) | ||||
self.ext = ".fdt" | ||||
self.optchar = "P" | ||||
self.fpFile = None | ||||
self.fp = None | ||||
self.BlockCounter = 0 | ||||
self.fileSizeByHeader = None | ||||
self.filenameList = [] | ||||
self.fileSelector = 0 | ||||
self.Off2StartNxtRec = 0 | ||||
self.RecCounter = 0 | ||||
self.flagNoMoreFiles = 0 | ||||
self.data_spc = None | ||||
self.data_cspc = None | ||||
self.path = None | ||||
self.OffsetStartHeader = 0 | ||||
self.Off2StartData = 0 | ||||
self.ipp = 0 | ||||
self.nFDTdataRecors = 0 | ||||
self.blocksize = 0 | ||||
self.dataOut = Spectra() | ||||
self.dataOut.flagNoData = False | ||||
def search_files(self): | ||||
''' | ||||
Function that indicates the number of .fdt files that exist in the folder to be read. | ||||
It also creates an organized list with the names of the files to read. | ||||
''' | ||||
files = glob.glob(os.path.join(self.path, '*{}'.format(self.ext))) | ||||
files = sorted(files) | ||||
for f in files: | ||||
filename = f.split('/')[-1] | ||||
if folder_in_range(filename.split('.')[1], self.startDate, self.endDate, '%Y%m%d'): | ||||
self.filenameList.append(f) | ||||
def run(self, **kwargs): | ||||
''' | ||||
This method will be the one that will initiate the data entry, will be called constantly. | ||||
You should first verify that your Setup () is set up and then continue to acquire | ||||
the data to be processed with getData (). | ||||
''' | ||||
if not self.isConfig: | ||||
self.setup(**kwargs) | ||||
self.isConfig = True | ||||
self.getData() | ||||
def setup(self, | ||||
path=None, | ||||
startDate=None, | ||||
endDate=None, | ||||
startTime=None, | ||||
endTime=None, | ||||
walk=True, | ||||
code=None, | ||||
online=False, | ||||
mode=None, | ||||
**kwargs): | ||||
self.isConfig = True | ||||
self.path = path | ||||
self.startDate = startDate | ||||
self.endDate = endDate | ||||
self.startTime = startTime | ||||
self.endTime = endTime | ||||
self.walk = walk | ||||
self.mode = int(mode) | ||||
self.search_files() | ||||
if self.filenameList: | ||||
self.readFile() | ||||
def getData(self): | ||||
''' | ||||
Before starting this function, you should check that there is still an unread file, | ||||
If there are still blocks to read or if the data block is empty. | ||||
You should call the file "read". | ||||
''' | ||||
if self.flagNoMoreFiles: | ||||
self.dataOut.flagNoData = True | ||||
self.dataOut.error = 'No more files' | ||||
self.readBlock() | ||||
def readFile(self): | ||||
''' | ||||
You must indicate if you are reading in Online or Offline mode and load the | ||||
The parameters for this file reading mode. | ||||
Then you must do 2 actions: | ||||
1. Get the BLTR FileHeader. | ||||
2. Start reading the first block. | ||||
''' | ||||
if self.fileSelector < len(self.filenameList): | ||||
log.success('Opening file: {}'.format(self.filenameList[self.fileSelector]), self.name) | ||||
self.fp = open(self.filenameList[self.fileSelector]) | ||||
self.fheader = FileHeaderBLTR(self.fp) | ||||
self.rheader = RecordHeaderBLTR(self.fp) | ||||
self.nFDTdataRecors = self.fheader.nFDTdataRecors | ||||
self.fileSelector += 1 | ||||
self.BlockCounter = 0 | ||||
return 1 | ||||
else: | ||||
self.flagNoMoreFiles = True | ||||
self.dataOut.flagNoData = True | ||||
return 0 | ||||
def readBlock(self): | ||||
''' | ||||
It should be checked if the block has data, if it is not passed to the next file. | ||||
Then the following is done: | ||||
1. Read the RecordHeader | ||||
2. Fill the buffer with the current block number. | ||||
''' | ||||
if self.BlockCounter == self.nFDTdataRecors: | ||||
if not self.readFile(): | ||||
return | ||||
if self.mode == 1: | ||||
self.rheader.read(self.BlockCounter+1) | ||||
elif self.mode == 0: | ||||
self.rheader.read(self.BlockCounter) | ||||
self.RecCounter = self.rheader.RecCounter | ||||
self.OffsetStartHeader = self.rheader.OffsetStartHeader | ||||
self.Off2StartNxtRec = self.rheader.Off2StartNxtRec | ||||
self.Off2StartData = self.rheader.Off2StartData | ||||
self.nProfiles = self.rheader.nProfiles | ||||
self.nChannels = self.rheader.nChannels | ||||
self.nHeights = self.rheader.nHeights | ||||
self.frequency = self.rheader.TransmitFrec | ||||
self.DualModeIndex = self.rheader.DualModeIndex | ||||
self.pairsList = [(0, 1), (0, 2), (1, 2)] | ||||
self.dataOut.pairsList = self.pairsList | ||||
self.nRdPairs = len(self.dataOut.pairsList) | ||||
self.dataOut.nRdPairs = self.nRdPairs | ||||
self.dataOut.heightList = (self.rheader.StartRangeSamp + numpy.arange(self.nHeights) * self.rheader.SampResolution) / 1000. | ||||
self.dataOut.channelList = range(self.nChannels) | ||||
self.dataOut.nProfiles=self.rheader.nProfiles | ||||
self.dataOut.nIncohInt=self.rheader.nIncohInt | ||||
self.dataOut.nCohInt=self.rheader.nCohInt | ||||
self.dataOut.ippSeconds= 1/float(self.rheader.PRFhz) | ||||
self.dataOut.PRF=self.rheader.PRFhz | ||||
self.dataOut.nFFTPoints=self.rheader.nProfiles | ||||
self.dataOut.utctime=self.rheader.nUtime | ||||
self.dataOut.timeZone = 0 | ||||
self.dataOut.useLocalTime = False | ||||
self.dataOut.nmodes = 2 | ||||
log.log('Reading block {} - {}'.format(self.BlockCounter, self.dataOut.datatime), self.name) | ||||
OffDATA = self.OffsetStartHeader + self.RecCounter * \ | ||||
self.Off2StartNxtRec + self.Off2StartData | ||||
self.fp.seek(OffDATA, os.SEEK_SET) | ||||
self.data_fft = numpy.fromfile(self.fp, [('complex','<c8')], self.nProfiles*self.nChannels*self.nHeights ) | ||||
self.data_fft = self.data_fft.astype(numpy.dtype('complex')) | ||||
self.data_block = numpy.reshape(self.data_fft,(self.nHeights, self.nChannels, self.nProfiles)) | ||||
self.data_block = numpy.transpose(self.data_block, (1,2,0)) | ||||
copy = self.data_block.copy() | ||||
spc = copy * numpy.conjugate(copy) | ||||
self.data_spc = numpy.absolute(spc) # valor absoluto o magnitud | ||||
self.dataOut.data_spc = self.data_spc | ||||
cspc = self.data_block.copy() | ||||
self.data_cspc = self.data_block.copy() | ||||
for i in range(self.nRdPairs): | ||||
chan_index0 = self.dataOut.pairsList[i][0] | ||||
chan_index1 = self.dataOut.pairsList[i][1] | ||||
self.data_cspc[i, :, :] = cspc[chan_index0, :, :] * numpy.conjugate(cspc[chan_index1, :, :]) | ||||
'''Getting Eij and Nij''' | ||||
(AntennaX0, AntennaY0) = pol2cart( | ||||
self.rheader.AntennaCoord0, self.rheader.AntennaAngl0 * numpy.pi / 180) | ||||
(AntennaX1, AntennaY1) = pol2cart( | ||||
self.rheader.AntennaCoord1, self.rheader.AntennaAngl1 * numpy.pi / 180) | ||||
(AntennaX2, AntennaY2) = pol2cart( | ||||
self.rheader.AntennaCoord2, self.rheader.AntennaAngl2 * numpy.pi / 180) | ||||
E01 = AntennaX0 - AntennaX1 | ||||
N01 = AntennaY0 - AntennaY1 | ||||
E02 = AntennaX0 - AntennaX2 | ||||
N02 = AntennaY0 - AntennaY2 | ||||
E12 = AntennaX1 - AntennaX2 | ||||
N12 = AntennaY1 - AntennaY2 | ||||
self.ChanDist = numpy.array( | ||||
[[E01, N01], [E02, N02], [E12, N12]]) | ||||
self.dataOut.ChanDist = self.ChanDist | ||||
self.BlockCounter += 2 | ||||
self.dataOut.data_spc = self.data_spc | ||||
self.dataOut.data_cspc =self.data_cspc | ||||