The requested changes are too big and content was truncated. Show full diff
This diff has been collapsed as it changes many lines, (1420 lines changed) Show them Hide them | |||||
@@ -0,0 +1,1420 | |||||
|
1 | """ | |||
|
2 | The module ASTRO_COORDS.py gathers classes and functions for coordinates transformation. Additiona- | |||
|
3 | lly a class EquatorialCorrections and celestial bodies are defined. The first of these is to correct | |||
|
4 | any error in the location of the body and the second to know the location of certain celestial bo- | |||
|
5 | dies in the sky. | |||
|
6 | ||||
|
7 | MODULES CALLED: | |||
|
8 | OS, NUMPY, NUMERIC, SCIPY, TIME_CONVERSIONS | |||
|
9 | ||||
|
10 | MODIFICATION HISTORY: | |||
|
11 | Created by Ing. Freddy Galindo (frederickgalindo@gmail.com). ROJ Sep 20, 2009. | |||
|
12 | """ | |||
|
13 | ||||
|
14 | import numpy | |||
|
15 | #import Numeric | |||
|
16 | import scipy.interpolate | |||
|
17 | import os | |||
|
18 | import sys | |||
|
19 | from utils import TimeTools | |||
|
20 | from utils import Misc_Routines | |||
|
21 | ||||
|
22 | class EquatorialCorrections(): | |||
|
23 | def __init__(self): | |||
|
24 | """ | |||
|
25 | EquatorialCorrections class creates an object to call methods to correct the loca- | |||
|
26 | tion of the celestial bodies. | |||
|
27 | ||||
|
28 | Modification History | |||
|
29 | -------------------- | |||
|
30 | Converted to Object-oriented Programming by Freddy Galindo, ROJ, 27 September 2009. | |||
|
31 | """ | |||
|
32 | ||||
|
33 | pass | |||
|
34 | ||||
|
35 | def co_nutate(self,jd,ra,dec): | |||
|
36 | """ | |||
|
37 | co_nutate calculates changes in RA and Dec due to nutation of the Earth's rotation | |||
|
38 | Additionally it returns the obliquity of the ecliptic (eps), nutation in the longi- | |||
|
39 | tude of the ecliptic (d_psi) and nutation in the pbliquity of the ecliptic (d_eps). | |||
|
40 | ||||
|
41 | Parameters | |||
|
42 | ---------- | |||
|
43 | jd = Julian Date (Scalar or array). | |||
|
44 | RA = A scalar o array giving the Right Ascention of interest. | |||
|
45 | Dec = A scalar o array giving the Right Ascention of interest. | |||
|
46 | ||||
|
47 | Return | |||
|
48 | ------ | |||
|
49 | d_ra = Correction to ra due to nutation. | |||
|
50 | d_dec = Correction to dec due to nutation. | |||
|
51 | ||||
|
52 | Examples | |||
|
53 | -------- | |||
|
54 | >> Julian = 2462088.7 | |||
|
55 | >> Ra = 41.547213 | |||
|
56 | >> Dec = 49.348483 | |||
|
57 | >> [d_ra,d_dec,eps,d_psi,d_eps] = co_nutate(julian,Ra,Dec) | |||
|
58 | >> print d_ra, d_dec, eps, d_psi, d_eps | |||
|
59 | [ 15.84276651] [ 6.21641029] [ 0.4090404] [ 14.85990198] [ 2.70408658] | |||
|
60 | ||||
|
61 | Modification history | |||
|
62 | -------------------- | |||
|
63 | Written by Chris O'Dell, 2002. | |||
|
64 | Converted to Python by Freddy R. Galindo, ROJ, 26 September 2009. | |||
|
65 | """ | |||
|
66 | ||||
|
67 | jd = numpy.atleast_1d(jd) | |||
|
68 | ra = numpy.atleast_1d(ra) | |||
|
69 | dec = numpy.atleast_1d(dec) | |||
|
70 | ||||
|
71 | # Useful transformation constants | |||
|
72 | d2as = numpy.pi/(180.*3600.) | |||
|
73 | ||||
|
74 | # Julian centuries from J2000 of jd | |||
|
75 | T = (jd - 2451545.0)/36525.0 | |||
|
76 | ||||
|
77 | # Must calculate obliquity of ecliptic | |||
|
78 | [d_psi, d_eps] = self.nutate(jd) | |||
|
79 | d_psi = numpy.atleast_1d(d_psi) | |||
|
80 | d_eps = numpy.atleast_1d(d_eps) | |||
|
81 | ||||
|
82 | eps0 = (23.4392911*3600.) - (46.8150*T) - (0.00059*T**2) + (0.001813*T**3) | |||
|
83 | # True obliquity of the ecliptic in radians | |||
|
84 | eps = (eps0 + d_eps)/3600.*Misc_Routines.CoFactors.d2r | |||
|
85 | ||||
|
86 | # Useful numbers | |||
|
87 | ce = numpy.cos(eps) | |||
|
88 | se = numpy.sin(eps) | |||
|
89 | ||||
|
90 | # Convert Ra-Dec to equatorial rectangular coordinates | |||
|
91 | x = numpy.cos(ra*Misc_Routines.CoFactors.d2r)*numpy.cos(dec*Misc_Routines.CoFactors.d2r) | |||
|
92 | y = numpy.sin(ra*Misc_Routines.CoFactors.d2r)*numpy.cos(dec*Misc_Routines.CoFactors.d2r) | |||
|
93 | z = numpy.sin(dec*Misc_Routines.CoFactors.d2r) | |||
|
94 | ||||
|
95 | # Apply corrections to each rectangular coordinate | |||
|
96 | x2 = x - (y*ce + z*se)*d_psi*Misc_Routines.CoFactors.s2r | |||
|
97 | y2 = y + (x*ce*d_psi - z*d_eps)*Misc_Routines.CoFactors.s2r | |||
|
98 | z2 = z + (x*se*d_psi + y*d_eps)*Misc_Routines.CoFactors.s2r | |||
|
99 | ||||
|
100 | # Convert bask to equatorial spherical coordinates | |||
|
101 | r = numpy.sqrt(x2**2. + y2**2. + z2**2.) | |||
|
102 | xyproj =numpy.sqrt(x2**2. + y2**2.) | |||
|
103 | ||||
|
104 | ra2 = x2*0.0 | |||
|
105 | dec2 = x2*0.0 | |||
|
106 | ||||
|
107 | xyproj = numpy.atleast_1d(xyproj) | |||
|
108 | z = numpy.atleast_1d(z) | |||
|
109 | r = numpy.atleast_1d(r) | |||
|
110 | x2 = numpy.atleast_1d(x2) | |||
|
111 | y2 = numpy.atleast_1d(y2) | |||
|
112 | z2 = numpy.atleast_1d(z2) | |||
|
113 | ra2 = numpy.atleast_1d(ra2) | |||
|
114 | dec2 = numpy.atleast_1d(dec2) | |||
|
115 | ||||
|
116 | w1 = numpy.where((xyproj==0) & (z!=0)) | |||
|
117 | w2 = numpy.where(xyproj!=0) | |||
|
118 | ||||
|
119 | # Calculate Ra and Dec in radians (later convert to degrees) | |||
|
120 | if w1[0].size>0: | |||
|
121 | # Places where xyproj=0 (point at NCP or SCP) | |||
|
122 | dec2[w1] = numpy.arcsin(z2[w1]/r[w1]) | |||
|
123 | ra2[w1] = 0 | |||
|
124 | ||||
|
125 | if w2[0].size>0: | |||
|
126 | # Places other than NCP or SCP | |||
|
127 | ra2[w2] = numpy.arctan2(y2[w2],x2[w2]) | |||
|
128 | dec2[w2] = numpy.arcsin(z2[w2]/r[w2]) | |||
|
129 | ||||
|
130 | # Converting to degree | |||
|
131 | ra2 = ra2/Misc_Routines.CoFactors.d2r | |||
|
132 | dec2 = dec2/Misc_Routines.CoFactors.d2r | |||
|
133 | ||||
|
134 | w = numpy.where(ra2<0.) | |||
|
135 | if w[0].size>0: | |||
|
136 | ra2[w] = ra2[w] + 360. | |||
|
137 | ||||
|
138 | # Return changes in Ra and Dec in arcseconds | |||
|
139 | d_ra = (ra2 -ra)*3600. | |||
|
140 | d_dec = (dec2 - dec)*3600. | |||
|
141 | ||||
|
142 | return d_ra, d_dec, eps, d_psi, d_eps | |||
|
143 | ||||
|
144 | def nutate(self,jd): | |||
|
145 | """ | |||
|
146 | nutate returns the nutation in longitude and obliquity for a given Julian date. | |||
|
147 | ||||
|
148 | Parameters | |||
|
149 | ---------- | |||
|
150 | jd = Julian ephemeris date, scalar or vector. | |||
|
151 | ||||
|
152 | Return | |||
|
153 | ------ | |||
|
154 | nut_long = The nutation in longitude. | |||
|
155 | nut_obliq = The nutation in latitude. | |||
|
156 | ||||
|
157 | Example | |||
|
158 | ------- | |||
|
159 | >> julian = 2446895.5 | |||
|
160 | >> [nut_long,nut_obliq] = nutate(julian) | |||
|
161 | >> print nut_long, nut_obliq | |||
|
162 | -3.78793107711 9.44252069864 | |||
|
163 | ||||
|
164 | >> julians = 2415020.5 + numpy.arange(50) | |||
|
165 | >> [nut_long,nut_obliq] = nutate(julians) | |||
|
166 | ||||
|
167 | Modification History | |||
|
168 | -------------------- | |||
|
169 | Written by W.Landsman (Goddard/HSTX), June 1996. | |||
|
170 | Converted to Python by Freddy R. Galindo, ROJ, 26 September 2009. | |||
|
171 | """ | |||
|
172 | ||||
|
173 | jd = numpy.atleast_1d(jd) | |||
|
174 | ||||
|
175 | # Form time in Julian centuries from 1900 | |||
|
176 | t = (jd - 2451545.0)/36525.0 | |||
|
177 | ||||
|
178 | # Mean elongation of the moon | |||
|
179 | coeff1 = numpy.array([1/189474.0,-0.0019142,445267.111480,297.85036]) | |||
|
180 | d = numpy.poly1d(coeff1) | |||
|
181 | d = d(t)*Misc_Routines.CoFactors.d2r | |||
|
182 | d = self.cirrange(d,rad=1) | |||
|
183 | ||||
|
184 | # Sun's mean elongation | |||
|
185 | coeff2 = numpy.array([-1./3e5,-0.0001603,35999.050340,357.52772]) | |||
|
186 | m = numpy.poly1d(coeff2) | |||
|
187 | m = m(t)*Misc_Routines.CoFactors.d2r | |||
|
188 | m = self.cirrange(m,rad=1) | |||
|
189 | ||||
|
190 | # Moon's mean elongation | |||
|
191 | coeff3 = numpy.array([1.0/5.625e4,0.0086972,477198.867398,134.96298]) | |||
|
192 | mprime = numpy.poly1d(coeff3) | |||
|
193 | mprime = mprime(t)*Misc_Routines.CoFactors.d2r | |||
|
194 | mprime = self.cirrange(mprime,rad=1) | |||
|
195 | ||||
|
196 | # Moon's argument of latitude | |||
|
197 | coeff4 = numpy.array([-1.0/3.27270e5,-0.0036825,483202.017538,93.27191]) | |||
|
198 | f = numpy.poly1d(coeff4) | |||
|
199 | f = f(t)*Misc_Routines.CoFactors.d2r | |||
|
200 | f = self.cirrange(f,rad=1) | |||
|
201 | ||||
|
202 | # Longitude fo the ascending node of the Moon's mean orbit on the ecliptic, measu- | |||
|
203 | # red from the mean equinox of the date. | |||
|
204 | coeff5 = numpy.array([1.0/4.5e5,0.0020708,-1934.136261,125.04452]) | |||
|
205 | omega = numpy.poly1d(coeff5) | |||
|
206 | omega = omega(t)*Misc_Routines.CoFactors.d2r | |||
|
207 | omega = self.cirrange(omega,rad=1) | |||
|
208 | ||||
|
209 | d_lng = numpy.array([0,-2,0,0,0,0,-2,0,0,-2,-2,-2,0,2,0,2,0,0,-2,0,2,0,0,-2,0,-2,0,0,\ | |||
|
210 | 2,-2,0,-2,0,0,2,2,0,-2,0,2,2,-2,-2,2,2,0,-2,-2,0,-2,-2,0,-1,-2,1,0,0,-1,0,\ | |||
|
211 | 0,2,0,2]) | |||
|
212 | ||||
|
213 | m_lng = numpy.array([0,0,0,0,1,0,1,0,0,-1]) | |||
|
214 | m_lng = numpy.append(m_lng,numpy.zeros(17)) | |||
|
215 | m_lng = numpy.append(m_lng,numpy.array([2,0,2,1,0,-1,0,0,0,1,1,-1,0,0,0,0,0,0,-1,-1,0,0,\ | |||
|
216 | 0,1,0,0,1,0,0,0,-1,1,-1,-1,0,-1])) | |||
|
217 | ||||
|
218 | mp_lng = numpy.array([0,0,0,0,0,1,0,0,1,0,1,0,-1,0,1,-1,-1,1,2,-2,0,2,2,1,0,0, -1, 0,\ | |||
|
219 | -1,0,0,1,0,2,-1,1,0,1,0,0,1,2,1,-2,0,1,0,0,2,2,0,1,1,0,0,1,-2,1,1,1,-1,3,0]) | |||
|
220 | ||||
|
221 | f_lng = numpy.array([0,2,2,0,0,0,2,2,2,2,0,2,2,0,0,2,0,2,0,2,2,2,0,2,2,2,2,0,0,2,0,0,\ | |||
|
222 | 0,-2,2,2,2,0,2,2,0,2,2,0,0,0,2,0,2,0,2,-2,0,0,0,2,2,0,0,2,2,2,2]) | |||
|
223 | ||||
|
224 | om_lng = numpy.array([1,2,2,2,0,0,2,1,2,2,0,1,2,0,1,2,1,1,0,1,2,2,0,2,0,0,1,0,1,2,1, \ | |||
|
225 | 1,1,0,1,2,2,0,2,1,0,2,1,1,1,0,1,1,1,1,1,0,0,0,0,0,2,0,0,2,2,2,2]) | |||
|
226 | ||||
|
227 | sin_lng = numpy.array([-171996,-13187,-2274,2062,1426,712,-517,-386,-301, 217, -158, \ | |||
|
228 | 129,123,63,63,-59,-58,-51,48,46,-38,-31,29,29,26,-22,21,17,16,-16,-15,-13,\ | |||
|
229 | -12,11,-10,-8,7,-7,-7,-7,6,6,6,-6,-6,5,-5,-5,-5,4,4,4,-4,-4,-4,3,-3,-3,-3,\ | |||
|
230 | -3,-3,-3,-3]) | |||
|
231 | ||||
|
232 | sdelt = numpy.array([-174.2,-1.6,-0.2,0.2,-3.4,0.1,1.2,-0.4,0,-0.5,0, 0.1, 0, 0, 0.1,\ | |||
|
233 | 0,-0.1]) | |||
|
234 | sdelt = numpy.append(sdelt,numpy.zeros(10)) | |||
|
235 | sdelt = numpy.append(sdelt,numpy.array([-0.1, 0, 0.1])) | |||
|
236 | sdelt = numpy.append(sdelt,numpy.zeros(33)) | |||
|
237 | ||||
|
238 | cos_lng = numpy.array([92025,5736,977,-895,54,-7,224,200,129,-95,0,-70,-53,0,-33,26, \ | |||
|
239 | 32,27,0,-24,16,13,0,-12,0,0,-10,0,-8,7,9,7,6,0,5,3,-3,0,3,3,0,-3,-3,3,3,0,\ | |||
|
240 | 3,3,3]) | |||
|
241 | cos_lng = numpy.append(cos_lng,numpy.zeros(14)) | |||
|
242 | ||||
|
243 | cdelt = numpy.array([8.9,-3.1,-0.5,0.5,-0.1,0.0,-0.6,0.0,-0.1,0.3]) | |||
|
244 | cdelt = numpy.append(cdelt,numpy.zeros(53)) | |||
|
245 | ||||
|
246 | # Sum the periodic terms. | |||
|
247 | n = numpy.size(jd) | |||
|
248 | nut_long = numpy.zeros(n) | |||
|
249 | nut_obliq = numpy.zeros(n) | |||
|
250 | ||||
|
251 | d_lng = d_lng.reshape(numpy.size(d_lng),1) | |||
|
252 | d = d.reshape(numpy.size(d),1) | |||
|
253 | matrix_d_lng = numpy.dot(d_lng,d.transpose()) | |||
|
254 | ||||
|
255 | m_lng = m_lng.reshape(numpy.size(m_lng),1) | |||
|
256 | m = m.reshape(numpy.size(m),1) | |||
|
257 | matrix_m_lng = numpy.dot(m_lng,m.transpose()) | |||
|
258 | ||||
|
259 | mp_lng = mp_lng.reshape(numpy.size(mp_lng),1) | |||
|
260 | mprime = mprime.reshape(numpy.size(mprime),1) | |||
|
261 | matrix_mp_lng = numpy.dot(mp_lng,mprime.transpose()) | |||
|
262 | ||||
|
263 | f_lng = f_lng.reshape(numpy.size(f_lng),1) | |||
|
264 | f = f.reshape(numpy.size(f),1) | |||
|
265 | matrix_f_lng = numpy.dot(f_lng,f.transpose()) | |||
|
266 | ||||
|
267 | om_lng = om_lng.reshape(numpy.size(om_lng),1) | |||
|
268 | omega = omega.reshape(numpy.size(omega),1) | |||
|
269 | matrix_om_lng = numpy.dot(om_lng,omega.transpose()) | |||
|
270 | ||||
|
271 | arg = matrix_d_lng + matrix_m_lng + matrix_mp_lng + matrix_f_lng + matrix_om_lng | |||
|
272 | ||||
|
273 | sarg = numpy.sin(arg) | |||
|
274 | carg = numpy.cos(arg) | |||
|
275 | ||||
|
276 | for ii in numpy.arange(n): | |||
|
277 | nut_long[ii] = 0.0001*numpy.sum((sdelt*t[ii] + sin_lng)*sarg[:,ii]) | |||
|
278 | nut_obliq[ii] = 0.0001*numpy.sum((cdelt*t[ii] + cos_lng)*carg[:,ii]) | |||
|
279 | ||||
|
280 | if numpy.size(jd)==1: | |||
|
281 | nut_long = nut_long[0] | |||
|
282 | nut_obliq = nut_obliq[0] | |||
|
283 | ||||
|
284 | return nut_long, nut_obliq | |||
|
285 | ||||
|
286 | def co_aberration(self,jd,ra,dec): | |||
|
287 | """ | |||
|
288 | co_aberration calculates changes to Ra and Dec due to "the effect of aberration". | |||
|
289 | ||||
|
290 | Parameters | |||
|
291 | ---------- | |||
|
292 | jd = Julian Date (Scalar or vector). | |||
|
293 | ra = A scalar o vector giving the Right Ascention of interest. | |||
|
294 | dec = A scalar o vector giving the Declination of interest. | |||
|
295 | ||||
|
296 | Return | |||
|
297 | ------ | |||
|
298 | d_ra = The correction to right ascension due to aberration (must be added to ra to | |||
|
299 | get the correct value). | |||
|
300 | d_dec = The correction to declination due to aberration (must be added to the dec | |||
|
301 | to get the correct value). | |||
|
302 | eps = True obliquity of the ecliptic (in radians). | |||
|
303 | ||||
|
304 | Examples | |||
|
305 | -------- | |||
|
306 | >> Julian = 2462088.7 | |||
|
307 | >> Ra = 41.547213 | |||
|
308 | >> Dec = 49.348483 | |||
|
309 | >> [d_ra,d_dec,eps] = co_aberration(julian,Ra,Dec) | |||
|
310 | >> print d_ra, d_dec, eps | |||
|
311 | [ 30.04441796] [ 6.69837858] [ 0.40904059] | |||
|
312 | ||||
|
313 | Modification history | |||
|
314 | -------------------- | |||
|
315 | Written by Chris O'Dell , Univ. of Wisconsin, June 2002. | |||
|
316 | Converted to Python by Freddy R. Galindo, ROJ, 27 September 2009. | |||
|
317 | """ | |||
|
318 | ||||
|
319 | # Julian centuries from J2000 of jd. | |||
|
320 | T = (jd - 2451545.0)/36525.0 | |||
|
321 | ||||
|
322 | # Getting obliquity of ecliptic | |||
|
323 | njd = numpy.size(jd) | |||
|
324 | jd = numpy.atleast_1d(jd) | |||
|
325 | ra = numpy.atleast_1d(ra) | |||
|
326 | dec = numpy.atleast_1d(dec) | |||
|
327 | ||||
|
328 | d_psi = numpy.zeros(njd) | |||
|
329 | d_epsilon = d_psi | |||
|
330 | for ii in numpy.arange(njd): | |||
|
331 | [dp,de] = self.nutate(jd[ii]) | |||
|
332 | d_psi[ii] = dp | |||
|
333 | d_epsilon[ii] = de | |||
|
334 | ||||
|
335 | coeff = 23 + 26/60. + 21.488/3600. | |||
|
336 | eps0 = coeff*3600. - 46.8150*T - 0.00059*T**2. + 0.001813*T**3. | |||
|
337 | # True obliquity of the ecliptic in radians | |||
|
338 | eps = (eps0 + d_epsilon)/3600*Misc_Routines.CoFactors.d2r | |||
|
339 | ||||
|
340 | celestialbodies = CelestialBodies() | |||
|
341 | [sunra,sundec,sunlon,sunobliq] = celestialbodies.sunpos(jd) | |||
|
342 | ||||
|
343 | # Earth's orbital eccentricity | |||
|
344 | e = 0.016708634 - 0.000042037*T - 0.0000001267*T**2. | |||
|
345 | ||||
|
346 | # longitude of perihelion, in degrees | |||
|
347 | pi = 102.93735 + 1.71946*T + 0.00046*T**2 | |||
|
348 | ||||
|
349 | # Constant of aberration, in arcseconds | |||
|
350 | k = 20.49552 | |||
|
351 | ||||
|
352 | cd = numpy.cos(dec*Misc_Routines.CoFactors.d2r) ; sd = numpy.sin(dec*Misc_Routines.CoFactors.d2r) | |||
|
353 | ce = numpy.cos(eps) ; te = numpy.tan(eps) | |||
|
354 | cp = numpy.cos(pi*Misc_Routines.CoFactors.d2r) ; sp = numpy.sin(pi*Misc_Routines.CoFactors.d2r) | |||
|
355 | cs = numpy.cos(sunlon*Misc_Routines.CoFactors.d2r) ; ss = numpy.sin(sunlon*Misc_Routines.CoFactors.d2r) | |||
|
356 | ca = numpy.cos(ra*Misc_Routines.CoFactors.d2r) ; sa = numpy.sin(ra*Misc_Routines.CoFactors.d2r) | |||
|
357 | ||||
|
358 | term1 = (ca*cs*ce + sa*ss)/cd | |||
|
359 | term2 = (ca*cp*ce + sa*sp)/cd | |||
|
360 | term3 = (cs*ce*(te*cd - sa*sd) + ca*sd*ss) | |||
|
361 | term4 = (cp*ce*(te*cd - sa*sd) + ca*sd*sp) | |||
|
362 | ||||
|
363 | d_ra = -k*term1 + e*k*term2 | |||
|
364 | d_dec = -k*term3 + e*k*term4 | |||
|
365 | ||||
|
366 | return d_ra, d_dec, eps | |||
|
367 | ||||
|
368 | def precess(self,ra,dec,equinox1=None,equinox2=None,FK4=0,rad=0): | |||
|
369 | """ | |||
|
370 | precess coordinates from EQUINOX1 to EQUINOX2 | |||
|
371 | ||||
|
372 | Parameters | |||
|
373 | ----------- | |||
|
374 | ra = A scalar o vector giving the Right Ascention of interest. | |||
|
375 | dec = A scalar o vector giving the Declination of interest. | |||
|
376 | equinox1 = Original equinox of coordinates, numeric scalar. If omitted, the __Pre- | |||
|
377 | cess will query for equinox1 and equinox2. | |||
|
378 | equinox2 = Original equinox of coordinates. | |||
|
379 | FK4 = If this keyword is set and non-zero, the FK4 (B1950) system will be used | |||
|
380 | otherwise FK5 (J2000) will be used instead. | |||
|
381 | rad = If this keyword is set and non-zero, then the input and output RAD and DEC | |||
|
382 | vectors are in radian rather than degree. | |||
|
383 | ||||
|
384 | Return | |||
|
385 | ------ | |||
|
386 | ra = Right ascension after precession (scalar or vector) in degrees, unless the rad | |||
|
387 | keyword is set. | |||
|
388 | dec = Declination after precession (scalar or vector) in degrees, unless the rad | |||
|
389 | keyword is set. | |||
|
390 | ||||
|
391 | Examples | |||
|
392 | -------- | |||
|
393 | >> Ra = 329.88772 | |||
|
394 | >> Dec = -56.992515 | |||
|
395 | >> [p_ra,p_dec] = precess(Ra,Dec,1950,1975,FK4=1) | |||
|
396 | >> print p_ra, p_dec | |||
|
397 | [ 330.31442971] [-56.87186154] | |||
|
398 | ||||
|
399 | Modification history | |||
|
400 | -------------------- | |||
|
401 | Written by Wayne Landsman, STI Corporation, August 1986. | |||
|
402 | Converted to Python by Freddy R. Galindo, ROJ, 27 September 2009. | |||
|
403 | """ | |||
|
404 | ||||
|
405 | npts = numpy.size(ra) | |||
|
406 | ra = numpy.atleast_1d(ra) | |||
|
407 | dec = numpy.atleast_1d(dec) | |||
|
408 | ||||
|
409 | if rad==0: | |||
|
410 | ra_rad = ra*Misc_Routines.CoFactors.d2r | |||
|
411 | dec_rad = dec*Misc_Routines.CoFactors.d2r | |||
|
412 | else: | |||
|
413 | ra_rad = ra | |||
|
414 | dec_rad = dec | |||
|
415 | ||||
|
416 | x = numpy.zeros((npts,3)) | |||
|
417 | x[:,0] = numpy.cos(dec_rad)*numpy.cos(ra_rad) | |||
|
418 | x[:,1] = numpy.cos(dec_rad)*numpy.sin(ra_rad) | |||
|
419 | x[:,2] = numpy.sin(dec_rad) | |||
|
420 | ||||
|
421 | # Use premat function to get precession matrix from equinox1 to equinox2 | |||
|
422 | r = self.premat(equinox1,equinox2,FK4) | |||
|
423 | ||||
|
424 | x2 = numpy.dot(r,x.transpose()) | |||
|
425 | ||||
|
426 | ra_rad = numpy.arctan2(x2[1,:],x2[0,:]) | |||
|
427 | dec_rad = numpy.arcsin(x2[2,:]) | |||
|
428 | ||||
|
429 | if rad==0: | |||
|
430 | ra = ra_rad/Misc_Routines.CoFactors.d2r | |||
|
431 | ra = ra + (ra<0)*360. | |||
|
432 | dec = dec_rad/Misc_Routines.CoFactors.d2r | |||
|
433 | else: | |||
|
434 | ra = ra_rad | |||
|
435 | ra = ra + (ra<0)*numpy.pi*2. | |||
|
436 | dec = dec_rad | |||
|
437 | ||||
|
438 | return ra, dec | |||
|
439 | ||||
|
440 | def premat(self,equinox1,equinox2,FK4=0): | |||
|
441 | """ | |||
|
442 | premat returns the precession matrix needed to go from EQUINOX1 to EQUINOX2. | |||
|
443 | ||||
|
444 | Parameters | |||
|
445 | ---------- | |||
|
446 | equinox1 = Original equinox of coordinates, numeric scalar. | |||
|
447 | equinox2 = Equinox of precessed coordinates. | |||
|
448 | FK4 = If this keyword is set and non-zero, the FK4 (B1950) system precession angles | |||
|
449 | are used to compute the precession matrix. The default is to use FK5 (J2000) pre- | |||
|
450 | cession angles. | |||
|
451 | ||||
|
452 | Return | |||
|
453 | ------ | |||
|
454 | r = Precession matrix, used to precess equatorial rectangular coordinates. | |||
|
455 | ||||
|
456 | Examples | |||
|
457 | -------- | |||
|
458 | >> matrix = premat(1950.0,1975.0,FK4=1) | |||
|
459 | >> print matrix | |||
|
460 | [[ 9.99981438e-01 -5.58774959e-03 -2.42908517e-03] | |||
|
461 | [ 5.58774959e-03 9.99984388e-01 -6.78691471e-06] | |||
|
462 | [ 2.42908517e-03 -6.78633095e-06 9.99997050e-01]] | |||
|
463 | ||||
|
464 | Modification history | |||
|
465 | -------------------- | |||
|
466 | Written by Wayne Landsman, HSTX Corporation, June 1994. | |||
|
467 | Converted to Python by Freddy R. Galindo, ROJ, 27 September 2009. | |||
|
468 | """ | |||
|
469 | ||||
|
470 | t = 0.001*(equinox2 - equinox1) | |||
|
471 | ||||
|
472 | if FK4==0: | |||
|
473 | st=0.001*(equinox1 - 2000.) | |||
|
474 | # Computing 3 rotation angles. | |||
|
475 | A=Misc_Routines.CoFactors.s2r*t*(23062.181+st*(139.656+0.0139*st)+t*(30.188-0.344*st+17.998*t)) | |||
|
476 | B=Misc_Routines.CoFactors.s2r*t*t*(79.280+0.410*st+0.205*t)+A | |||
|
477 | C=Misc_Routines.CoFactors.s2r*t*(20043.109-st*(85.33+0.217*st)+ t*(-42.665-0.217*st-41.833*t)) | |||
|
478 | else: | |||
|
479 | st=0.001*(equinox1 - 1900) | |||
|
480 | # Computing 3 rotation angles | |||
|
481 | A=Misc_Routines.CoFactors.s2r*t*(23042.53+st*(139.75+0.06*st)+t*(30.23-0.27*st+18.0*t)) | |||
|
482 | B=Misc_Routines.CoFactors.s2r*t*t*(79.27+0.66*st+0.32*t)+A | |||
|
483 | C=Misc_Routines.CoFactors.s2r*t*(20046.85-st*(85.33+0.37*st)+t*(-42.67-0.37*st-41.8*t)) | |||
|
484 | ||||
|
485 | sina = numpy.sin(A); sinb = numpy.sin(B); sinc = numpy.sin(C) | |||
|
486 | cosa = numpy.cos(A); cosb = numpy.cos(B); cosc = numpy.cos(C) | |||
|
487 | ||||
|
488 | r = numpy.zeros((3,3)) | |||
|
489 | r[:,0] = numpy.array([cosa*cosb*cosc-sina*sinb,sina*cosb+cosa*sinb*cosc,cosa*sinc]) | |||
|
490 | r[:,1] = numpy.array([-cosa*sinb-sina*cosb*cosc,cosa*cosb-sina*sinb*cosc,-sina*sinc]) | |||
|
491 | r[:,2] = numpy.array([-cosb*sinc,-sinb*sinc,cosc]) | |||
|
492 | ||||
|
493 | return r | |||
|
494 | ||||
|
495 | def cirrange(self,angle,rad=0): | |||
|
496 | """ | |||
|
497 | cirrange forces an angle into the range 0<= angle < 360. | |||
|
498 | ||||
|
499 | Parameters | |||
|
500 | ---------- | |||
|
501 | angle = The angle to modify, in degrees. Can be scalar or vector. | |||
|
502 | rad = Set to 1 if the angle is specified in radians rather than degrees. It is for- | |||
|
503 | ced into the range 0 <= angle < 2 PI | |||
|
504 | ||||
|
505 | Return | |||
|
506 | ------ | |||
|
507 | angle = The angle after the modification. | |||
|
508 | ||||
|
509 | Example | |||
|
510 | ------- | |||
|
511 | >> angle = cirrange(numpy.array([420,400,361])) | |||
|
512 | >> print angle | |||
|
513 | >> [60, 40, 1] | |||
|
514 | ||||
|
515 | Modification History | |||
|
516 | -------------------- | |||
|
517 | Written by Michael R. Greason, Hughes STX, 10 February 1994. | |||
|
518 | Converted to Python by Freddy R. Galindo, ROJ, 26 September 2009. | |||
|
519 | """ | |||
|
520 | ||||
|
521 | angle = numpy.atleast_1d(angle) | |||
|
522 | ||||
|
523 | if rad==1: | |||
|
524 | cnst = numpy.pi*2. | |||
|
525 | elif rad==0: | |||
|
526 | cnst = 360. | |||
|
527 | ||||
|
528 | # Deal with the lower limit. | |||
|
529 | angle = angle % cnst | |||
|
530 | ||||
|
531 | # Deal with negative values, if way | |||
|
532 | neg = numpy.where(angle<0.0) | |||
|
533 | if neg[0].size>0: angle[neg] = angle[neg] + cnst | |||
|
534 | ||||
|
535 | return angle | |||
|
536 | ||||
|
537 | ||||
|
538 | class CelestialBodies(EquatorialCorrections): | |||
|
539 | def __init__(self): | |||
|
540 | """ | |||
|
541 | CelestialBodies class creates a object to call methods of celestial bodies location. | |||
|
542 | ||||
|
543 | Modification History | |||
|
544 | -------------------- | |||
|
545 | Converted to Object-oriented Programming by Freddy Galindo, ROJ, 27 September 2009. | |||
|
546 | """ | |||
|
547 | ||||
|
548 | EquatorialCorrections.__init__(self) | |||
|
549 | ||||
|
550 | def sunpos(self,jd,rad=0): | |||
|
551 | """ | |||
|
552 | sunpos method computes the RA and Dec of the Sun at a given date. | |||
|
553 | ||||
|
554 | Parameters | |||
|
555 | ---------- | |||
|
556 | jd = The julian date of the day (and time), scalar or vector. | |||
|
557 | rad = If this keyword is set and non-zero, then the input and output RAD and DEC | |||
|
558 | vectors are in radian rather than degree. | |||
|
559 | ||||
|
560 | Return | |||
|
561 | ------ | |||
|
562 | ra = The right ascension of the sun at that date in degrees. | |||
|
563 | dec = The declination of the sun at that date in degrees. | |||
|
564 | elong = Ecliptic longitude of the sun at that date in degrees. | |||
|
565 | obliquity = The declination of the sun at that date in degrees. | |||
|
566 | ||||
|
567 | Examples | |||
|
568 | -------- | |||
|
569 | >> jd = 2466880 | |||
|
570 | >> [ra,dec,elong,obliquity] = sunpos(jd) | |||
|
571 | >> print ra, dec, elong, obliquity | |||
|
572 | [ 275.53499556] [-23.33840558] [ 275.08917968] [ 23.43596165] | |||
|
573 | ||||
|
574 | >> [ra,dec,elong,obliquity] = sunpos(jd,rad=1) | |||
|
575 | >> print ra, dec, elong, obliquity | |||
|
576 | [ 4.80899288] [-0.40733202] [ 4.80121192] [ 0.40903469] | |||
|
577 | ||||
|
578 | >> jd = 2450449.5 + numpy.arange(365) | |||
|
579 | >> [ra,dec,elong,obliquity] = sunpos(jd) | |||
|
580 | ||||
|
581 | Modification history | |||
|
582 | -------------------- | |||
|
583 | Written by Micheal R. Greason, STX Corporation, 28 October 1988. | |||
|
584 | Converted to Python by Freddy R. Galindo, ROJ, 27 September 2009. | |||
|
585 | """ | |||
|
586 | ||||
|
587 | jd = numpy.atleast_1d(jd) | |||
|
588 | ||||
|
589 | # Form time in Julian centuries from 1900. | |||
|
590 | t = (jd -2415020.0)/36525.0 | |||
|
591 | ||||
|
592 | # Form sun's mean longitude | |||
|
593 | l = (279.696678+((36000.768925*t) % 360.0))*3600.0 | |||
|
594 | ||||
|
595 | # Allow for ellipticity of the orbit (equation of centre) using the Earth's mean | |||
|
596 | # anomoly ME | |||
|
597 | me = 358.475844 + ((35999.049750*t) % 360.0) | |||
|
598 | ellcor = (6910.1 - 17.2*t)*numpy.sin(me*Misc_Routines.CoFactors.d2r) + 72.3*numpy.sin(2.0*me*Misc_Routines.CoFactors.d2r) | |||
|
599 | l = l + ellcor | |||
|
600 | ||||
|
601 | # Allow for the Venus perturbations using the mean anomaly of Venus MV | |||
|
602 | mv = 212.603219 + ((58517.803875*t) % 360.0) | |||
|
603 | vencorr = 4.8*numpy.cos((299.1017 + mv - me)*Misc_Routines.CoFactors.d2r) + \ | |||
|
604 | 5.5*numpy.cos((148.3133 + 2.0*mv - 2.0*me )*Misc_Routines.CoFactors.d2r) + \ | |||
|
605 | 2.5*numpy.cos((315.9433 + 2.0*mv - 3.0*me )*Misc_Routines.CoFactors.d2r) + \ | |||
|
606 | 1.6*numpy.cos((345.2533 + 3.0*mv - 4.0*me )*Misc_Routines.CoFactors.d2r) + \ | |||
|
607 | 1.0*numpy.cos((318.15 + 3.0*mv - 5.0*me )*Misc_Routines.CoFactors.d2r) | |||
|
608 | l = l + vencorr | |||
|
609 | ||||
|
610 | # Allow for the Mars perturbations using the mean anomaly of Mars MM | |||
|
611 | mm = 319.529425 + ((19139.858500*t) % 360.0) | |||
|
612 | marscorr = 2.0*numpy.cos((343.8883 - 2.0*mm + 2.0*me)*Misc_Routines.CoFactors.d2r ) + \ | |||
|
613 | 1.8*numpy.cos((200.4017 - 2.0*mm + me)*Misc_Routines.CoFactors.d2r) | |||
|
614 | l = l + marscorr | |||
|
615 | ||||
|
616 | # Allow for the Jupiter perturbations using the mean anomaly of Jupiter MJ | |||
|
617 | mj = 225.328328 + ((3034.6920239*t) % 360.0) | |||
|
618 | jupcorr = 7.2*numpy.cos((179.5317 - mj + me )*Misc_Routines.CoFactors.d2r) + \ | |||
|
619 | 2.6*numpy.cos((263.2167 - mj)*Misc_Routines.CoFactors.d2r) + \ | |||
|
620 | 2.7*numpy.cos((87.1450 - 2.0*mj + 2.0*me)*Misc_Routines.CoFactors.d2r) + \ | |||
|
621 | 1.6*numpy.cos((109.4933 - 2.0*mj + me)*Misc_Routines.CoFactors.d2r) | |||
|
622 | l = l + jupcorr | |||
|
623 | ||||
|
624 | # Allow for Moons perturbations using mean elongation of the Moon from the Sun D | |||
|
625 | d = 350.7376814 + ((445267.11422*t) % 360.0) | |||
|
626 | mooncorr = 6.5*numpy.sin(d*Misc_Routines.CoFactors.d2r) | |||
|
627 | l = l + mooncorr | |||
|
628 | ||||
|
629 | # Allow for long period terms | |||
|
630 | longterm = + 6.4*numpy.sin((231.19 + 20.20*t)*Misc_Routines.CoFactors.d2r) | |||
|
631 | l = l + longterm | |||
|
632 | l = (l + 2592000.0) % 1296000.0 | |||
|
633 | longmed = l/3600.0 | |||
|
634 | ||||
|
635 | # Allow for Aberration | |||
|
636 | l = l - 20.5 | |||
|
637 | ||||
|
638 | # Allow for Nutation using the longitude of the Moons mean node OMEGA | |||
|
639 | omega = 259.183275 - ((1934.142008*t) % 360.0) | |||
|
640 | l = l - 17.2*numpy.sin(omega*Misc_Routines.CoFactors.d2r) | |||
|
641 | ||||
|
642 | # Form the True Obliquity | |||
|
643 | oblt = 23.452294 - 0.0130125*t + (9.2*numpy.cos(omega*Misc_Routines.CoFactors.d2r))/3600.0 | |||
|
644 | ||||
|
645 | # Form Right Ascension and Declination | |||
|
646 | l = l/3600.0 | |||
|
647 | ra = numpy.arctan2((numpy.sin(l*Misc_Routines.CoFactors.d2r)*numpy.cos(oblt*Misc_Routines.CoFactors.d2r)),numpy.cos(l*Misc_Routines.CoFactors.d2r)) | |||
|
648 | ||||
|
649 | neg = numpy.where(ra < 0.0) | |||
|
650 | if neg[0].size > 0: ra[neg] = ra[neg] + 2.0*numpy.pi | |||
|
651 | ||||
|
652 | dec = numpy.arcsin(numpy.sin(l*Misc_Routines.CoFactors.d2r)*numpy.sin(oblt*Misc_Routines.CoFactors.d2r)) | |||
|
653 | ||||
|
654 | if rad==1: | |||
|
655 | oblt = oblt*Misc_Routines.CoFactors.d2r | |||
|
656 | longmed = longmed*Misc_Routines.CoFactors.d2r | |||
|
657 | else: | |||
|
658 | ra = ra/Misc_Routines.CoFactors.d2r | |||
|
659 | dec = dec/Misc_Routines.CoFactors.d2r | |||
|
660 | ||||
|
661 | return ra, dec, longmed, oblt | |||
|
662 | ||||
|
663 | def moonpos(self,jd,rad=0): | |||
|
664 | """ | |||
|
665 | moonpos method computes the RA and Dec of the Moon at specified Julian date(s). | |||
|
666 | ||||
|
667 | Parameters | |||
|
668 | ---------- | |||
|
669 | jd = The julian date of the day (and time), scalar or vector. | |||
|
670 | rad = If this keyword is set and non-zero, then the input and output RAD and DEC | |||
|
671 | vectors are in radian rather than degree. | |||
|
672 | ||||
|
673 | Return | |||
|
674 | ------ | |||
|
675 | ra = The right ascension of the sun at that date in degrees. | |||
|
676 | dec = The declination of the sun at that date in degrees. | |||
|
677 | dist = The Earth-moon distance in kilometers (between the center of the Earth and | |||
|
678 | the center of the moon). | |||
|
679 | geolon = Apparent longitude of the moon in degrees, referred to the ecliptic of the | |||
|
680 | specified date(s). | |||
|
681 | geolat = Apparent latitude the moon in degrees, referred to the ecliptic of the | |||
|
682 | specified date(s). | |||
|
683 | ||||
|
684 | Examples | |||
|
685 | -------- | |||
|
686 | >> jd = 2448724.5 | |||
|
687 | >> [ra,dec,dist,geolon,geolat] = sunpos(jd) | |||
|
688 | >> print ra, dec, dist, geolon, geolat | |||
|
689 | [ 134.68846855] [ 13.76836663] [ 368409.68481613] [ 133.16726428] [-3.22912642] | |||
|
690 | ||||
|
691 | >> [ra,dec,dist,geolon, geolat] = sunpos(jd,rad=1) | |||
|
692 | >> print ra, dec, dist, geolon, geolat | |||
|
693 | [ 2.35075724] [ 0.24030333] [ 368409.68481613] [ 2.32420722] [-0.05635889] | |||
|
694 | ||||
|
695 | >> jd = 2450449.5 + numpy.arange(365) | |||
|
696 | >> [ra,dec,dist,geolon, geolat] = sunpos(jd) | |||
|
697 | ||||
|
698 | Modification history | |||
|
699 | -------------------- | |||
|
700 | Written by Micheal R. Greason, STX Corporation, 31 October 1988. | |||
|
701 | Converted to Python by Freddy R. Galindo, ROJ, 06 October 2009. | |||
|
702 | """ | |||
|
703 | ||||
|
704 | jd = numpy.atleast_1d(jd) | |||
|
705 | ||||
|
706 | # Form time in Julian centuries from 1900. | |||
|
707 | t = (jd - 2451545.0)/36525.0 | |||
|
708 | ||||
|
709 | d_lng = numpy.array([0,2,2,0,0,0,2,2,2,2,0,1,0,2,0,0,4,0,4,2,2,1,1,2,2,4,2,0,2,2,1,2,\ | |||
|
710 | 0,0,2,2,2,4,0,3,2,4,0,2,2,2,4,0,4,1,2,0,1,3,4,2,0,1,2,2]) | |||
|
711 | ||||
|
712 | m_lng = numpy.array([0,0,0,0,1,0,0,-1,0,-1,1,0,1,0,0,0,0,0,0,1,1,0,1,-1,0,0,0,1,0,-1,\ | |||
|
713 | 0,-2,1,2,-2,0,0,-1,0,0,1,-1,2,2,1,-1,0,0,-1,0,1,0,1,0,0,-1,2,1,0,0]) | |||
|
714 | ||||
|
715 | mp_lng = numpy.array([1,-1,0,2,0,0,-2,-1,1,0,-1,0,1,0,1,1,-1,3,-2,-1,0,-1,0,1,2,0,-3,\ | |||
|
716 | -2,-1,-2,1,0,2,0,-1,1,0,-1,2,-1,1,-2,-1,-1,-2,0,1,4,0,-2,0,2,1,-2,-3,2,1,-1,3,-1]) | |||
|
717 | ||||
|
718 | f_lng = numpy.array([0,0,0,0,0,2,0,0,0,0,0,0,0,-2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,\ | |||
|
719 | 0,0,0,0,-2,2,0,2,0,0,0,0,0,0,-2,0,0,0,0,-2,-2,0,0,0,0,0,0,0,-2]) | |||
|
720 | ||||
|
721 | sin_lng = numpy.array([6288774,1274027,658314,213618,-185116,-114332,58793,57066,\ | |||
|
722 | 53322,45758,-40923,-34720,-30383,15327,-12528,10980,10675,10034,8548,-7888,\ | |||
|
723 | -6766,-5163,4987,4036,3994,3861,3665,-2689,-2602,2390,-2348,2236,-2120,-2069,\ | |||
|
724 | 2048,-1773,-1595,1215,-1110,-892,-810,759,-713,-700,691,596,549,537,520,-487,\ | |||
|
725 | -399,-381,351,-340,330,327,-323,299,294,0.0]) | |||
|
726 | ||||
|
727 | cos_lng = numpy.array([-20905355,-3699111,-2955968,-569925,48888,-3149,246158,-152138,\ | |||
|
728 | -170733,-204586,-129620,108743,104755,10321,0,79661,-34782,-23210,-21636,24208,\ | |||
|
729 | 30824,-8379,-16675,-12831,-10445,-11650,14403,-7003,0,10056,6322, -9884,5751,0,\ | |||
|
730 | -4950,4130,0,-3958,0,3258,2616,-1897,-2117,2354,0,0,-1423,-1117,-1571,-1739,0, \ | |||
|
731 | -4421,0,0,0,0,1165,0,0,8752.0]) | |||
|
732 | ||||
|
733 | d_lat = numpy.array([0,0,0,2,2,2,2,0,2,0,2,2,2,2,2,2,2,0,4,0,0,0,1,0,0,0,1,0,4,4,0,4,\ | |||
|
734 | 2,2,2,2,0,2,2,2,2,4,2,2,0,2,1,1,0,2,1,2,0,4,4,1,4,1,4,2]) | |||
|
735 | ||||
|
736 | m_lat = numpy.array([0,0,0,0,0,0,0,0,0,0,-1,0,0,1,-1,-1,-1,1,0,1,0,1,0,1,1,1,0,0,0,0,\ | |||
|
737 | 0,0,0,0,-1,0,0,0,0,1,1,0,-1,-2,0,1,1,1,1,1,0,-1,1,0,-1,0,0,0,-1,-2]) | |||
|
738 | ||||
|
739 | mp_lat = numpy.array([0,1,1,0,-1,-1,0,2,1,2,0,-2,1,0,-1,0,-1,-1,-1,0,0,-1,0,1,1,0,0,\ | |||
|
740 | 3,0,-1,1,-2,0,2,1,-2,3,2,-3,-1,0,0,1,0,1,1,0,0,-2,-1,1,-2,2,-2,-1,1,1,-1,0,0]) | |||
|
741 | ||||
|
742 | f_lat = numpy.array([1,1,-1,-1,1,-1,1,1,-1,-1,-1,-1,1,-1,1,1,-1,-1,-1,1,3,1,1,1,-1,\ | |||
|
743 | -1,-1,1,-1,1,-3,1,-3,-1,-1,1,-1,1,-1,1,1,1,1,-1,3,-1,-1,1,-1,-1,1,-1,1,-1,-1, \ | |||
|
744 | -1,-1,-1,-1,1]) | |||
|
745 | ||||
|
746 | sin_lat = numpy.array([5128122,280602,277693,173237,55413,46271, 32573, 17198, 9266, \ | |||
|
747 | 8822,8216,4324,4200,-3359,2463,2211,2065,-1870,1828,-1794, -1749, -1565, -1491, \ | |||
|
748 | -1475,-1410,-1344,-1335,1107,1021,833,777,671,607,596,491,-451,439,422,421,-366,\ | |||
|
749 | -351,331,315,302,-283,-229,223,223,-220,-220,-185,181,-177,176, 166, -164, 132, \ | |||
|
750 | -119,115,107.0]) | |||
|
751 | ||||
|
752 | # Mean longitude of the moon refered to mean equinox of the date. | |||
|
753 | coeff0 = numpy.array([-1./6.5194e7,1./538841.,-0.0015786,481267.88123421,218.3164477]) | |||
|
754 | lprimed = numpy.poly1d(coeff0) | |||
|
755 | lprimed = lprimed(t) | |||
|
756 | lprimed = self.cirrange(lprimed,rad=0) | |||
|
757 | lprime = lprimed*Misc_Routines.CoFactors.d2r | |||
|
758 | ||||
|
759 | # Mean elongation of the moon | |||
|
760 | coeff1 = numpy.array([-1./1.13065e8,1./545868.,-0.0018819,445267.1114034,297.8501921]) | |||
|
761 | d = numpy.poly1d(coeff1) | |||
|
762 | d = d(t)*Misc_Routines.CoFactors.d2r | |||
|
763 | d = self.cirrange(d,rad=1) | |||
|
764 | ||||
|
765 | # Sun's mean anomaly | |||
|
766 | coeff2 = numpy.array([1.0/2.449e7,-0.0001536,35999.0502909,357.5291092]) | |||
|
767 | M = numpy.poly1d(coeff2) | |||
|
768 | M = M(t)*Misc_Routines.CoFactors.d2r | |||
|
769 | M = self.cirrange(M,rad=1) | |||
|
770 | ||||
|
771 | # Moon's mean anomaly | |||
|
772 | coeff3 = numpy.array([-1.0/1.4712e7,1.0/6.9699e4,0.0087414,477198.8675055,134.9633964]) | |||
|
773 | Mprime = numpy.poly1d(coeff3) | |||
|
774 | Mprime = Mprime(t)*Misc_Routines.CoFactors.d2r | |||
|
775 | Mprime = self.cirrange(Mprime,rad=1) | |||
|
776 | ||||
|
777 | # Moon's argument of latitude | |||
|
778 | coeff4 = numpy.array([1.0/8.6331e8,-1.0/3.526e7,-0.0036539,483202.0175233,93.2720950]) | |||
|
779 | F = numpy.poly1d(coeff4) | |||
|
780 | F = F(t)*Misc_Routines.CoFactors.d2r | |||
|
781 | F = self.cirrange(F,rad=1) | |||
|
782 | ||||
|
783 | # Eccentricity of Earth's orbit around the sun | |||
|
784 | e = 1 - 0.002516*t - 7.4e-6*(t**2.) | |||
|
785 | e2 = e**2. | |||
|
786 | ||||
|
787 | ecorr1 = numpy.where((numpy.abs(m_lng))==1) | |||
|
788 | ecorr2 = numpy.where((numpy.abs(m_lat))==1) | |||
|
789 | ecorr3 = numpy.where((numpy.abs(m_lng))==2) | |||
|
790 | ecorr4 = numpy.where((numpy.abs(m_lat))==2) | |||
|
791 | ||||
|
792 | # Additional arguments. | |||
|
793 | A1 = (119.75 + 131.849*t)*Misc_Routines.CoFactors.d2r | |||
|
794 | A2 = (53.09 + 479264.290*t)*Misc_Routines.CoFactors.d2r | |||
|
795 | A3 = (313.45 + 481266.484*t)*Misc_Routines.CoFactors.d2r | |||
|
796 | suml_add = 3958.*numpy.sin(A1) + 1962.*numpy.sin(lprime - F) + 318*numpy.sin(A2) | |||
|
797 | sumb_add = -2235.*numpy.sin(lprime) + 382.*numpy.sin(A3) + 175.*numpy.sin(A1-F) + \ | |||
|
798 | 175.*numpy.sin(A1 + F) + 127.*numpy.sin(lprime - Mprime) - 115.*numpy.sin(lprime + Mprime) | |||
|
799 | ||||
|
800 | # Sum the periodic terms | |||
|
801 | geolon = numpy.zeros(jd.size) | |||
|
802 | geolat = numpy.zeros(jd.size) | |||
|
803 | dist = numpy.zeros(jd.size) | |||
|
804 | ||||
|
805 | for i in numpy.arange(jd.size): | |||
|
806 | sinlng = sin_lng | |||
|
807 | coslng = cos_lng | |||
|
808 | sinlat = sin_lat | |||
|
809 | ||||
|
810 | sinlng[ecorr1] = e[i]*sinlng[ecorr1] | |||
|
811 | coslng[ecorr1] = e[i]*coslng[ecorr1] | |||
|
812 | sinlat[ecorr2] = e[i]*sinlat[ecorr2] | |||
|
813 | sinlng[ecorr3] = e2[i]*sinlng[ecorr3] | |||
|
814 | coslng[ecorr3] = e2[i]*coslng[ecorr3] | |||
|
815 | sinlat[ecorr4] = e2[i]*sinlat[ecorr4] | |||
|
816 | ||||
|
817 | arg = d_lng*d[i] + m_lng*M[i] + mp_lng*Mprime[i] + f_lng*F[i] | |||
|
818 | geolon[i] = lprimed[i] + (numpy.sum(sinlng*numpy.sin(arg)) + suml_add[i] )/1.e6 | |||
|
819 | dist[i] = 385000.56 + numpy.sum(coslng*numpy.cos(arg))/1.e3 | |||
|
820 | arg = d_lat*d[i] + m_lat*M[i] + mp_lat*Mprime[i] + f_lat*F[i] | |||
|
821 | geolat[i] = (numpy.sum(sinlat*numpy.sin(arg)) + sumb_add[i])/1.e6 | |||
|
822 | ||||
|
823 | [nlon, elon] = self.nutate(jd) | |||
|
824 | geolon = geolon + nlon/3.6e3 | |||
|
825 | geolon = self.cirrange(geolon,rad=0) | |||
|
826 | lamb = geolon*Misc_Routines.CoFactors.d2r | |||
|
827 | beta = geolat*Misc_Routines.CoFactors.d2r | |||
|
828 | ||||
|
829 | # Find mean obliquity and convert lamb, beta to RA, Dec | |||
|
830 | c = numpy.array([2.45,5.79,27.87,7.12,-39.05,-249.67,-51.38,1999.25,-1.55,-4680.93, \ | |||
|
831 | 21.448]) | |||
|
832 | junk = numpy.poly1d(c); | |||
|
833 | epsilon = 23. + (26./60.) + (junk(t/1.e2)/3600.) | |||
|
834 | # True obliquity in radians | |||
|
835 | eps = (epsilon + elon/3600. )*Misc_Routines.CoFactors.d2r | |||
|
836 | ||||
|
837 | ra = numpy.arctan2(numpy.sin(lamb)*numpy.cos(eps)-numpy.tan(beta)*numpy.sin(eps),numpy.cos(lamb)) | |||
|
838 | ra = self.cirrange(ra,rad=1) | |||
|
839 | ||||
|
840 | dec = numpy.arcsin(numpy.sin(beta)*numpy.cos(eps) + numpy.cos(beta)*numpy.sin(eps)*numpy.sin(lamb)) | |||
|
841 | ||||
|
842 | if rad==1: | |||
|
843 | geolon = lamb | |||
|
844 | geolat = beta | |||
|
845 | else: | |||
|
846 | ra = ra/Misc_Routines.CoFactors.d2r | |||
|
847 | dec = dec/Misc_Routines.CoFactors.d2r | |||
|
848 | ||||
|
849 | return ra, dec, dist, geolon, geolat | |||
|
850 | ||||
|
851 | def hydrapos(self): | |||
|
852 | """ | |||
|
853 | hydrapos method returns RA and Dec provided by Bill Coles (Oct 2003). | |||
|
854 | ||||
|
855 | Parameters | |||
|
856 | ---------- | |||
|
857 | None | |||
|
858 | ||||
|
859 | Return | |||
|
860 | ------ | |||
|
861 | ra = The right ascension of the sun at that date in degrees. | |||
|
862 | dec = The declination of the sun at that date in degrees. | |||
|
863 | Examples | |||
|
864 | -------- | |||
|
865 | >> [ra,dec] = hydrapos() | |||
|
866 | >> print ra, dec | |||
|
867 | 139.45 -12.0833333333 | |||
|
868 | ||||
|
869 | Modification history | |||
|
870 | -------------------- | |||
|
871 | Converted to Python by Freddy R. Galindo, ROJ, 06 October 2009. | |||
|
872 | """ | |||
|
873 | ||||
|
874 | ra = (9. + 17.8/60.)*15. | |||
|
875 | dec = -(12. + 5./60.) | |||
|
876 | ||||
|
877 | return ra, dec | |||
|
878 | ||||
|
879 | ||||
|
880 | def skynoise_jro(self,dec_cut=-11.95,filename='skynoise_jro.dat',filepath=None): | |||
|
881 | """ | |||
|
882 | hydrapos returns RA and Dec provided by Bill Coles (Oct 2003). | |||
|
883 | ||||
|
884 | Parameters | |||
|
885 | ---------- | |||
|
886 | dec_cut = A scalar giving the declination to get a cut of the skynoise over Jica- | |||
|
887 | marca. The default value is -11.95. | |||
|
888 | filename = A string to specify name the skynoise file. The default value is skynoi- | |||
|
889 | se_jro.dat | |||
|
890 | ||||
|
891 | Return | |||
|
892 | ------ | |||
|
893 | maxra = The maximum right ascension to the declination used to get a cut. | |||
|
894 | ra = The right ascension. | |||
|
895 | Examples | |||
|
896 | -------- | |||
|
897 | >> [maxra,ra] = skynoise_jro() | |||
|
898 | >> print maxra, ra | |||
|
899 | 139.45 -12.0833333333 | |||
|
900 | ||||
|
901 | Modification history | |||
|
902 | -------------------- | |||
|
903 | Converted to Python by Freddy R. Galindo, ROJ, 06 October 2009. | |||
|
904 | """ | |||
|
905 | ||||
|
906 | if filepath==None: | |||
|
907 | filepath = '/app/utils/' | |||
|
908 | ||||
|
909 | f = open(os.path.join(filepath,filename),'rb') | |||
|
910 | ||||
|
911 | # Reading SkyNoise Power (lineal scale) | |||
|
912 | ha_sky = numpy.fromfile(f,numpy.dtype([('var','<f4')]),480*20) | |||
|
913 | ha_sky = ha_sky['var'].reshape(20,480).transpose() | |||
|
914 | ||||
|
915 | dec_sky = numpy.fromfile(f,numpy.dtype([('var','<f4')]),480*20) | |||
|
916 | dec_sky = dec_sky['var'].reshape((20,480)).transpose() | |||
|
917 | ||||
|
918 | tmp_sky = numpy.fromfile(f,numpy.dtype([('var','<f4')]),480*20) | |||
|
919 | tmp_sky = tmp_sky['var'].reshape((20,480)).transpose() | |||
|
920 | ||||
|
921 | f.close() | |||
|
922 | ||||
|
923 | nha = 480 | |||
|
924 | tmp_cut = numpy.zeros(nha) | |||
|
925 | for iha in numpy.arange(nha): | |||
|
926 | tck = scipy.interpolate.splrep(dec_sky[iha,:],tmp_sky[iha,:],s=0) | |||
|
927 | tmp_cut[iha] = scipy.interpolate.splev(dec_cut,tck,der=0) | |||
|
928 | ||||
|
929 | ptr = numpy.nanargmax(tmp_cut) | |||
|
930 | ||||
|
931 | maxra = ha_sky[ptr,0] | |||
|
932 | ra = ha_sky[:,0] | |||
|
933 | ||||
|
934 | return maxra, ra | |||
|
935 | ||||
|
936 | def skyNoise(self,jd,ut=-5.0,longitude=-76.87,filename='galaxy.txt',filepath=None): | |||
|
937 | """ | |||
|
938 | hydrapos returns RA and Dec provided by Bill Coles (Oct 2003). | |||
|
939 | ||||
|
940 | Parameters | |||
|
941 | ---------- | |||
|
942 | jd = The julian date of the day (and time), scalar or vector. | |||
|
943 | ||||
|
944 | dec_cut = A scalar giving the declination to get a cut of the skynoise over Jica- | |||
|
945 | marca. The default value is -11.95. | |||
|
946 | filename = A string to specify name the skynoise file. The default value is skynoi- | |||
|
947 | se_jro.dat | |||
|
948 | ||||
|
949 | Return | |||
|
950 | ------ | |||
|
951 | maxra = The maximum right ascension to the declination used to get a cut. | |||
|
952 | ra = The right ascension. | |||
|
953 | ||||
|
954 | Examples | |||
|
955 | -------- | |||
|
956 | >> [maxra,ra] = skynoise_jro() | |||
|
957 | >> print maxra, ra | |||
|
958 | 139.45 -12.0833333333 | |||
|
959 | ||||
|
960 | Modification history | |||
|
961 | -------------------- | |||
|
962 | Converted to Python by Freddy R. Galindo, ROJ, 06 October 2009. | |||
|
963 | """ | |||
|
964 | ||||
|
965 | # Defining date to compute SkyNoise. | |||
|
966 | [year, month, dom, hour, mis, secs] = TimeTools.Julian(jd).change2time() | |||
|
967 | is_dom = (month==9) & (dom==21) | |||
|
968 | if is_dom: | |||
|
969 | tmp = jd | |||
|
970 | jd = TimeTools.Time(year,9,22).change2julian() | |||
|
971 | dom = 22 | |||
|
972 | ||||
|
973 | # Reading SkyNoise | |||
|
974 | if filepath==None:filepath='./resource' | |||
|
975 | f = open(os.path.join(filepath,filename)) | |||
|
976 | ||||
|
977 | lines = f.read() | |||
|
978 | f.close() | |||
|
979 | ||||
|
980 | nlines = 99 | |||
|
981 | lines = lines.split('\n') | |||
|
982 | data = numpy.zeros((2,nlines))*numpy.float32(0.) | |||
|
983 | for ii in numpy.arange(nlines): | |||
|
984 | line = numpy.array([lines[ii][0:6],lines[ii][6:]]) | |||
|
985 | data[:,ii] = numpy.float32(line) | |||
|
986 | ||||
|
987 | # Getting SkyNoise to the date desired. | |||
|
988 | otime = data[0,:]*60.0 | |||
|
989 | opowr = data[1,:] | |||
|
990 | ||||
|
991 | hour = numpy.array([0,23]); | |||
|
992 | mins = numpy.array([0,59]); | |||
|
993 | secs = numpy.array([0,59]); | |||
|
994 | LTrange = TimeTools.Time(year,month,dom,hour,mins,secs).change2julday() | |||
|
995 | LTtime = LTrange[0] + numpy.arange(1440)*((LTrange[1] - LTrange[0])/(1440.-1)) | |||
|
996 | lst = TimeTools.Julian(LTtime + (-3600.*ut/86400.)).change2lst() | |||
|
997 | ||||
|
998 | ipowr = lst*0.0 | |||
|
999 | # Interpolating using scipy (inside max and min "x") | |||
|
1000 | otime = otime/3600. | |||
|
1001 | val = numpy.where((lst>numpy.min(otime)) & (lst<numpy.max(otime))); val = val[0] | |||
|
1002 | tck = scipy.interpolate.interp1d(otime,opowr) | |||
|
1003 | ipowr[val] = tck(lst[val]) | |||
|
1004 | ||||
|
1005 | # Extrapolating above maximum time data (23.75). | |||
|
1006 | uval = numpy.where(lst>numpy.max(otime)) | |||
|
1007 | if uval[0].size>0: | |||
|
1008 | ii = numpy.min(uval[0]) | |||
|
1009 | m = (ipowr[ii-1] - ipowr[ii-2])/(lst[ii-1] - lst[ii-2]) | |||
|
1010 | b = ipowr[ii-1] - m*lst[ii-1] | |||
|
1011 | ipowr[uval] = m*lst[uval] + b | |||
|
1012 | ||||
|
1013 | if is_dom: | |||
|
1014 | lst = numpy.roll(lst,4) | |||
|
1015 | ipowr = numpy.roll(ipowr,4) | |||
|
1016 | ||||
|
1017 | new_lst = numpy.int32(lst*3600.) | |||
|
1018 | new_pow = ipowr | |||
|
1019 | ||||
|
1020 | return ipowr, LTtime, lst | |||
|
1021 | ||||
|
1022 | ||||
|
1023 | class AltAz(EquatorialCorrections): | |||
|
1024 | def __init__(self,alt,az,jd,lat=-11.95,lon=-76.8667,WS=0,altitude=500,nutate_=0,precess_=0,\ | |||
|
1025 | aberration_=0,B1950=0): | |||
|
1026 | """ | |||
|
1027 | The AltAz class creates an object which represents the target position in horizontal | |||
|
1028 | coordinates (alt-az) and allows to convert (using the methods) from this coordinate | |||
|
1029 | system to others (e.g. Equatorial). | |||
|
1030 | ||||
|
1031 | Parameters | |||
|
1032 | ---------- | |||
|
1033 | alt = Altitude in degrees. Scalar or vector. | |||
|
1034 | az = Azimuth angle in degrees (measured EAST from NORTH, but see keyword WS). Sca- | |||
|
1035 | lar or vector. | |||
|
1036 | jd = Julian date. Scalar or vector. | |||
|
1037 | lat = North geodetic latitude of location in degrees. The default value is -11.95. | |||
|
1038 | lon = East longitude of location in degrees. The default value is -76.8667. | |||
|
1039 | WS = Set this to 1 to get the azimuth measured westward from south. | |||
|
1040 | altitude = The altitude of the observing location, in meters. The default 500. | |||
|
1041 | nutate_ = Set this to 1 to force nutation, 0 for no nutation. | |||
|
1042 | precess_ = Set this to 1 to force precession, 0 for no precession. | |||
|
1043 | aberration_ = Set this to 1 to force aberration correction, 0 for no correction. | |||
|
1044 | B1950 = Set this if your RA and DEC are specified in B1950, FK4 coordinates (ins- | |||
|
1045 | tead of J2000, FK5) | |||
|
1046 | ||||
|
1047 | Modification History | |||
|
1048 | -------------------- | |||
|
1049 | Converted to Object-oriented Programming by Freddy Galindo, ROJ, 26 September 2009. | |||
|
1050 | """ | |||
|
1051 | ||||
|
1052 | EquatorialCorrections.__init__(self) | |||
|
1053 | ||||
|
1054 | self.alt = numpy.atleast_1d(alt) | |||
|
1055 | self.az = numpy.atleast_1d(az) | |||
|
1056 | self.jd = numpy.atleast_1d(jd) | |||
|
1057 | self.lat = lat | |||
|
1058 | self.lon = lon | |||
|
1059 | self.WS = WS | |||
|
1060 | self.altitude = altitude | |||
|
1061 | ||||
|
1062 | self.nutate_ = nutate_ | |||
|
1063 | self.aberration_ = aberration_ | |||
|
1064 | self.precess_ = precess_ | |||
|
1065 | self.B1950 = B1950 | |||
|
1066 | ||||
|
1067 | def change2equatorial(self): | |||
|
1068 | """ | |||
|
1069 | change2equatorial method converts horizon (Alt-Az) coordinates to equatorial coordi- | |||
|
1070 | nates (ra-dec). | |||
|
1071 | ||||
|
1072 | Return | |||
|
1073 | ------ | |||
|
1074 | ra = Right ascension of object (J2000) in degrees (FK5). Scalar or vector. | |||
|
1075 | dec = Declination of object (J2000), in degrees (FK5). Scalar or vector. | |||
|
1076 | ha = Hour angle in degrees. | |||
|
1077 | ||||
|
1078 | Example | |||
|
1079 | ------- | |||
|
1080 | >> alt = 88.5401 | |||
|
1081 | >> az = -128.990 | |||
|
1082 | >> jd = 2452640.5 | |||
|
1083 | >> ObjAltAz = AltAz(alt,az,jd) | |||
|
1084 | >> [ra, dec, ha] = ObjAltAz.change2equatorial() | |||
|
1085 | >> print ra, dec, ha | |||
|
1086 | [ 22.20280632] [-12.86610025] [ 1.1638927] | |||
|
1087 | ||||
|
1088 | Modification History | |||
|
1089 | -------------------- | |||
|
1090 | Written Chris O'Dell Univ. of Wisconsin-Madison, May 2002. | |||
|
1091 | Converted to Python by Freddy R. Galindo, ROJ, 26 September 2009. | |||
|
1092 | """ | |||
|
1093 | ||||
|
1094 | az = self.az | |||
|
1095 | alt = self.alt | |||
|
1096 | if self.WS>0:az = az -180. | |||
|
1097 | ra_tmp = numpy.zeros(numpy.size(self.jd)) + 45. | |||
|
1098 | dec_tmp = numpy.zeros(numpy.size(self.jd)) + 45. | |||
|
1099 | [dra1,ddec1,eps,d_psi,d_eps] = self.co_nutate(self.jd,ra_tmp, dec_tmp) | |||
|
1100 | ||||
|
1101 | # Getting local mean sidereal time (lmst) | |||
|
1102 | lmst = TimeTools.Julian(self.jd[0]).change2lst() | |||
|
1103 | lmst = lmst*Misc_Routines.CoFactors.h2d | |||
|
1104 | # Getting local apparent sidereal time (last) | |||
|
1105 | last = lmst + d_psi*numpy.cos(eps)/3600. | |||
|
1106 | ||||
|
1107 | # Now do the spherical trig to get APPARENT hour angle and declination (Degrees). | |||
|
1108 | [ha, dec] = self.change2HaDec() | |||
|
1109 | ||||
|
1110 | # Finding Right Ascension (in degrees, from 0 to 360.) | |||
|
1111 | ra = (last - ha + 360.) % 360. | |||
|
1112 | ||||
|
1113 | # Calculate NUTATION and ABERRATION Correction to Ra-Dec | |||
|
1114 | [dra1, ddec1,eps,d_psi,d_eps] = self.co_nutate(self.jd,ra,dec) | |||
|
1115 | [dra2,ddec2,eps] = self.co_aberration(self.jd,ra,dec) | |||
|
1116 | ||||
|
1117 | # Make Nutation and Aberration correction (if wanted) | |||
|
1118 | ra = ra - (dra1*self.nutate_ + dra2*self.aberration_)/3600. | |||
|
1119 | dec = dec - (ddec1*self.nutate_ + ddec2*self.aberration_)/3600. | |||
|
1120 | ||||
|
1121 | # Computing current equinox | |||
|
1122 | j_now = (self.jd - 2451545.)/365.25 + 2000 | |||
|
1123 | ||||
|
1124 | # Precess coordinates to current date | |||
|
1125 | if self.precess_==1: | |||
|
1126 | njd = numpy.size(self.jd) | |||
|
1127 | for ii in numpy.arange(njd): | |||
|
1128 | ra_i = ra[ii] | |||
|
1129 | dec_i = dec[ii] | |||
|
1130 | now = j_now[ii] | |||
|
1131 | ||||
|
1132 | if self.B1950==1: | |||
|
1133 | [ra_i,dec_i] = self.precess(ra_i,dec_i,now,1950.,FK4=1) | |||
|
1134 | elif self.B1950==0: | |||
|
1135 | [ra_i,dec_i] = self.precess(ra_i,dec_i,now,2000.,FK4=0) | |||
|
1136 | ||||
|
1137 | ra[ii] = ra_i | |||
|
1138 | dec[ii] = dec_i | |||
|
1139 | ||||
|
1140 | return ra, dec, ha | |||
|
1141 | ||||
|
1142 | def change2HaDec(self): | |||
|
1143 | """ | |||
|
1144 | change2HaDec method converts from horizon (Alt-Az) coordinates to hour angle and de- | |||
|
1145 | clination. | |||
|
1146 | ||||
|
1147 | Return | |||
|
1148 | ------ | |||
|
1149 | ha = The local apparent hour angle, in degrees. The hour angle is the time that ri- | |||
|
1150 | ght ascension of 0 hours crosses the local meridian. It is unambiguisoly defined. | |||
|
1151 | dec = The local apparent declination, in degrees. | |||
|
1152 | ||||
|
1153 | Example | |||
|
1154 | ------- | |||
|
1155 | >> alt = 88.5401 | |||
|
1156 | >> az = -128.990 | |||
|
1157 | >> jd = 2452640.5 | |||
|
1158 | >> ObjAltAz = AltAz(alt,az,jd) | |||
|
1159 | >> [ha, dec] = ObjAltAz.change2HaDec() | |||
|
1160 | >> print ha, dec | |||
|
1161 | [ 1.1638927] [-12.86610025] | |||
|
1162 | ||||
|
1163 | Modification History | |||
|
1164 | -------------------- | |||
|
1165 | Written Chris O'Dell Univ. of Wisconsin-Madison, May 2002. | |||
|
1166 | Converted to Python by Freddy R. Galindo, ROJ, 26 September 2009. | |||
|
1167 | """ | |||
|
1168 | ||||
|
1169 | alt_r = numpy.atleast_1d(self.alt*Misc_Routines.CoFactors.d2r) | |||
|
1170 | az_r = numpy.atleast_1d(self.az*Misc_Routines.CoFactors.d2r) | |||
|
1171 | lat_r = numpy.atleast_1d(self.lat*Misc_Routines.CoFactors.d2r) | |||
|
1172 | ||||
|
1173 | # Find local hour angle (in degrees, from 0 to 360.) | |||
|
1174 | y_ha = -1*numpy.sin(az_r)*numpy.cos(alt_r) | |||
|
1175 | x_ha = -1*numpy.cos(az_r)*numpy.sin(lat_r)*numpy.cos(alt_r) + numpy.sin(alt_r)*numpy.cos(lat_r) | |||
|
1176 | ||||
|
1177 | ha = numpy.arctan2(y_ha,x_ha) | |||
|
1178 | ha = ha/Misc_Routines.CoFactors.d2r | |||
|
1179 | ||||
|
1180 | w = numpy.where(ha<0.) | |||
|
1181 | if w[0].size>0:ha[w] = ha[w] + 360. | |||
|
1182 | ha = ha % 360. | |||
|
1183 | ||||
|
1184 | # Find declination (positive if north of celestial equatorial, negative if south) | |||
|
1185 | sindec = numpy.sin(lat_r)*numpy.sin(alt_r) + numpy.cos(lat_r)*numpy.cos(alt_r)*numpy.cos(az_r) | |||
|
1186 | dec = numpy.arcsin(sindec)/Misc_Routines.CoFactors.d2r | |||
|
1187 | ||||
|
1188 | return ha, dec | |||
|
1189 | ||||
|
1190 | ||||
|
1191 | class Equatorial(EquatorialCorrections): | |||
|
1192 | def __init__(self,ra,dec,jd,lat=-11.95,lon=-76.8667,WS=0,altitude=500,nutate_=0,precess_=0,\ | |||
|
1193 | aberration_=0,B1950=0): | |||
|
1194 | """ | |||
|
1195 | The Equatorial class creates an object which represents the target position in equa- | |||
|
1196 | torial coordinates (ha-dec) and allows to convert (using the class methods) from | |||
|
1197 | this coordinate system to others (e.g. AltAz). | |||
|
1198 | ||||
|
1199 | Parameters | |||
|
1200 | ---------- | |||
|
1201 | ra = Right ascension of object (J2000) in degrees (FK5). Scalar or vector. | |||
|
1202 | dec = Declination of object (J2000), in degrees (FK5). Scalar or vector. | |||
|
1203 | jd = Julian date. Scalar or vector. | |||
|
1204 | lat = North geodetic latitude of location in degrees. The default value is -11.95. | |||
|
1205 | lon = East longitude of location in degrees. The default value is -76.8667. | |||
|
1206 | WS = Set this to 1 to get the azimuth measured westward from south. | |||
|
1207 | altitude = The altitude of the observing location, in meters. The default 500. | |||
|
1208 | nutate = Set this to 1 to force nutation, 0 for no nutation. | |||
|
1209 | precess = Set this to 1 to force precession, 0 for no precession. | |||
|
1210 | aberration = Set this to 1 to force aberration correction, 0 for no correction. | |||
|
1211 | B1950 = Set this if your RA and DEC are specified in B1950, FK4 coordinates (ins- | |||
|
1212 | tead of J2000, FK5) | |||
|
1213 | ||||
|
1214 | Modification History | |||
|
1215 | -------------------- | |||
|
1216 | Converted to Object-oriented Programming by Freddy Galindo, ROJ, 29 September 2009. | |||
|
1217 | """ | |||
|
1218 | ||||
|
1219 | EquatorialCorrections.__init__(self) | |||
|
1220 | ||||
|
1221 | self.ra = numpy.atleast_1d(ra) | |||
|
1222 | self.dec = numpy.atleast_1d(dec) | |||
|
1223 | self.jd = numpy.atleast_1d(jd) | |||
|
1224 | self.lat = lat | |||
|
1225 | self.lon = lon | |||
|
1226 | self.WS = WS | |||
|
1227 | self.altitude = altitude | |||
|
1228 | ||||
|
1229 | self.nutate_ = nutate_ | |||
|
1230 | self.aberration_ = aberration_ | |||
|
1231 | self.precess_ = precess_ | |||
|
1232 | self.B1950 = B1950 | |||
|
1233 | ||||
|
1234 | def change2AltAz(self): | |||
|
1235 | """ | |||
|
1236 | change2AltAz method converts from equatorial coordinates (ha-dec) to horizon coordi- | |||
|
1237 | nates (alt-az). | |||
|
1238 | ||||
|
1239 | Return | |||
|
1240 | ------ | |||
|
1241 | alt = Altitude in degrees. Scalar or vector. | |||
|
1242 | az = Azimuth angle in degrees (measured EAST from NORTH, but see keyword WS). Sca- | |||
|
1243 | lar or vector. | |||
|
1244 | ha = Hour angle in degrees. | |||
|
1245 | ||||
|
1246 | Example | |||
|
1247 | ------- | |||
|
1248 | >> ra = 43.370609 | |||
|
1249 | >> dec = -28.0000 | |||
|
1250 | >> jd = 2452640.5 | |||
|
1251 | >> ObjEq = Equatorial(ra,dec,jd) | |||
|
1252 | >> [alt, az, ha] = ObjEq.change2AltAz() | |||
|
1253 | >> print alt, az, ha | |||
|
1254 | [ 65.3546497] [ 133.58753124] [ 339.99609002] | |||
|
1255 | ||||
|
1256 | Modification History | |||
|
1257 | -------------------- | |||
|
1258 | Written Chris O'Dell Univ. of Wisconsin-Madison. May 2002 | |||
|
1259 | Converted to Python by Freddy R. Galindo, ROJ, 29 September 2009. | |||
|
1260 | """ | |||
|
1261 | ||||
|
1262 | ra = self.ra | |||
|
1263 | dec = self.dec | |||
|
1264 | ||||
|
1265 | # Computing current equinox | |||
|
1266 | j_now = (self.jd - 2451545.)/365.25 + 2000 | |||
|
1267 | ||||
|
1268 | # Precess coordinates to current date | |||
|
1269 | if self.precess_==1: | |||
|
1270 | njd = numpy.size(self.jd) | |||
|
1271 | for ii in numpy.arange(njd): | |||
|
1272 | ra_i = ra[ii] | |||
|
1273 | dec_i = dec[ii] | |||
|
1274 | now = j_now[ii] | |||
|
1275 | ||||
|
1276 | if self.B1950==1: | |||
|
1277 | [ra_i,dec_i] = self.precess(ra_i,dec_i,now,1950.,FK4=1) | |||
|
1278 | elif self.B1950==0: | |||
|
1279 | [ra_i,dec_i] = self.precess(ra_i,dec_i,now,2000.,FK4=0) | |||
|
1280 | ||||
|
1281 | ra[ii] = ra_i | |||
|
1282 | dec[ii] = dec_i | |||
|
1283 | ||||
|
1284 | # Calculate NUTATION and ABERRATION Correction to Ra-Dec | |||
|
1285 | [dra1, ddec1,eps,d_psi,d_eps] = self.co_nutate(self.jd,ra,dec) | |||
|
1286 | [dra2,ddec2,eps] = self.co_aberration(self.jd,ra,dec) | |||
|
1287 | ||||
|
1288 | # Make Nutation and Aberration correction (if wanted) | |||
|
1289 | ra = ra + (dra1*self.nutate_ + dra2*self.aberration_)/3600. | |||
|
1290 | dec = dec + (ddec1*self.nutate_ + ddec2*self.aberration_)/3600. | |||
|
1291 | ||||
|
1292 | # Getting local mean sidereal time (lmst) | |||
|
1293 | lmst = TimeTools.Julian(self.jd).change2lst() | |||
|
1294 | ||||
|
1295 | lmst = lmst*Misc_Routines.CoFactors.h2d | |||
|
1296 | # Getting local apparent sidereal time (last) | |||
|
1297 | last = lmst + d_psi*numpy.cos(eps)/3600. | |||
|
1298 | ||||
|
1299 | # Finding Hour Angle (in degrees, from 0 to 360.) | |||
|
1300 | ha = last - ra | |||
|
1301 | w = numpy.where(ha<0.) | |||
|
1302 | if w[0].size>0:ha[w] = ha[w] + 360. | |||
|
1303 | ha = ha % 360. | |||
|
1304 | ||||
|
1305 | # Now do the spherical trig to get APPARENT hour angle and declination (Degrees). | |||
|
1306 | [alt, az] = self.HaDec2AltAz(ha,dec) | |||
|
1307 | ||||
|
1308 | return alt, az, ha | |||
|
1309 | ||||
|
1310 | def HaDec2AltAz(self,ha,dec): | |||
|
1311 | """ | |||
|
1312 | HaDec2AltAz convert hour angle and declination (ha-dec) to horizon coords (alt-az). | |||
|
1313 | ||||
|
1314 | Parameters | |||
|
1315 | ---------- | |||
|
1316 | ha = The local apparent hour angle, in DEGREES, scalar or vector. | |||
|
1317 | dec = The local apparent declination, in DEGREES, scalar or vector. | |||
|
1318 | ||||
|
1319 | Return | |||
|
1320 | ------ | |||
|
1321 | alt = Altitude in degrees. Scalar or vector. | |||
|
1322 | az = Azimuth angle in degrees (measured EAST from NORTH, but see keyword WS). Sca- | |||
|
1323 | lar or vector. | |||
|
1324 | ||||
|
1325 | Modification History | |||
|
1326 | -------------------- | |||
|
1327 | Written Chris O'Dell Univ. of Wisconsin-Madison, May 2002. | |||
|
1328 | Converted to Python by Freddy R. Galindo, ROJ, 26 September 2009. | |||
|
1329 | """ | |||
|
1330 | ||||
|
1331 | sh = numpy.sin(ha*Misc_Routines.CoFactors.d2r) ; ch = numpy.cos(ha*Misc_Routines.CoFactors.d2r) | |||
|
1332 | sd = numpy.sin(dec*Misc_Routines.CoFactors.d2r) ; cd = numpy.cos(dec*Misc_Routines.CoFactors.d2r) | |||
|
1333 | sl = numpy.sin(self.lat*Misc_Routines.CoFactors.d2r) ; cl = numpy.cos(self.lat*Misc_Routines.CoFactors.d2r) | |||
|
1334 | ||||
|
1335 | x = -1*ch*cd*sl + sd*cl | |||
|
1336 | y = -1*sh*cd | |||
|
1337 | z = ch*cd*cl + sd*sl | |||
|
1338 | r = numpy.sqrt(x**2. + y**2.) | |||
|
1339 | ||||
|
1340 | az = numpy.arctan2(y,x)/Misc_Routines.CoFactors.d2r | |||
|
1341 | alt = numpy.arctan2(z,r)/Misc_Routines.CoFactors.d2r | |||
|
1342 | ||||
|
1343 | # correct for negative az. | |||
|
1344 | w = numpy.where(az<0.) | |||
|
1345 | if w[0].size>0:az[w] = az[w] + 360. | |||
|
1346 | ||||
|
1347 | # Convert az to West from South, if desired | |||
|
1348 | if self.WS==1: az = (az + 180.) % 360. | |||
|
1349 | ||||
|
1350 | return alt, az | |||
|
1351 | ||||
|
1352 | ||||
|
1353 | class Geodetic(): | |||
|
1354 | def __init__(self,lat=-11.95,alt=0): | |||
|
1355 | """ | |||
|
1356 | The Geodetic class creates an object which represents the real position on earth of | |||
|
1357 | a target (Geodetic Coordinates: lat-alt) and allows to convert (using the class me- | |||
|
1358 | thods) from this coordinate system to others (e.g. geocentric). | |||
|
1359 | ||||
|
1360 | Parameters | |||
|
1361 | ---------- | |||
|
1362 | lat = Geodetic latitude of location in degrees. The default value is -11.95. | |||
|
1363 | ||||
|
1364 | alt = Geodetic altitude (km). The default value is 0. | |||
|
1365 | ||||
|
1366 | Modification History | |||
|
1367 | -------------------- | |||
|
1368 | Converted to Object-oriented Programming by Freddy R. Galindo, ROJ, 02 October 2009. | |||
|
1369 | """ | |||
|
1370 | ||||
|
1371 | self.lat = numpy.atleast_1d(lat) | |||
|
1372 | self.alt = numpy.atleast_1d(alt) | |||
|
1373 | ||||
|
1374 | self.a = 6378.16 | |||
|
1375 | self.ab2 = 1.0067397 | |||
|
1376 | self.ep2 = 0.0067397 | |||
|
1377 | ||||
|
1378 | def change2geocentric(self): | |||
|
1379 | """ | |||
|
1380 | change2geocentric method converts from Geodetic to Geocentric coordinates. The re- | |||
|
1381 | ference geoid is that adopted by the IAU in 1964. | |||
|
1382 | ||||
|
1383 | Return | |||
|
1384 | ------ | |||
|
1385 | gclat = Geocentric latitude (in degrees), scalar or vector. | |||
|
1386 | gcalt = Geocentric radial distance (km), scalar or vector. | |||
|
1387 | ||||
|
1388 | Example | |||
|
1389 | ------- | |||
|
1390 | >> ObjGeoid = Geodetic(lat=-11.95,alt=0) | |||
|
1391 | >> [gclat, gcalt] = ObjGeoid.change2geocentric() | |||
|
1392 | >> print gclat, gcalt | |||
|
1393 | [-11.87227742] [ 6377.25048195] | |||
|
1394 | ||||
|
1395 | Modification History | |||
|
1396 | -------------------- | |||
|
1397 | Converted to Python by Freddy R. Galindo, ROJ, 02 October 2009. | |||
|
1398 | """ | |||
|
1399 | ||||
|
1400 | gdl = self.lat*Misc_Routines.CoFactors.d2r | |||
|
1401 | slat = numpy.sin(gdl) | |||
|
1402 | clat = numpy.cos(gdl) | |||
|
1403 | slat2 = slat**2. | |||
|
1404 | clat2 = (self.ab2*clat)**2. | |||
|
1405 | ||||
|
1406 | sbet = slat/numpy.sqrt(slat2 + clat2) | |||
|
1407 | sbet2 = (sbet**2.) # < 1 | |||
|
1408 | noval = numpy.where(sbet2>1) | |||
|
1409 | if noval[0].size>0:sbet2[noval] = 1 | |||
|
1410 | cbet = numpy.sqrt(1. - sbet2) | |||
|
1411 | ||||
|
1412 | rgeoid = self.a/numpy.sqrt(1. + self.ep2*sbet2) | |||
|
1413 | ||||
|
1414 | x = rgeoid*cbet + self.alt*clat | |||
|
1415 | y = rgeoid*sbet + self.alt*slat | |||
|
1416 | ||||
|
1417 | gcalt = numpy.sqrt(x**2. + y**2.) | |||
|
1418 | gclat = numpy.arctan2(y,x)/Misc_Routines.CoFactors.d2r | |||
|
1419 | ||||
|
1420 | return gclat, gcalt |
@@ -0,0 +1,61 | |||||
|
1 | """ | |||
|
2 | The module MISC_ROUTINES gathers classes and functions which are useful for daily processing. As an | |||
|
3 | example we have conversion factor or universal constants. | |||
|
4 | ||||
|
5 | MODULES CALLED: | |||
|
6 | NUMPY, SYS | |||
|
7 | ||||
|
8 | MODIFICATION HISTORY: | |||
|
9 | Created by Ing. Freddy Galindo (frederickgalindo@gmail.com). ROJ, 21 October 2009. | |||
|
10 | """ | |||
|
11 | ||||
|
12 | import numpy | |||
|
13 | import sys | |||
|
14 | ||||
|
15 | class CoFactors(): | |||
|
16 | """ | |||
|
17 | CoFactor class used to call pre-defined conversion factor (e.g. degree to radian). The cu- | |||
|
18 | The current available factor are: | |||
|
19 | ||||
|
20 | d2r = degree to radian. | |||
|
21 | s2r = seconds to radian?, degree to arcsecond.? | |||
|
22 | h2r = hour to radian. | |||
|
23 | h2d = hour to degree | |||
|
24 | """ | |||
|
25 | ||||
|
26 | d2r = numpy.pi/180. | |||
|
27 | s2r = numpy.pi/(180.*3600.) | |||
|
28 | h2r = numpy.pi/12. | |||
|
29 | h2d = 15. | |||
|
30 | ||||
|
31 | ||||
|
32 | class Vector: | |||
|
33 | """ | |||
|
34 | direction = 0 Polar to rectangular; direction=1 rectangular to polar | |||
|
35 | """ | |||
|
36 | def __init__(self,vect,direction=0): | |||
|
37 | nsize = numpy.size(vect) | |||
|
38 | if nsize <= 3: | |||
|
39 | vect = vect.reshape(1,nsize) | |||
|
40 | ||||
|
41 | self.vect = vect | |||
|
42 | self.dirc = direction | |||
|
43 | ||||
|
44 | ||||
|
45 | ||||
|
46 | def Polar2Rect(self): | |||
|
47 | if self.dirc == 0: | |||
|
48 | jvect = self.vect*numpy.pi/180. | |||
|
49 | mmx = numpy.cos(jvect[:,1])*numpy.sin(jvect[:,0]) | |||
|
50 | mmy = numpy.cos(jvect[:,1])*numpy.cos(jvect[:,0]) | |||
|
51 | mmz = numpy.sin(jvect[:,1]) | |||
|
52 | mm = numpy.array([mmx,mmy,mmz]).transpose() | |||
|
53 | ||||
|
54 | elif self.dirc == 1: | |||
|
55 | mm = [numpy.arctan2(self.vect[:,0],self.vect[:,1]),numpy.arcsin(self.vect[:,2])] | |||
|
56 | mm = numpy.array(mm)*180./numpy.pi | |||
|
57 | ||||
|
58 | return mm | |||
|
59 | ||||
|
60 | ||||
|
61 | No newline at end of file |
@@ -0,0 +1,17 | |||||
|
1 | attenuation = numpy.array([[[-21.25,-15.25,-9.25,-3.25,03.25,09.25,15.25,21.25], | |||
|
2 | [-21.25,-15.25,-9.25,-3.25,03.25,09.25,15.25,21.25], | |||
|
3 | [-21.25,-15.25,-9.25,-3.25,03.25,09.25,15.25,21.25], | |||
|
4 | [-21.25,-15.25,-9.25,-3.25,03.25,09.25,15.25,21.25], | |||
|
5 | [-21.25,-15.25,-9.25,-3.25,03.25,09.25,15.25,21.25], | |||
|
6 | [-21.25,-15.25,-9.25,-3.25,03.25,09.25,15.25,21.25], | |||
|
7 | [-21.25,-15.25,-9.25,-3.25,03.25,09.25,15.25,21.25], | |||
|
8 | [-21.25,-15.25,-9.25,-3.25,03.25,09.25,15.25,21.25]], | |||
|
9 | [[21.25,21.25,21.25,21.25,21.25,21.25,21.25,21.25], | |||
|
10 | [15.25,15.25,15.25,15.25,15.25,15.25,15.25,15.25], | |||
|
11 | [09.25,09.25,09.25,09.25,09.25,09.25,09.25,09.25], | |||
|
12 | [03.25,03.25,03.25,03.25,03.25,03.25,03.25,03.25], | |||
|
13 | [-03.25,-03.25,-03.25,-03.25,-03.25,-03.25,-03.25,-03.25], | |||
|
14 | [-09.25,-09.25,-09.25,-09.25,-09.25,-09.25,-09.25,-09.25], | |||
|
15 | [-15.25,-15.25,-15.25,-15.25,-15.25,-15.25,-15.25,-15.25], | |||
|
16 | [-21.25,-21.25,-21.25,-21.25,-21.25,-21.25,-21.25,-21.25]]]) | |||
|
17 |
1 | NO CONTENT: new file 100644, binary diff hidden |
|
NO CONTENT: new file 100644, binary diff hidden |
@@ -0,0 +1,34 | |||||
|
1 | from numpy import * | |||
|
2 | from scipy import optimize | |||
|
3 | ||||
|
4 | def gaussian(height, center_x, center_y, width_x, width_y): | |||
|
5 | """Returns a gaussian function with the given parameters""" | |||
|
6 | width_x = float(width_x) | |||
|
7 | width_y = float(width_y) | |||
|
8 | return lambda x,y: height*exp( | |||
|
9 | -(((center_x-x)/width_x)**2+((center_y-y)/width_y)**2)/2) | |||
|
10 | ||||
|
11 | def moments(data): | |||
|
12 | """Returns (height, x, y, width_x, width_y) | |||
|
13 | the gaussian parameters of a 2D distribution by calculating its | |||
|
14 | moments """ | |||
|
15 | total = data.sum() | |||
|
16 | X, Y = indices(data.shape) | |||
|
17 | x = (X*data).sum()/total | |||
|
18 | y = (Y*data).sum()/total | |||
|
19 | col = data[:, int(y)] | |||
|
20 | width_x = sqrt(abs((arange(col.size)-y)**2*col).sum()/col.sum()) | |||
|
21 | row = data[int(x), :] | |||
|
22 | width_y = sqrt(abs((arange(row.size)-x)**2*row).sum()/row.sum()) | |||
|
23 | height = data.max() | |||
|
24 | return height, x, y, width_x, width_y | |||
|
25 | ||||
|
26 | def fitgaussian(data): | |||
|
27 | """Returns (height, x, y, width_x, width_y) | |||
|
28 | the gaussian parameters of a 2D distribution found by a fit""" | |||
|
29 | params = moments(data) | |||
|
30 | errorfunction = lambda p: ravel(gaussian(*p)(*indices(data.shape)) - | |||
|
31 | data) | |||
|
32 | p, success = optimize.leastsq(errorfunction, params) | |||
|
33 | return p | |||
|
34 |
1 | NO CONTENT: new file 100644, binary diff hidden |
|
NO CONTENT: new file 100644, binary diff hidden |
@@ -0,0 +1,196 | |||||
|
1 | g/h n m 1900.0 1905.0 1910.0 1915.0 1920.0 1925.0 1930.0 1935.0 1940.0 1945.0 1950.0 1955.0 1960.0 1965.0 1970.0 1975.0 1980.0 1985.0 1990.0 1995.0 2000.0 2005.0 SV | |||
|
2 | g 1 0 -31543 -31464 -31354 -31212 -31060 -30926 -30805 -30715 -30654 -30594 -30554 -30500 -30421 -30334 -30220 -30100 -29992 -29873 -29775 -29692 -29619.4 -29556.8 8.8 | |||
|
3 | g 1 1 -2298 -2298 -2297 -2306 -2317 -2318 -2316 -2306 -2292 -2285 -2250 -2215 -2169 -2119 -2068 -2013 -1956 -1905 -1848 -1784 -1728.2 -1671.8 10.8 | |||
|
4 | h 1 1 5922 5909 5898 5875 5845 5817 5808 5812 5821 5810 5815 5820 5791 5776 5737 5675 5604 5500 5406 5306 5186.1 5080.0 -21.3 | |||
|
5 | g 2 0 -677 -728 -769 -802 -839 -893 -951 -1018 -1106 -1244 -1341 -1440 -1555 -1662 -1781 -1902 -1997 -2072 -2131 -2200 -2267.7 -2340.5 -15.0 | |||
|
6 | g 2 1 2905 2928 2948 2956 2959 2969 2980 2984 2981 2990 2998 3003 3002 2997 3000 3010 3027 3044 3059 3070 3068.4 3047.0 -6.9 | |||
|
7 | h 2 1 -1061 -1086 -1128 -1191 -1259 -1334 -1424 -1520 -1614 -1702 -1810 -1898 -1967 -2016 -2047 -2067 -2129 -2197 -2279 -2366 -2481.6 -2594.9 -23.3 | |||
|
8 | g 2 2 924 1041 1176 1309 1407 1471 1517 1550 1566 1578 1576 1581 1590 1594 1611 1632 1663 1687 1686 1681 1670.9 1656.9 -1.0 | |||
|
9 | h 2 2 1121 1065 1000 917 823 728 644 586 528 477 381 291 206 114 25 -68 -200 -306 -373 -413 -458.0 -516.7 -14.0 | |||
|
10 | g 3 0 1022 1037 1058 1084 1111 1140 1172 1206 1240 1282 1297 1302 1302 1297 1287 1276 1281 1296 1314 1335 1339.6 1335.7 -0.3 | |||
|
11 | g 3 1 -1469 -1494 -1524 -1559 -1600 -1645 -1692 -1740 -1790 -1834 -1889 -1944 -1992 -2038 -2091 -2144 -2180 -2208 -2239 -2267 -2288.0 -2305.3 -3.1 | |||
|
12 | h 3 1 -330 -357 -389 -421 -445 -462 -480 -494 -499 -499 -476 -462 -414 -404 -366 -333 -336 -310 -284 -262 -227.6 -200.4 5.4 | |||
|
13 | g 3 2 1256 1239 1223 1212 1205 1202 1205 1215 1232 1255 1274 1288 1289 1292 1278 1260 1251 1247 1248 1249 1252.1 1246.8 -0.9 | |||
|
14 | h 3 2 3 34 62 84 103 119 133 146 163 186 206 216 224 240 251 262 271 284 293 302 293.4 269.3 -6.5 | |||
|
15 | g 3 3 572 635 705 778 839 881 907 918 916 913 896 882 878 856 838 830 833 829 802 759 714.5 674.4 -6.8 | |||
|
16 | h 3 3 523 480 425 360 293 229 166 101 43 -11 -46 -83 -130 -165 -196 -223 -252 -297 -352 -427 -491.1 -524.5 -2.0 | |||
|
17 | g 4 0 876 880 884 887 889 891 896 903 914 944 954 958 957 957 952 946 938 936 939 940 932.3 919.8 -2.5 | |||
|
18 | g 4 1 628 643 660 678 695 711 727 744 762 776 792 796 800 804 800 791 782 780 780 780 786.8 798.2 2.8 | |||
|
19 | h 4 1 195 203 211 218 220 216 205 188 169 144 136 133 135 148 167 191 212 232 247 262 272.6 281.4 2.0 | |||
|
20 | g 4 2 660 653 644 631 616 601 584 565 550 544 528 510 504 479 461 438 398 361 325 290 250.0 211.5 -7.1 | |||
|
21 | h 4 2 -69 -77 -90 -109 -134 -163 -195 -226 -252 -276 -278 -274 -278 -269 -266 -265 -257 -249 -240 -236 -231.9 -225.8 1.8 | |||
|
22 | g 4 3 -361 -380 -400 -416 -424 -426 -422 -415 -405 -421 -408 -397 -394 -390 -395 -405 -419 -424 -423 -418 -403.0 -379.5 5.9 | |||
|
23 | h 4 3 -210 -201 -189 -173 -153 -130 -109 -90 -72 -55 -37 -23 3 13 26 39 53 69 84 97 119.8 145.7 5.6 | |||
|
24 | g 4 4 134 146 160 178 199 217 234 249 265 304 303 290 269 252 234 216 199 170 141 122 111.3 100.2 -3.2 | |||
|
25 | h 4 4 -75 -65 -55 -51 -57 -70 -90 -114 -141 -178 -210 -230 -255 -269 -279 -288 -297 -297 -299 -306 -303.8 -304.7 0.0 | |||
|
26 | g 5 0 -184 -192 -201 -211 -221 -230 -237 -241 -241 -253 -240 -229 -222 -219 -216 -218 -218 -214 -214 -214 -218.8 -227.6 -2.6 | |||
|
27 | g 5 1 328 328 327 327 326 326 327 329 334 346 349 360 362 358 359 356 357 355 353 352 351.4 354.4 0.4 | |||
|
28 | h 5 1 -210 -193 -172 -148 -122 -96 -72 -51 -33 -12 3 15 16 19 26 31 46 47 46 46 43.8 42.7 0.1 | |||
|
29 | g 5 2 264 259 253 245 236 226 218 211 208 194 211 230 242 254 262 264 261 253 245 235 222.3 208.8 -3.0 | |||
|
30 | h 5 2 53 56 57 58 58 58 60 64 71 95 103 110 125 128 139 148 150 150 154 165 171.9 179.8 1.8 | |||
|
31 | g 5 3 5 -1 -9 -16 -23 -28 -32 -33 -33 -20 -20 -23 -26 -31 -42 -59 -74 -93 -109 -118 -130.4 -136.6 -1.2 | |||
|
32 | h 5 3 -33 -32 -33 -34 -38 -44 -53 -64 -75 -67 -87 -98 -117 -126 -139 -152 -151 -154 -153 -143 -133.1 -123.0 2.0 | |||
|
33 | g 5 4 -86 -93 -102 -111 -119 -125 -131 -136 -141 -142 -147 -152 -156 -157 -160 -159 -162 -164 -165 -166 -168.6 -168.3 0.2 | |||
|
34 | h 5 4 -124 -125 -126 -126 -125 -122 -118 -115 -113 -119 -122 -121 -114 -97 -91 -83 -78 -75 -69 -55 -39.3 -19.5 4.5 | |||
|
35 | g 5 5 -16 -26 -38 -51 -62 -69 -74 -76 -76 -82 -76 -69 -63 -62 -56 -49 -48 -46 -36 -17 -12.9 -14.1 -0.6 | |||
|
36 | h 5 5 3 11 21 32 43 51 58 64 69 82 80 78 81 81 83 88 92 95 97 107 106.3 103.6 -1.0 | |||
|
37 | g 6 0 63 62 62 61 61 61 60 59 57 59 54 47 46 45 43 45 48 53 61 68 72.3 72.9 -0.8 | |||
|
38 | g 6 1 61 60 58 57 55 54 53 53 54 57 57 57 58 61 64 66 66 65 65 67 68.2 69.6 0.2 | |||
|
39 | h 6 1 -9 -7 -5 -2 0 3 4 4 4 6 -1 -9 -10 -11 -12 -13 -15 -16 -16 -17 -17.4 -20.2 -0.4 | |||
|
40 | g 6 2 -11 -11 -11 -10 -10 -9 -9 -8 -7 6 4 3 1 8 15 28 42 51 59 68 74.2 76.6 -0.2 | |||
|
41 | h 6 2 83 86 89 93 96 99 102 104 105 100 99 96 99 100 100 99 93 88 82 72 63.7 54.7 -1.9 | |||
|
42 | g 6 3 -217 -221 -224 -228 -233 -238 -242 -246 -249 -246 -247 -247 -237 -228 -212 -198 -192 -185 -178 -170 -160.9 -151.1 2.1 | |||
|
43 | h 6 3 2 4 5 8 11 14 19 25 33 16 33 48 60 68 72 75 71 69 69 67 65.1 63.7 -0.4 | |||
|
44 | g 6 4 -58 -57 -54 -51 -46 -40 -32 -25 -18 -25 -16 -8 -1 4 2 1 4 4 3 -1 -5.9 -15.0 -2.1 | |||
|
45 | h 6 4 -35 -32 -29 -26 -22 -18 -16 -15 -15 -9 -12 -16 -20 -32 -37 -41 -43 -48 -52 -58 -61.2 -63.4 -0.4 | |||
|
46 | g 6 5 59 57 54 49 44 39 32 25 18 21 12 7 -2 1 3 6 14 16 18 19 16.9 14.7 -0.4 | |||
|
47 | h 6 5 36 32 28 23 18 13 8 4 0 -16 -12 -12 -11 -8 -6 -4 -2 -1 1 1 0.7 0.0 -0.2 | |||
|
48 | g 6 6 -90 -92 -95 -98 -101 -103 -104 -106 -107 -104 -105 -107 -113 -111 -112 -111 -108 -102 -96 -93 -90.4 -86.4 1.3 | |||
|
49 | h 6 6 -69 -67 -65 -62 -57 -52 -46 -40 -33 -39 -30 -24 -17 -7 1 11 17 21 24 36 43.8 50.3 0.9 | |||
|
50 | g 7 0 70 70 71 72 73 73 74 74 74 70 65 65 67 75 72 71 72 74 77 77 79.0 79.8 -0.4 | |||
|
51 | g 7 1 -55 -54 -54 -54 -54 -54 -54 -53 -53 -40 -55 -56 -56 -57 -57 -56 -59 -62 -64 -72 -74.0 -74.4 0.0 | |||
|
52 | h 7 1 -45 -46 -47 -48 -49 -50 -51 -52 -52 -45 -35 -50 -55 -61 -70 -77 -82 -83 -80 -69 -64.6 -61.4 0.8 | |||
|
53 | g 7 2 0 0 1 2 2 3 4 4 4 0 2 2 5 4 1 1 2 3 2 1 0.0 -1.4 -0.2 | |||
|
54 | h 7 2 -13 -14 -14 -14 -14 -14 -15 -17 -18 -18 -17 -24 -28 -27 -27 -26 -27 -27 -26 -25 -24.2 -22.5 0.4 | |||
|
55 | g 7 3 34 33 32 31 29 27 25 23 20 0 1 10 15 13 14 16 21 24 26 28 33.3 38.6 1.1 | |||
|
56 | h 7 3 -10 -11 -12 -12 -13 -14 -14 -14 -14 2 0 -4 -6 -2 -4 -5 -5 -2 0 4 6.2 6.9 0.1 | |||
|
57 | g 7 4 -41 -41 -40 -38 -37 -35 -34 -33 -31 -29 -40 -32 -32 -26 -22 -14 -12 -6 -1 5 9.1 12.3 0.6 | |||
|
58 | h 7 4 -1 0 1 2 4 5 6 7 7 6 10 8 7 6 8 10 16 20 21 24 24.0 25.4 0.2 | |||
|
59 | g 7 5 -21 -20 -19 -18 -16 -14 -12 -11 -9 -10 -7 -11 -7 -6 -2 0 1 4 5 4 6.9 9.4 0.4 | |||
|
60 | h 7 5 28 28 28 28 28 29 29 29 29 28 36 28 23 26 23 22 18 17 17 17 14.8 10.9 -0.9 | |||
|
61 | g 7 6 18 18 18 19 19 19 18 18 17 15 5 9 17 13 13 12 11 10 9 8 7.3 5.5 -0.5 | |||
|
62 | h 7 6 -12 -12 -13 -15 -16 -17 -18 -19 -20 -17 -18 -20 -18 -23 -23 -23 -23 -23 -23 -24 -25.4 -26.4 -0.3 | |||
|
63 | g 7 7 6 6 6 6 6 6 6 6 5 29 19 18 8 1 -2 -5 -2 0 0 -2 -1.2 2.0 0.9 | |||
|
64 | h 7 7 -22 -22 -22 -22 -22 -21 -20 -19 -19 -22 -16 -18 -17 -12 -11 -12 -10 -7 -4 -6 -5.8 -4.8 0.3 | |||
|
65 | g 8 0 11 11 11 11 11 11 11 11 11 13 22 11 15 13 14 14 18 21 23 25 24.4 24.8 -0.2 | |||
|
66 | g 8 1 8 8 8 8 7 7 7 7 7 7 15 9 6 5 6 6 6 6 5 6 6.6 7.7 0.2 | |||
|
67 | h 8 1 8 8 8 8 8 8 8 8 8 12 5 10 11 7 7 6 7 8 10 11 11.9 11.2 -0.2 | |||
|
68 | g 8 2 -4 -4 -4 -4 -3 -3 -3 -3 -3 -8 -4 -6 -4 -4 -2 -1 0 0 -1 -6 -9.2 -11.4 -0.2 | |||
|
69 | h 8 2 -14 -15 -15 -15 -15 -15 -15 -15 -14 -21 -22 -15 -14 -12 -15 -16 -18 -19 -19 -21 -21.5 -21.0 0.2 | |||
|
70 | g 8 3 -9 -9 -9 -9 -9 -9 -9 -9 -10 -5 -1 -14 -11 -14 -13 -12 -11 -11 -10 -9 -7.9 -6.8 0.2 | |||
|
71 | h 8 3 7 7 6 6 6 6 5 5 5 -12 0 5 7 9 6 4 4 5 6 8 8.5 9.7 0.2 | |||
|
72 | g 8 4 1 1 1 2 2 2 2 1 1 9 11 6 2 0 -3 -8 -7 -9 -12 -14 -16.6 -18.0 -0.2 | |||
|
73 | h 8 4 -13 -13 -13 -13 -14 -14 -14 -15 -15 -7 -21 -23 -18 -16 -17 -19 -22 -23 -22 -23 -21.5 -19.8 0.4 | |||
|
74 | g 8 5 2 2 2 3 4 4 5 6 6 7 15 10 10 8 5 4 4 4 3 9 9.1 10.0 0.2 | |||
|
75 | h 8 5 5 5 5 5 5 5 5 5 5 2 -8 3 4 4 6 6 9 11 12 15 15.5 16.1 0.2 | |||
|
76 | g 8 6 -9 -8 -8 -8 -7 -7 -6 -6 -5 -10 -13 -7 -5 -1 0 0 3 4 4 6 7.0 9.4 0.5 | |||
|
77 | h 8 6 16 16 16 16 17 17 18 18 19 18 17 23 23 24 21 18 16 14 12 11 8.9 7.7 -0.3 | |||
|
78 | g 8 7 5 5 5 6 6 7 8 8 9 7 5 6 10 11 11 10 6 4 2 -5 -7.9 -11.4 -0.7 | |||
|
79 | h 8 7 -5 -5 -5 -5 -5 -5 -5 -5 -5 3 -4 -4 1 -3 -6 -10 -13 -15 -16 -16 -14.9 -12.8 0.5 | |||
|
80 | g 8 8 8 8 8 8 8 8 8 7 7 2 -1 9 8 4 3 1 -1 -4 -6 -7 -7.0 -5.0 0.5 | |||
|
81 | h 8 8 -18 -18 -18 -18 -19 -19 -19 -19 -19 -11 -17 -13 -20 -17 -16 -17 -15 -11 -10 -4 -2.1 -0.1 0.4 | |||
|
82 | g 9 0 8 8 8 8 8 8 8 8 8 5 3 4 4 8 8 7 5 5 4 4 5.0 5.6 | |||
|
83 | g 9 1 10 10 10 10 10 10 10 10 10 -21 -7 9 6 10 10 10 10 10 9 9 9.4 9.8 | |||
|
84 | h 9 1 -20 -20 -20 -20 -20 -20 -20 -20 -21 -27 -24 -11 -18 -22 -21 -21 -21 -21 -20 -20 -19.7 -20.1 | |||
|
85 | g 9 2 1 1 1 1 1 1 1 1 1 1 -1 -4 0 2 2 2 1 1 1 3 3.0 3.6 | |||
|
86 | h 9 2 14 14 14 14 14 14 14 15 15 17 19 12 12 15 16 16 16 15 15 15 13.4 12.9 | |||
|
87 | g 9 3 -11 -11 -11 -11 -11 -11 -12 -12 -12 -11 -25 -5 -9 -13 -12 -12 -12 -12 -12 -10 -8.4 -7.0 | |||
|
88 | h 9 3 5 5 5 5 5 5 5 5 5 29 12 7 2 7 6 7 9 9 11 12 12.5 12.7 | |||
|
89 | g 9 4 12 12 12 12 12 12 12 11 11 3 10 2 1 10 10 10 9 9 9 8 6.3 5.0 | |||
|
90 | h 9 4 -3 -3 -3 -3 -3 -3 -3 -3 -3 -9 2 6 0 -4 -4 -4 -5 -6 -7 -6 -6.2 -6.7 | |||
|
91 | g 9 5 1 1 1 1 1 1 1 1 1 16 5 4 4 -1 -1 -1 -3 -3 -4 -8 -8.9 -10.8 | |||
|
92 | h 9 5 -2 -2 -2 -2 -2 -2 -2 -3 -3 4 2 -2 -3 -5 -5 -5 -6 -6 -7 -8 -8.4 -8.1 | |||
|
93 | g 9 6 -2 -2 -2 -2 -2 -2 -2 -2 -2 -3 -5 1 -1 -1 0 -1 -1 -1 -2 -1 -1.5 -1.3 | |||
|
94 | h 9 6 8 8 8 8 9 9 9 9 9 9 8 10 9 10 10 10 9 9 9 8 8.4 8.1 | |||
|
95 | g 9 7 2 2 2 2 2 2 3 3 3 -4 -2 2 -2 5 3 4 7 7 7 10 9.3 8.7 | |||
|
96 | h 9 7 10 10 10 10 10 10 10 11 11 6 8 7 8 10 11 11 10 9 8 5 3.8 2.9 | |||
|
97 | g 9 8 -1 0 0 0 0 0 0 0 1 -3 3 2 3 1 1 1 2 1 1 -2 -4.3 -6.7 | |||
|
98 | h 9 8 -2 -2 -2 -2 -2 -2 -2 -2 -2 1 -11 -6 0 -4 -2 -3 -6 -7 -7 -8 -8.2 -7.9 | |||
|
99 | g 9 9 -1 -1 -1 -1 -1 -1 -2 -2 -2 -4 8 5 -1 -2 -1 -2 -5 -5 -6 -8 -8.2 -9.2 | |||
|
100 | h 9 9 2 2 2 2 2 2 2 2 2 8 -7 5 5 1 1 1 2 2 2 3 4.8 5.9 | |||
|
101 | g 10 0 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -8 -3 1 -2 -3 -3 -4 -4 -3 -3 -2.6 -2.2 | |||
|
102 | g 10 1 -4 -4 -4 -4 -4 -4 -4 -4 -4 11 4 -5 -3 -3 -3 -3 -4 -4 -4 -6 -6.0 -6.3 | |||
|
103 | h 10 1 2 2 2 2 2 2 2 2 2 5 13 -4 4 2 1 1 1 1 2 1 1.7 2.4 | |||
|
104 | g 10 2 2 2 2 2 2 2 2 2 2 1 -1 -1 4 2 2 2 2 3 2 2 1.7 1.6 | |||
|
105 | h 10 2 1 1 1 1 1 1 1 1 1 1 -2 0 1 1 1 1 0 0 1 0 0.0 0.2 | |||
|
106 | g 10 3 -5 -5 -5 -5 -5 -5 -5 -5 -5 2 13 2 0 -5 -5 -5 -5 -5 -5 -4 -3.1 -2.5 | |||
|
107 | h 10 3 2 2 2 2 2 2 2 2 2 -20 -10 -8 0 2 3 3 3 3 3 4 4.0 4.4 | |||
|
108 | g 10 4 -2 -2 -2 -2 -2 -2 -2 -2 -2 -5 -4 -3 -1 -2 -1 -2 -2 -2 -2 -1 -0.5 -0.1 | |||
|
109 | h 10 4 6 6 6 6 6 6 6 6 6 -1 2 -2 2 6 4 4 6 6 6 5 4.9 4.7 | |||
|
110 | g 10 5 6 6 6 6 6 6 6 6 6 -1 4 7 4 4 6 5 5 5 4 4 3.7 3.0 | |||
|
111 | h 10 5 -4 -4 -4 -4 -4 -4 -4 -4 -4 -6 -3 -4 -5 -4 -4 -4 -4 -4 -4 -5 -5.9 -6.5 | |||
|
112 | g 10 6 4 4 4 4 4 4 4 4 4 8 12 4 6 4 4 4 3 3 3 2 1.0 0.3 | |||
|
113 | h 10 6 0 0 0 0 0 0 0 0 0 6 6 1 1 0 0 -1 0 0 0 -1 -1.2 -1.0 | |||
|
114 | g 10 7 0 0 0 0 0 0 0 0 0 -1 3 -2 1 0 1 1 1 1 1 2 2.0 2.1 | |||
|
115 | h 10 7 -2 -2 -2 -2 -2 -2 -2 -1 -1 -4 -3 -3 -1 -2 -1 -1 -1 -1 -2 -2 -2.9 -3.4 | |||
|
116 | g 10 8 2 2 2 1 1 1 1 2 2 -3 2 6 -1 2 0 0 2 2 3 5 4.2 3.9 | |||
|
117 | h 10 8 4 4 4 4 4 4 4 4 4 -2 6 7 6 3 3 3 4 4 3 1 0.2 -0.9 | |||
|
118 | g 10 9 2 2 2 2 3 3 3 3 3 5 10 -2 2 2 3 3 3 3 3 1 0.3 -0.1 | |||
|
119 | h 10 9 0 0 0 0 0 0 0 0 0 0 11 -1 0 0 1 1 0 0 -1 -2 -2.2 -2.3 | |||
|
120 | g 10 10 0 0 0 0 0 0 0 0 0 -2 3 0 0 0 -1 -1 0 0 0 0 -1.1 -2.2 | |||
|
121 | h 10 10 -6 -6 -6 -6 -6 -6 -6 -6 -6 -2 8 -3 -7 -6 -4 -5 -6 -6 -6 -7 -7.4 -8.0 | |||
|
122 | g 11 0 2.7 2.9 | |||
|
123 | g 11 1 -1.7 -1.6 | |||
|
124 | h 11 1 0.1 0.3 | |||
|
125 | g 11 2 -1.9 -1.7 | |||
|
126 | h 11 2 1.3 1.4 | |||
|
127 | g 11 3 1.5 1.5 | |||
|
128 | h 11 3 -0.9 -0.7 | |||
|
129 | g 11 4 -0.1 -0.2 | |||
|
130 | h 11 4 -2.6 -2.4 | |||
|
131 | g 11 5 0.1 0.2 | |||
|
132 | h 11 5 0.9 0.9 | |||
|
133 | g 11 6 -0.7 -0.7 | |||
|
134 | h 11 6 -0.7 -0.6 | |||
|
135 | g 11 7 0.7 0.5 | |||
|
136 | h 11 7 -2.8 -2.7 | |||
|
137 | g 11 8 1.7 1.8 | |||
|
138 | h 11 8 -0.9 -1.0 | |||
|
139 | g 11 9 0.1 0.1 | |||
|
140 | h 11 9 -1.2 -1.5 | |||
|
141 | g 11 10 1.2 1.0 | |||
|
142 | h 11 10 -1.9 -2.0 | |||
|
143 | g 11 11 4.0 4.1 | |||
|
144 | h 11 11 -0.9 -1.4 | |||
|
145 | g 12 0 -2.2 -2.2 | |||
|
146 | g 12 1 -0.3 -0.3 | |||
|
147 | h 12 1 -0.4 -0.5 | |||
|
148 | g 12 2 0.2 0.3 | |||
|
149 | h 12 2 0.3 0.3 | |||
|
150 | g 12 3 0.9 0.9 | |||
|
151 | h 12 3 2.5 2.3 | |||
|
152 | g 12 4 -0.2 -0.4 | |||
|
153 | h 12 4 -2.6 -2.7 | |||
|
154 | g 12 5 0.9 1.0 | |||
|
155 | h 12 5 0.7 0.6 | |||
|
156 | g 12 6 -0.5 -0.4 | |||
|
157 | h 12 6 0.3 0.4 | |||
|
158 | g 12 7 0.3 0.5 | |||
|
159 | h 12 7 0.0 0.0 | |||
|
160 | g 12 8 -0.3 -0.3 | |||
|
161 | h 12 8 0.0 0.0 | |||
|
162 | g 12 9 -0.4 -0.4 | |||
|
163 | h 12 9 0.3 0.3 | |||
|
164 | g 12 10 -0.1 0.0 | |||
|
165 | h 12 10 -0.9 -0.8 | |||
|
166 | g 12 11 -0.2 -0.4 | |||
|
167 | h 12 11 -0.4 -0.4 | |||
|
168 | g 12 12 -0.4 0.0 | |||
|
169 | h 12 12 0.8 1.0 | |||
|
170 | g 13 0 -0.2 -0.2 | |||
|
171 | g 13 1 -0.9 -0.9 | |||
|
172 | h 13 1 -0.9 -0.7 | |||
|
173 | g 13 2 0.3 0.3 | |||
|
174 | h 13 2 0.2 0.3 | |||
|
175 | g 13 3 0.1 0.3 | |||
|
176 | h 13 3 1.8 1.7 | |||
|
177 | g 13 4 -0.4 -0.4 | |||
|
178 | h 13 4 -0.4 -0.5 | |||
|
179 | g 13 5 1.3 1.2 | |||
|
180 | h 13 5 -1.0 -1.0 | |||
|
181 | g 13 6 -0.4 -0.4 | |||
|
182 | h 13 6 -0.1 0.0 | |||
|
183 | g 13 7 0.7 0.7 | |||
|
184 | h 13 7 0.7 0.7 | |||
|
185 | g 13 8 -0.4 -0.3 | |||
|
186 | h 13 8 0.3 0.2 | |||
|
187 | g 13 9 0.3 0.4 | |||
|
188 | h 13 9 0.6 0.6 | |||
|
189 | g 13 10 -0.1 -0.1 | |||
|
190 | h 13 10 0.3 0.4 | |||
|
191 | g 13 11 0.4 0.4 | |||
|
192 | h 13 11 -0.2 -0.2 | |||
|
193 | g 13 12 0.0 -0.1 | |||
|
194 | h 13 12 -0.5 -0.5 | |||
|
195 | g 13 13 0.1 -0.3 | |||
|
196 | h 13 13 -0.9 -1.0 |
@@ -0,0 +1,196 | |||||
|
1 | g/h n m 1900.0 1905.0 1910.0 1915.0 1920.0 1925.0 1930.0 1935.0 1940.0 1945.0 1950.0 1955.0 1960.0 1965.0 1970.0 1975.0 1980.0 1985.0 1990.0 1995.0 2000.0 2005.0 2010.0 SV | |||
|
2 | g 1 0 -31543 -31464 -31354 -31212 -31060 -30926 -30805 -30715 -30654 -30594 -30554 -30500 -30421 -30334 -30220 -30100 -29992 -29873 -29775 -29692 -29619.4 -29554.63 -29496.5 11.4 | |||
|
3 | g 1 1 -2298 -2298 -2297 -2306 -2317 -2318 -2316 -2306 -2292 -2285 -2250 -2215 -2169 -2119 -2068 -2013 -1956 -1905 -1848 -1784 -1728.2 -1669.05 -1585.9 16.7 | |||
|
4 | h 1 1 5922 5909 5898 5875 5845 5817 5808 5812 5821 5810 5815 5820 5791 5776 5737 5675 5604 5500 5406 5306 5186.1 5077.99 4945.1 -28.8 | |||
|
5 | g 2 0 -677 -728 -769 -802 -839 -893 -951 -1018 -1106 -1244 -1341 -1440 -1555 -1662 -1781 -1902 -1997 -2072 -2131 -2200 -2267.7 -2337.24 -2396.6 -11.3 | |||
|
6 | g 2 1 2905 2928 2948 2956 2959 2969 2980 2984 2981 2990 2998 3003 3002 2997 3000 3010 3027 3044 3059 3070 3068.4 3047.69 3026.0 -3.9 | |||
|
7 | h 2 1 -1061 -1086 -1128 -1191 -1259 -1334 -1424 -1520 -1614 -1702 -1810 -1898 -1967 -2016 -2047 -2067 -2129 -2197 -2279 -2366 -2481.6 -2594.50 -2707.7 -23.0 | |||
|
8 | g 2 2 924 1041 1176 1309 1407 1471 1517 1550 1566 1578 1576 1581 1590 1594 1611 1632 1663 1687 1686 1681 1670.9 1657.76 1668.6 2.7 | |||
|
9 | h 2 2 1121 1065 1000 917 823 728 644 586 528 477 381 291 206 114 25 -68 -200 -306 -373 -413 -458.0 -515.43 -575.4 -12.9 | |||
|
10 | g 3 0 1022 1037 1058 1084 1111 1140 1172 1206 1240 1282 1297 1302 1302 1297 1287 1276 1281 1296 1314 1335 1339.6 1336.30 1339.7 1.3 | |||
|
11 | g 3 1 -1469 -1494 -1524 -1559 -1600 -1645 -1692 -1740 -1790 -1834 -1889 -1944 -1992 -2038 -2091 -2144 -2180 -2208 -2239 -2267 -2288.0 -2305.83 -2326.3 -3.9 | |||
|
12 | h 3 1 -330 -357 -389 -421 -445 -462 -480 -494 -499 -499 -476 -462 -414 -404 -366 -333 -336 -310 -284 -262 -227.6 -198.86 -160.5 8.6 | |||
|
13 | g 3 2 1256 1239 1223 1212 1205 1202 1205 1215 1232 1255 1274 1288 1289 1292 1278 1260 1251 1247 1248 1249 1252.1 1246.39 1231.7 -2.9 | |||
|
14 | h 3 2 3 34 62 84 103 119 133 146 163 186 206 216 224 240 251 262 271 284 293 302 293.4 269.72 251.7 -2.9 | |||
|
15 | g 3 3 572 635 705 778 839 881 907 918 916 913 896 882 878 856 838 830 833 829 802 759 714.5 672.51 634.2 -8.1 | |||
|
16 | h 3 3 523 480 425 360 293 229 166 101 43 -11 -46 -83 -130 -165 -196 -223 -252 -297 -352 -427 -491.1 -524.72 -536.8 -2.1 | |||
|
17 | g 4 0 876 880 884 887 889 891 896 903 914 944 954 958 957 957 952 946 938 936 939 940 932.3 920.55 912.6 -1.4 | |||
|
18 | g 4 1 628 643 660 678 695 711 727 744 762 776 792 796 800 804 800 791 782 780 780 780 786.8 797.96 809.0 2.0 | |||
|
19 | h 4 1 195 203 211 218 220 216 205 188 169 144 136 133 135 148 167 191 212 232 247 262 272.6 282.07 286.4 0.4 | |||
|
20 | g 4 2 660 653 644 631 616 601 584 565 550 544 528 510 504 479 461 438 398 361 325 290 250.0 210.65 166.6 -8.9 | |||
|
21 | h 4 2 -69 -77 -90 -109 -134 -163 -195 -226 -252 -276 -278 -274 -278 -269 -266 -265 -257 -249 -240 -236 -231.9 -225.23 -211.2 3.2 | |||
|
22 | g 4 3 -361 -380 -400 -416 -424 -426 -422 -415 -405 -421 -408 -397 -394 -390 -395 -405 -419 -424 -423 -418 -403.0 -379.86 -357.1 4.4 | |||
|
23 | h 4 3 -210 -201 -189 -173 -153 -130 -109 -90 -72 -55 -37 -23 3 13 26 39 53 69 84 97 119.8 145.15 164.4 3.6 | |||
|
24 | g 4 4 134 146 160 178 199 217 234 249 265 304 303 290 269 252 234 216 199 170 141 122 111.3 100.00 89.7 -2.3 | |||
|
25 | h 4 4 -75 -65 -55 -51 -57 -70 -90 -114 -141 -178 -210 -230 -255 -269 -279 -288 -297 -297 -299 -306 -303.8 -305.36 -309.2 -0.8 | |||
|
26 | g 5 0 -184 -192 -201 -211 -221 -230 -237 -241 -241 -253 -240 -229 -222 -219 -216 -218 -218 -214 -214 -214 -218.8 -227.00 -231.1 -0.5 | |||
|
27 | g 5 1 328 328 327 327 326 326 327 329 334 346 349 360 362 358 359 356 357 355 353 352 351.4 354.41 357.2 0.5 | |||
|
28 | h 5 1 -210 -193 -172 -148 -122 -96 -72 -51 -33 -12 3 15 16 19 26 31 46 47 46 46 43.8 42.72 44.7 0.5 | |||
|
29 | g 5 2 264 259 253 245 236 226 218 211 208 194 211 230 242 254 262 264 261 253 245 235 222.3 208.95 200.3 -1.5 | |||
|
30 | h 5 2 53 56 57 58 58 58 60 64 71 95 103 110 125 128 139 148 150 150 154 165 171.9 180.25 188.9 1.5 | |||
|
31 | g 5 3 5 -1 -9 -16 -23 -28 -32 -33 -33 -20 -20 -23 -26 -31 -42 -59 -74 -93 -109 -118 -130.4 -136.54 -141.2 -0.7 | |||
|
32 | h 5 3 -33 -32 -33 -34 -38 -44 -53 -64 -75 -67 -87 -98 -117 -126 -139 -152 -151 -154 -153 -143 -133.1 -123.45 -118.1 0.9 | |||
|
33 | g 5 4 -86 -93 -102 -111 -119 -125 -131 -136 -141 -142 -147 -152 -156 -157 -160 -159 -162 -164 -165 -166 -168.6 -168.05 -163.1 1.3 | |||
|
34 | h 5 4 -124 -125 -126 -126 -125 -122 -118 -115 -113 -119 -122 -121 -114 -97 -91 -83 -78 -75 -69 -55 -39.3 -19.57 0.1 3.7 | |||
|
35 | g 5 5 -16 -26 -38 -51 -62 -69 -74 -76 -76 -82 -76 -69 -63 -62 -56 -49 -48 -46 -36 -17 -12.9 -13.55 -7.7 1.4 | |||
|
36 | h 5 5 3 11 21 32 43 51 58 64 69 82 80 78 81 81 83 88 92 95 97 107 106.3 103.85 100.9 -0.6 | |||
|
37 | g 6 0 63 62 62 61 61 61 60 59 57 59 54 47 46 45 43 45 48 53 61 68 72.3 73.60 72.8 -0.3 | |||
|
38 | g 6 1 61 60 58 57 55 54 53 53 54 57 57 57 58 61 64 66 66 65 65 67 68.2 69.56 68.6 -0.3 | |||
|
39 | h 6 1 -9 -7 -5 -2 0 3 4 4 4 6 -1 -9 -10 -11 -12 -13 -15 -16 -16 -17 -17.4 -20.33 -20.8 -0.1 | |||
|
40 | g 6 2 -11 -11 -11 -10 -10 -9 -9 -8 -7 6 4 3 1 8 15 28 42 51 59 68 74.2 76.74 76.0 -0.3 | |||
|
41 | h 6 2 83 86 89 93 96 99 102 104 105 100 99 96 99 100 100 99 93 88 82 72 63.7 54.75 44.2 -2.1 | |||
|
42 | g 6 3 -217 -221 -224 -228 -233 -238 -242 -246 -249 -246 -247 -247 -237 -228 -212 -198 -192 -185 -178 -170 -160.9 -151.34 -141.4 1.9 | |||
|
43 | h 6 3 2 4 5 8 11 14 19 25 33 16 33 48 60 68 72 75 71 69 69 67 65.1 63.63 61.5 -0.4 | |||
|
44 | g 6 4 -58 -57 -54 -51 -46 -40 -32 -25 -18 -25 -16 -8 -1 4 2 1 4 4 3 -1 -5.9 -14.58 -22.9 -1.6 | |||
|
45 | h 6 4 -35 -32 -29 -26 -22 -18 -16 -15 -15 -9 -12 -16 -20 -32 -37 -41 -43 -48 -52 -58 -61.2 -63.53 -66.3 -0.5 | |||
|
46 | g 6 5 59 57 54 49 44 39 32 25 18 21 12 7 -2 1 3 6 14 16 18 19 16.9 14.58 13.1 -0.2 | |||
|
47 | h 6 5 36 32 28 23 18 13 8 4 0 -16 -12 -12 -11 -8 -6 -4 -2 -1 1 1 0.7 0.24 3.1 0.8 | |||
|
48 | g 6 6 -90 -92 -95 -98 -101 -103 -104 -106 -107 -104 -105 -107 -113 -111 -112 -111 -108 -102 -96 -93 -90.4 -86.36 -77.9 1.8 | |||
|
49 | h 6 6 -69 -67 -65 -62 -57 -52 -46 -40 -33 -39 -30 -24 -17 -7 1 11 17 21 24 36 43.8 50.94 54.9 0.5 | |||
|
50 | g 7 0 70 70 71 72 73 73 74 74 74 70 65 65 67 75 72 71 72 74 77 77 79.0 79.88 80.4 0.2 | |||
|
51 | g 7 1 -55 -54 -54 -54 -54 -54 -54 -53 -53 -40 -55 -56 -56 -57 -57 -56 -59 -62 -64 -72 -74.0 -74.46 -75.0 -0.1 | |||
|
52 | h 7 1 -45 -46 -47 -48 -49 -50 -51 -52 -52 -45 -35 -50 -55 -61 -70 -77 -82 -83 -80 -69 -64.6 -61.14 -57.8 0.6 | |||
|
53 | g 7 2 0 0 1 2 2 3 4 4 4 0 2 2 5 4 1 1 2 3 2 1 0.0 -1.65 -4.7 -0.6 | |||
|
54 | h 7 2 -13 -14 -14 -14 -14 -14 -15 -17 -18 -18 -17 -24 -28 -27 -27 -26 -27 -27 -26 -25 -24.2 -22.57 -21.2 0.3 | |||
|
55 | g 7 3 34 33 32 31 29 27 25 23 20 0 1 10 15 13 14 16 21 24 26 28 33.3 38.73 45.3 1.4 | |||
|
56 | h 7 3 -10 -11 -12 -12 -13 -14 -14 -14 -14 2 0 -4 -6 -2 -4 -5 -5 -2 0 4 6.2 6.82 6.6 -0.2 | |||
|
57 | g 7 4 -41 -41 -40 -38 -37 -35 -34 -33 -31 -29 -40 -32 -32 -26 -22 -14 -12 -6 -1 5 9.1 12.30 14.0 0.3 | |||
|
58 | h 7 4 -1 0 1 2 4 5 6 7 7 6 10 8 7 6 8 10 16 20 21 24 24.0 25.35 24.9 -0.1 | |||
|
59 | g 7 5 -21 -20 -19 -18 -16 -14 -12 -11 -9 -10 -7 -11 -7 -6 -2 0 1 4 5 4 6.9 9.37 10.4 0.1 | |||
|
60 | h 7 5 28 28 28 28 28 29 29 29 29 28 36 28 23 26 23 22 18 17 17 17 14.8 10.93 7.0 -0.8 | |||
|
61 | g 7 6 18 18 18 19 19 19 18 18 17 15 5 9 17 13 13 12 11 10 9 8 7.3 5.42 1.6 -0.8 | |||
|
62 | h 7 6 -12 -12 -13 -15 -16 -17 -18 -19 -20 -17 -18 -20 -18 -23 -23 -23 -23 -23 -23 -24 -25.4 -26.32 -27.7 -0.3 | |||
|
63 | g 7 7 6 6 6 6 6 6 6 6 5 29 19 18 8 1 -2 -5 -2 0 0 -2 -1.2 1.94 4.9 0.4 | |||
|
64 | h 7 7 -22 -22 -22 -22 -22 -21 -20 -19 -19 -22 -16 -18 -17 -12 -11 -12 -10 -7 -4 -6 -5.8 -4.64 -3.4 0.2 | |||
|
65 | g 8 0 11 11 11 11 11 11 11 11 11 13 22 11 15 13 14 14 18 21 23 25 24.4 24.80 24.3 -0.1 | |||
|
66 | g 8 1 8 8 8 8 7 7 7 7 7 7 15 9 6 5 6 6 6 6 5 6 6.6 7.62 8.2 0.1 | |||
|
67 | h 8 1 8 8 8 8 8 8 8 8 8 12 5 10 11 7 7 6 7 8 10 11 11.9 11.20 10.9 0.0 | |||
|
68 | g 8 2 -4 -4 -4 -4 -3 -3 -3 -3 -3 -8 -4 -6 -4 -4 -2 -1 0 0 -1 -6 -9.2 -11.73 -14.5 -0.5 | |||
|
69 | h 8 2 -14 -15 -15 -15 -15 -15 -15 -15 -14 -21 -22 -15 -14 -12 -15 -16 -18 -19 -19 -21 -21.5 -20.88 -20.0 0.2 | |||
|
70 | g 8 3 -9 -9 -9 -9 -9 -9 -9 -9 -10 -5 -1 -14 -11 -14 -13 -12 -11 -11 -10 -9 -7.9 -6.88 -5.7 0.3 | |||
|
71 | h 8 3 7 7 6 6 6 6 5 5 5 -12 0 5 7 9 6 4 4 5 6 8 8.5 9.83 11.9 0.5 | |||
|
72 | g 8 4 1 1 1 2 2 2 2 1 1 9 11 6 2 0 -3 -8 -7 -9 -12 -14 -16.6 -18.11 -19.3 -0.3 | |||
|
73 | h 8 4 -13 -13 -13 -13 -14 -14 -14 -15 -15 -7 -21 -23 -18 -16 -17 -19 -22 -23 -22 -23 -21.5 -19.71 -17.4 0.4 | |||
|
74 | g 8 5 2 2 2 3 4 4 5 6 6 7 15 10 10 8 5 4 4 4 3 9 9.1 10.17 11.6 0.3 | |||
|
75 | h 8 5 5 5 5 5 5 5 5 5 5 2 -8 3 4 4 6 6 9 11 12 15 15.5 16.22 16.7 0.1 | |||
|
76 | g 8 6 -9 -8 -8 -8 -7 -7 -6 -6 -5 -10 -13 -7 -5 -1 0 0 3 4 4 6 7.0 9.36 10.9 0.2 | |||
|
77 | h 8 6 16 16 16 16 17 17 18 18 19 18 17 23 23 24 21 18 16 14 12 11 8.9 7.61 7.1 -0.1 | |||
|
78 | g 8 7 5 5 5 6 6 7 8 8 9 7 5 6 10 11 11 10 6 4 2 -5 -7.9 -11.25 -14.1 -0.5 | |||
|
79 | h 8 7 -5 -5 -5 -5 -5 -5 -5 -5 -5 3 -4 -4 1 -3 -6 -10 -13 -15 -16 -16 -14.9 -12.76 -10.8 0.4 | |||
|
80 | g 8 8 8 8 8 8 8 8 8 7 7 2 -1 9 8 4 3 1 -1 -4 -6 -7 -7.0 -4.87 -3.7 0.2 | |||
|
81 | h 8 8 -18 -18 -18 -18 -19 -19 -19 -19 -19 -11 -17 -13 -20 -17 -16 -17 -15 -11 -10 -4 -2.1 -0.06 1.7 0.4 | |||
|
82 | g 9 0 8 8 8 8 8 8 8 8 8 5 3 4 4 8 8 7 5 5 4 4 5.0 5.58 5.4 0.0 | |||
|
83 | g 9 1 10 10 10 10 10 10 10 10 10 -21 -7 9 6 10 10 10 10 10 9 9 9.4 9.76 9.4 0.0 | |||
|
84 | h 9 1 -20 -20 -20 -20 -20 -20 -20 -20 -21 -27 -24 -11 -18 -22 -21 -21 -21 -21 -20 -20 -19.7 -20.11 -20.5 0.0 | |||
|
85 | g 9 2 1 1 1 1 1 1 1 1 1 1 -1 -4 0 2 2 2 1 1 1 3 3.0 3.58 3.4 0.0 | |||
|
86 | h 9 2 14 14 14 14 14 14 14 15 15 17 19 12 12 15 16 16 16 15 15 15 13.4 12.69 11.6 0.0 | |||
|
87 | g 9 3 -11 -11 -11 -11 -11 -11 -12 -12 -12 -11 -25 -5 -9 -13 -12 -12 -12 -12 -12 -10 -8.4 -6.94 -5.3 0.0 | |||
|
88 | h 9 3 5 5 5 5 5 5 5 5 5 29 12 7 2 7 6 7 9 9 11 12 12.5 12.67 12.8 0.0 | |||
|
89 | g 9 4 12 12 12 12 12 12 12 11 11 3 10 2 1 10 10 10 9 9 9 8 6.3 5.01 3.1 0.0 | |||
|
90 | h 9 4 -3 -3 -3 -3 -3 -3 -3 -3 -3 -9 2 6 0 -4 -4 -4 -5 -6 -7 -6 -6.2 -6.72 -7.2 0.0 | |||
|
91 | g 9 5 1 1 1 1 1 1 1 1 1 16 5 4 4 -1 -1 -1 -3 -3 -4 -8 -8.9 -10.76 -12.4 0.0 | |||
|
92 | h 9 5 -2 -2 -2 -2 -2 -2 -2 -3 -3 4 2 -2 -3 -5 -5 -5 -6 -6 -7 -8 -8.4 -8.16 -7.4 0.0 | |||
|
93 | g 9 6 -2 -2 -2 -2 -2 -2 -2 -2 -2 -3 -5 1 -1 -1 0 -1 -1 -1 -2 -1 -1.5 -1.25 -0.8 0.0 | |||
|
94 | h 9 6 8 8 8 8 9 9 9 9 9 9 8 10 9 10 10 10 9 9 9 8 8.4 8.10 8.0 0.0 | |||
|
95 | g 9 7 2 2 2 2 2 2 3 3 3 -4 -2 2 -2 5 3 4 7 7 7 10 9.3 8.76 8.4 0.0 | |||
|
96 | h 9 7 10 10 10 10 10 10 10 11 11 6 8 7 8 10 11 11 10 9 8 5 3.8 2.92 2.2 0.0 | |||
|
97 | g 9 8 -1 0 0 0 0 0 0 0 1 -3 3 2 3 1 1 1 2 1 1 -2 -4.3 -6.66 -8.4 0.0 | |||
|
98 | h 9 8 -2 -2 -2 -2 -2 -2 -2 -2 -2 1 -11 -6 0 -4 -2 -3 -6 -7 -7 -8 -8.2 -7.73 -6.1 0.0 | |||
|
99 | g 9 9 -1 -1 -1 -1 -1 -1 -2 -2 -2 -4 8 5 -1 -2 -1 -2 -5 -5 -6 -8 -8.2 -9.22 -10.1 0.0 | |||
|
100 | h 9 9 2 2 2 2 2 2 2 2 2 8 -7 5 5 1 1 1 2 2 2 3 4.8 6.01 7.0 0.0 | |||
|
101 | g 10 0 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -8 -3 1 -2 -3 -3 -4 -4 -3 -3 -2.6 -2.17 -2.0 0.0 | |||
|
102 | g 10 1 -4 -4 -4 -4 -4 -4 -4 -4 -4 11 4 -5 -3 -3 -3 -3 -4 -4 -4 -6 -6.0 -6.12 -6.3 0.0 | |||
|
103 | h 10 1 2 2 2 2 2 2 2 2 2 5 13 -4 4 2 1 1 1 1 2 1 1.7 2.19 2.8 0.0 | |||
|
104 | g 10 2 2 2 2 2 2 2 2 2 2 1 -1 -1 4 2 2 2 2 3 2 2 1.7 1.42 0.9 0.0 | |||
|
105 | h 10 2 1 1 1 1 1 1 1 1 1 1 -2 0 1 1 1 1 0 0 1 0 0.0 0.10 -0.1 0.0 | |||
|
106 | g 10 3 -5 -5 -5 -5 -5 -5 -5 -5 -5 2 13 2 0 -5 -5 -5 -5 -5 -5 -4 -3.1 -2.35 -1.1 0.0 | |||
|
107 | h 10 3 2 2 2 2 2 2 2 2 2 -20 -10 -8 0 2 3 3 3 3 3 4 4.0 4.46 4.7 0.0 | |||
|
108 | g 10 4 -2 -2 -2 -2 -2 -2 -2 -2 -2 -5 -4 -3 -1 -2 -1 -2 -2 -2 -2 -1 -0.5 -0.15 -0.2 0.0 | |||
|
109 | h 10 4 6 6 6 6 6 6 6 6 6 -1 2 -2 2 6 4 4 6 6 6 5 4.9 4.76 4.4 0.0 | |||
|
110 | g 10 5 6 6 6 6 6 6 6 6 6 -1 4 7 4 4 6 5 5 5 4 4 3.7 3.06 2.5 0.0 | |||
|
111 | h 10 5 -4 -4 -4 -4 -4 -4 -4 -4 -4 -6 -3 -4 -5 -4 -4 -4 -4 -4 -4 -5 -5.9 -6.58 -7.2 0.0 | |||
|
112 | g 10 6 4 4 4 4 4 4 4 4 4 8 12 4 6 4 4 4 3 3 3 2 1.0 0.29 -0.3 0.0 | |||
|
113 | h 10 6 0 0 0 0 0 0 0 0 0 6 6 1 1 0 0 -1 0 0 0 -1 -1.2 -1.01 -1.0 0.0 | |||
|
114 | g 10 7 0 0 0 0 0 0 0 0 0 -1 3 -2 1 0 1 1 1 1 1 2 2.0 2.06 2.2 0.0 | |||
|
115 | h 10 7 -2 -2 -2 -2 -2 -2 -2 -1 -1 -4 -3 -3 -1 -2 -1 -1 -1 -1 -2 -2 -2.9 -3.47 -4.0 0.0 | |||
|
116 | g 10 8 2 2 2 1 1 1 1 2 2 -3 2 6 -1 2 0 0 2 2 3 5 4.2 3.77 3.1 0.0 | |||
|
117 | h 10 8 4 4 4 4 4 4 4 4 4 -2 6 7 6 3 3 3 4 4 3 1 0.2 -0.86 -2.0 0.0 | |||
|
118 | g 10 9 2 2 2 2 3 3 3 3 3 5 10 -2 2 2 3 3 3 3 3 1 0.3 -0.21 -1.0 0.0 | |||
|
119 | h 10 9 0 0 0 0 0 0 0 0 0 0 11 -1 0 0 1 1 0 0 -1 -2 -2.2 -2.31 -2.0 0.0 | |||
|
120 | g 10 10 0 0 0 0 0 0 0 0 0 -2 3 0 0 0 -1 -1 0 0 0 0 -1.1 -2.09 -2.8 0.0 | |||
|
121 | h 10 10 -6 -6 -6 -6 -6 -6 -6 -6 -6 -2 8 -3 -7 -6 -4 -5 -6 -6 -6 -7 -7.4 -7.93 -8.3 0.0 | |||
|
122 | g 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.7 2.95 3.0 0.0 | |||
|
123 | g 11 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1.7 -1.60 -1.5 0.0 | |||
|
124 | h 11 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1 0.26 0.1 0.0 | |||
|
125 | g 11 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1.9 -1.88 -2.1 0.0 | |||
|
126 | h 11 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.3 1.44 1.7 0.0 | |||
|
127 | g 11 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.5 1.44 1.6 0.0 | |||
|
128 | h 11 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.9 -0.77 -0.6 0.0 | |||
|
129 | g 11 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.1 -0.31 -0.5 0.0 | |||
|
130 | h 11 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -2.6 -2.27 -1.8 0.0 | |||
|
131 | g 11 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1 0.29 0.5 0.0 | |||
|
132 | h 11 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.9 0.90 0.9 0.0 | |||
|
133 | g 11 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.7 -0.79 -0.8 0.0 | |||
|
134 | h 11 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.7 -0.58 -0.4 0.0 | |||
|
135 | g 11 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.7 0.53 0.4 0.0 | |||
|
136 | h 11 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -2.8 -2.69 -2.5 0.0 | |||
|
137 | g 11 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.7 1.80 1.8 0.0 | |||
|
138 | h 11 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.9 -1.08 -1.3 0.0 | |||
|
139 | g 11 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1 0.16 0.2 0.0 | |||
|
140 | h 11 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1.2 -1.58 -2.1 0.0 | |||
|
141 | g 11 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.2 0.96 0.8 0.0 | |||
|
142 | h 11 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1.9 -1.90 -1.9 0.0 | |||
|
143 | g 11 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4.0 3.99 3.8 0.0 | |||
|
144 | h 11 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.9 -1.39 -1.8 0.0 | |||
|
145 | g 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -2.2 -2.15 -2.1 0.0 | |||
|
146 | g 12 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.3 -0.29 -0.2 0.0 | |||
|
147 | h 12 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.4 -0.55 -0.8 0.0 | |||
|
148 | g 12 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.2 0.21 0.3 0.0 | |||
|
149 | h 12 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.3 0.23 0.3 0.0 | |||
|
150 | g 12 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.9 0.89 1.0 0.0 | |||
|
151 | h 12 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.5 2.38 2.2 0.0 | |||
|
152 | g 12 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.2 -0.38 -0.7 0.0 | |||
|
153 | h 12 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -2.6 -2.63 -2.5 0.0 | |||
|
154 | g 12 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.9 0.96 0.9 0.0 | |||
|
155 | h 12 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.7 0.61 0.5 0.0 | |||
|
156 | g 12 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.5 -0.30 -0.1 0.0 | |||
|
157 | h 12 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.3 0.40 0.6 0.0 | |||
|
158 | g 12 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.3 0.46 0.5 0.0 | |||
|
159 | h 12 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0 0.01 0.0 0.0 | |||
|
160 | g 12 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.3 -0.35 -0.4 0.0 | |||
|
161 | h 12 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0 0.02 0.1 0.0 | |||
|
162 | g 12 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.4 -0.36 -0.4 0.0 | |||
|
163 | h 12 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.3 0.28 0.3 0.0 | |||
|
164 | g 12 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.1 0.08 0.2 0.0 | |||
|
165 | h 12 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.9 -0.87 -0.9 0.0 | |||
|
166 | g 12 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.2 -0.49 -0.8 0.0 | |||
|
167 | h 12 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.4 -0.34 -0.2 0.0 | |||
|
168 | g 12 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.4 -0.08 0.0 0.0 | |||
|
169 | h 12 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.8 0.88 0.8 0.0 | |||
|
170 | g 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.2 -0.16 -0.2 0.0 | |||
|
171 | g 13 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.9 -0.88 -0.9 0.0 | |||
|
172 | h 13 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.9 -0.76 -0.8 0.0 | |||
|
173 | g 13 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.3 0.30 0.3 0.0 | |||
|
174 | h 13 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.2 0.33 0.3 0.0 | |||
|
175 | g 13 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1 0.28 0.4 0.0 | |||
|
176 | h 13 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.8 1.72 1.7 0.0 | |||
|
177 | g 13 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.4 -0.43 -0.4 0.0 | |||
|
178 | h 13 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.4 -0.54 -0.6 0.0 | |||
|
179 | g 13 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.3 1.18 1.1 0.0 | |||
|
180 | h 13 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1.0 -1.07 -1.2 0.0 | |||
|
181 | g 13 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.4 -0.37 -0.3 0.0 | |||
|
182 | h 13 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.1 -0.04 -0.1 0.0 | |||
|
183 | g 13 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.7 0.75 0.8 0.0 | |||
|
184 | h 13 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.7 0.63 0.5 0.0 | |||
|
185 | g 13 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.4 -0.26 -0.2 0.0 | |||
|
186 | h 13 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.3 0.21 0.1 0.0 | |||
|
187 | g 13 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.3 0.35 0.4 0.0 | |||
|
188 | h 13 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.6 0.53 0.5 0.0 | |||
|
189 | g 13 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.1 -0.05 0.0 0.0 | |||
|
190 | h 13 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.3 0.38 0.4 0.0 | |||
|
191 | g 13 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.4 0.41 0.4 0.0 | |||
|
192 | h 13 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.2 -0.22 -0.2 0.0 | |||
|
193 | g 13 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0 -0.10 -0.3 0.0 | |||
|
194 | h 13 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.5 -0.57 -0.5 0.0 | |||
|
195 | g 13 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1 -0.18 -0.3 0.0 | |||
|
196 | h 13 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.9 -0.82 -0.8 0.0 |
1 | NO CONTENT: new file 100644 |
|
NO CONTENT: new file 100644 | ||
The requested commit or file is too big and content was truncated. Show full diff |
1 | NO CONTENT: new file 100644, binary diff hidden |
|
NO CONTENT: new file 100644, binary diff hidden |
@@ -1,156 +1,150 | |||||
1 |
|
1 | |||
2 | :root{ |
|
2 | :root{ | |
3 | --primary: #0000AF; |
|
3 | --primary: #0000AF; | |
4 | --dark-primary: #000080; |
|
4 | --dark-primary: #000080; | |
5 | --light-primary: rgb(0, 0, 179, .7); |
|
5 | --light-primary: rgb(0, 0, 179, .7); | |
6 | --secondary: #6F6F6F; |
|
6 | --secondary: #6F6F6F; | |
7 | --tertiary: #0099FF; |
|
7 | --tertiary: #0099FF; | |
8 | --color-txt: #333; |
|
8 | --color-txt: #333; | |
9 | --bg-main: rgba(80, 80, 80, .8); |
|
9 | --bg-main: rgba(80, 80, 80, .8); | |
10 | --bg-invert: rgba(0, 0, 0, .2); |
|
10 | --bg-invert: rgba(0, 0, 0, .2); | |
11 | --bg-sections: #f9f9f9; |
|
11 | --bg-sections: #f9f9f9; | |
12 | --bd-sections: 1px solid #D9D9D9; |
|
12 | --bd-sections: 1px solid #D9D9D9; | |
13 | --fs-nav: .875em; |
|
13 | --fs-nav: .875em; | |
14 | --fs-trail: .87rem; |
|
14 | --fs-trail: .87rem; | |
15 | --hover-nav: rgba(0, 0, 0, 0.3); |
|
15 | --hover-nav: rgba(0, 0, 0, 0.3); | |
16 | --fg-nav: #2068A0; |
|
16 | --fg-nav: #2068A0; | |
17 | --bs-nav: rgba(43, 43, 43, .4); |
|
17 | --bs-nav: rgba(43, 43, 43, .4); | |
18 | --bs-input: rgba(0, 113, 184, 0.5); |
|
18 | --bs-input: rgba(0, 113, 184, 0.5); | |
19 | --bd-input: rgba(56, 181, 230, 0.75); |
|
19 | --bd-input: rgba(56, 181, 230, 0.75); | |
20 | --bd-item: 1px solid #C9C9C9; |
|
20 | --bd-item: 1px solid #C9C9C9; | |
21 | --bx-shadow: 0 2px 5px 0 var(--bs-nav); |
|
21 | --bx-shadow: 0 2px 5px 0 var(--bs-nav); | |
22 | } |
|
22 | } | |
23 |
|
23 | |||
24 | @font-face { |
|
24 | @font-face { | |
25 | font-family: "Futura Std"; |
|
25 | font-family: "Futura Std"; | |
26 | src: url("../fonts/FuturaStdMedium.woff2") format("woff2"); |
|
26 | src: url("../fonts/FuturaStdMedium.woff2") format("woff2"); | |
27 | font-style: normal; |
|
27 | font-style: normal; | |
28 | font-weight: normal; |
|
28 | font-weight: normal; | |
29 | font-display: auto; |
|
29 | font-display: auto; | |
30 | } |
|
30 | } | |
31 |
|
31 | |||
32 | body { |
|
32 | body { | |
33 | padding-top: 106px; |
|
33 | padding-top: 106px; | |
34 | color: #444; |
|
34 | color: #444; | |
35 | font-family: "Futura Std", "Helvetica Neue", Helvetica, Arial, sans-serif; |
|
35 | font-family: "Futura Std", "Helvetica Neue", Helvetica, Arial, sans-serif; | |
36 | font-size: 14px; |
|
36 | font-size: 14px; | |
37 | background-color: #e5e5e5; |
|
37 | background-color: #e5e5e5; | |
38 | } |
|
38 | } | |
39 |
|
39 | |||
40 | main { |
|
40 | main { | |
41 | min-width: 100%; |
|
41 | min-width: 100%; | |
42 | min-height: 600px; |
|
42 | min-height: 600px; | |
43 | } |
|
43 | } | |
44 |
|
44 | |||
45 | a:link { -webkit-tap-highlight-color: var(--tertiary); } |
|
45 | a:link { -webkit-tap-highlight-color: var(--tertiary); } | |
46 |
|
46 | |||
47 | h2 { |
|
47 | h2 { | |
48 | color: blue; |
|
48 | color: blue; | |
49 | font-size: 34px; |
|
49 | font-size: 34px; | |
50 | font-weight: 300; |
|
50 | font-weight: 300; | |
51 | margin-top: 8px; |
|
51 | margin-top: 8px; | |
52 | } |
|
52 | } | |
53 |
|
53 | |||
54 | .badge-primary { |
|
54 | .badge-primary { | |
55 | background-color: var(--primary); |
|
55 | background-color: var(--primary); | |
56 | } |
|
56 | } | |
57 |
|
57 | |||
58 |
|
58 | |||
59 | .nopadding { |
|
59 | .nopadding { | |
60 | padding: 0px !important; |
|
60 | padding: 0px !important; | |
61 | } |
|
61 | } | |
62 |
|
62 | |||
63 | .nomargin { |
|
63 | .nomargin { | |
64 | margin: 0px !important; |
|
64 | margin: 0px !important; | |
65 | } |
|
65 | } | |
66 |
|
66 | |||
67 | .legend { |
|
67 | .legend { | |
68 | list-style: none; |
|
68 | list-style: none; | |
69 | padding-left: 1rem; |
|
69 | padding-left: 1rem; | |
70 | padding-top: 1rem; |
|
70 | padding-top: 1rem; | |
71 | } |
|
71 | } | |
72 |
|
72 | |||
73 | .legend span { |
|
73 | .legend span { | |
74 | padding-left: 1em; |
|
74 | padding-left: 1em; | |
75 | } |
|
75 | } | |
76 |
|
76 | |||
77 | #loader { |
|
77 | #loader { | |
78 | margin-top: 40px; |
|
78 | margin-top: 40px; | |
79 | color: var(--tertiary); |
|
79 | color: var(--tertiary); | |
80 | } |
|
80 | } | |
81 |
|
81 | |||
82 | #plot { |
|
82 | #plot { | |
83 | margin-top: 2em; |
|
83 | margin-top: 2em; | |
84 | margin-bottom: 2em; |
|
84 | margin-bottom: 2em; | |
85 | } |
|
85 | } | |
86 |
|
86 | |||
87 | .plot-container { |
|
87 | .plot-container { | |
88 | margin: 5px !important; |
|
88 | margin: 5px !important; | |
89 | } |
|
89 | } | |
90 |
|
90 | |||
91 | /* Change Buttons Bootstrap */ |
|
91 | /* Change Buttons Bootstrap */ | |
92 | .btn-primary { |
|
92 | .btn-primary { | |
93 | color: #fff; |
|
93 | color: #fff; | |
94 | background-color: var(--primary) !important; |
|
94 | background-color: var(--primary) !important; | |
95 | border-color: var(--primary) !important; |
|
95 | border-color: var(--primary) !important; | |
96 | border-radius: 1rem; |
|
96 | border-radius: 1rem; | |
97 | } |
|
97 | } | |
98 |
|
98 | |||
99 | .btn-primary:hover { |
|
99 | .btn-primary:hover { | |
100 | color: #fff; |
|
100 | color: #fff; | |
101 | background-color: var(--primary) !important; |
|
101 | background-color: var(--primary) !important; | |
102 | border-color: var(--primary) !important; |
|
102 | border-color: var(--primary) !important; | |
103 | } |
|
103 | } | |
104 |
|
104 | |||
105 | .btn-secondary { |
|
105 | .btn-secondary { | |
106 | color: #fff; |
|
106 | color: #fff; | |
107 | background-color: var(--secondary) !important; |
|
107 | background-color: var(--secondary) !important; | |
108 | border-color: var(--secondary) !important; |
|
108 | border-color: var(--secondary) !important; | |
109 | border-radius: 1rem; |
|
109 | border-radius: 1rem; | |
110 | } |
|
110 | } | |
111 |
|
111 | |||
112 | .tools-date { |
|
112 | .tools-date { | |
113 | font-size: 0.8rem; |
|
113 | font-size: 0.8rem; | |
114 | } |
|
114 | } | |
115 |
|
115 | |||
116 | /* cards */ |
|
116 | /* cards */ | |
117 |
|
117 | |||
118 | .card { |
|
118 | .card { | |
119 | border-radius: 1.5rem; |
|
119 | border-radius: 1.5rem; | |
120 | padding: 1.5rem; |
|
120 | padding: 1.5rem; | |
121 | } |
|
121 | } | |
122 |
|
122 | |||
123 | .card-text { |
|
123 | .card-text { | |
124 | font-size: 0.8rem; |
|
124 | font-size: 0.8rem; | |
125 | } |
|
125 | } | |
126 |
|
126 | |||
127 | .card-title { |
|
127 | .card-title { | |
128 | color: var(--primary); |
|
128 | color: var(--primary); | |
129 | } |
|
129 | } | |
130 |
|
130 | |||
131 | @media (min-width: 576px) { |
|
131 | @media (min-width: 576px) { | |
132 | .card-columns { |
|
132 | .card-columns { | |
133 | column-count: 2; |
|
133 | column-count: 2; | |
134 | } |
|
134 | } | |
135 | } |
|
135 | } | |
136 |
|
136 | |||
137 | @media (min-width: 768px) { |
|
137 | @media (min-width: 768px) { | |
138 | .card-columns { |
|
138 | .card-columns { | |
139 | column-count: 3; |
|
139 | column-count: 3; | |
140 | } |
|
140 | } | |
141 | } |
|
141 | } | |
142 |
|
142 | |||
143 | @media (min-width: 1180px) { |
|
143 | @media (min-width: 1180px) { | |
144 | .card-columns { |
|
144 | .card-columns { | |
145 | column-count: 4; |
|
145 | column-count: 4; | |
146 | } |
|
146 | } | |
147 |
|
147 | |||
148 | .container, .container-lg, .container-md, .container-sm, .container-xl { |
|
148 | .container, .container-lg, .container-md, .container-sm, .container-xl { | |
149 | max-width: 1020px; |
|
149 | max-width: 1020px; | |
150 | } |
|
150 | } | |
151 |
|
||||
152 | @media (min-width: 1380px) { |
|
|||
153 | .card-columns { |
|
|||
154 | column-count: 5; |
|
|||
155 | } |
|
|||
156 | } |
|
@@ -1,183 +1,211 | |||||
1 | {% extends 'base.html' %} |
|
1 | {% extends 'base.html' %} | |
2 | {% load static%} |
|
2 | {% load static%} | |
3 | {% block content %} |
|
3 | {% block content %} | |
4 |
|
4 | |||
5 | <h2>TOOLS</h2> |
|
5 | <h2>TOOLS</h2> | |
6 |
|
6 | |||
7 | <div class="card-columns mt-2"> |
|
7 | <div class="card-columns mt-2"> | |
8 |
|
8 | |||
9 | <div class="card text-justify mb-4"> |
|
9 | <div class="card text-justify mb-4"> | |
10 | <div class="card-body"> |
|
10 | <div class="card-body"> | |
11 | <h5 class="card-title">DOY Calendar</h5> |
|
11 | <h5 class="card-title">DOY Calendar</h5> | |
12 | <p class="card-text">The day of year (DOY) is the sequential day number starting with day 1 on January 1st</p> |
|
12 | <p class="card-text">The day of year (DOY) is the sequential day number starting with day 1 on January 1st</p> | |
13 | <input type="date" class="form-control tools-date" id="doy-date" placeholder="yyyy-mm-dd" |
|
13 | <input type="date" class="form-control tools-date" id="doy-date" placeholder="yyyy-mm-dd" | |
14 | aria-describedby="validationTooltipSkynoiseDate" value="{% now 'Y-m-d' %}" required> |
|
14 | aria-describedby="validationTooltipSkynoiseDate" value="{% now 'Y-m-d' %}" required> | |
15 | <div class="invalid-tooltip"> |
|
15 | <div class="invalid-tooltip"> | |
16 | Please enter a valid date. |
|
16 | Please enter a valid date. | |
17 | </div> |
|
17 | </div> | |
18 | <p id="pdoy" class="card-text text-center" style="padding-top: 0.5em; font-weight:500; font-size:1.5em; color:var(--secondary);">DOY: {{doy}}</p> |
|
18 | <p id="pdoy" class="card-text text-center" style="padding-top: 0.5em; font-weight:500; font-size:1.5em; color:var(--secondary);">DOY: {{doy}}</p> | |
19 | </div> |
|
19 | </div> | |
20 | </div> |
|
20 | </div> | |
21 |
|
21 | |||
22 |
|
22 | |||
23 | <div class="card text-justify mb-4"> |
|
23 | <div class="card text-justify mb-4"> | |
24 | <img src="{% static 'images/skynoise.png' %}" class="card-img-top" alt="..."> |
|
24 | <img src="{% static 'images/skynoise.png' %}" class="card-img-top" alt="..."> | |
25 | <div class="card-body"> |
|
25 | <div class="card-body"> | |
26 | <h5 class="card-title">Sky noise</h5> |
|
26 | <h5 class="card-title">Sky noise</h5> | |
27 | <p class="card-text">Sky brightness at 50 MHz, useful for antenna calibrations and measure radar's sensitivity. |
|
27 | <p class="card-text">Sky brightness at 50 MHz, useful for antenna calibrations and measure radar's sensitivity. | |
28 | </p> |
|
28 | </p> | |
29 | <input type="date" class="form-control tools-date" id="skynoise-date" placeholder="dd/mm/yy" |
|
29 | <input type="date" class="form-control tools-date" id="skynoise-date" placeholder="dd/mm/yy" | |
30 | aria-describedby="validationTooltipSkynoiseDate" value="{% now 'Y-m-d' %}" required> |
|
30 | aria-describedby="validationTooltipSkynoiseDate" value="{% now 'Y-m-d' %}" required> | |
31 | <div class="invalid-tooltip"> |
|
31 | <div class="invalid-tooltip"> | |
32 | Please enter a valid date. |
|
32 | Please enter a valid date. | |
33 | </div> |
|
33 | </div> | |
34 | <a class="btn btn-primary m-1" data-toggle="modal" href="#toolModal" data-title="Sky Noise" |
|
34 | <a class="btn btn-primary m-1" data-toggle="modal" href="#toolModal" data-title="Sky Noise" | |
35 | data-image="{% url 'url_skynoise' %}">Go</a> |
|
35 | data-image="{% url 'url_skynoise' %}">Go</a> | |
36 | </div> |
|
36 | </div> | |
37 | </div> |
|
37 | </div> | |
38 |
|
38 | |||
39 | <div class="card text-justify mb-4"> |
|
39 | <div class="card text-justify mb-4"> | |
40 | <div class="card-body"> |
|
40 | <div class="card-body"> | |
41 | <h5 class="card-title">Over JRO</h5> |
|
41 | <h5 class="card-title">Over JRO</h5> | |
42 | <p class="card-text">Main antenna radiation pattern for several experiments. |
|
42 | <p class="card-text">Main antenna radiation pattern for several experiments. | |
43 |
|
43 | |||
44 | <input type="date" class="form-control form-control-sm tools-date" id="overjro-date" placeholder="dd/mm/yy" |
|
44 | <input type="date" class="form-control form-control-sm tools-date" id="overjro-date" placeholder="dd/mm/yy" | |
45 | aria-describedby="validationTooltipOverJRODate" value="{% now 'Y-m-d' %}" required> |
|
45 | aria-describedby="validationTooltipOverJRODate" value="{% now 'Y-m-d' %}" required> | |
46 | <div class="invalid-tooltip"> |
|
46 | <div class="invalid-tooltip"> | |
47 | Please enter a valid date. |
|
47 | Please enter a valid date. | |
48 | </div> |
|
48 | </div> | |
49 |
<select |
|
49 | <select id="overjro-experiment" class="form-control form-control-sm"> | |
50 | <option value="-1">Experiment:</option> |
|
50 | <option value="-1">Experiment:</option> | |
51 | <option value="-1">------------------</option> |
|
51 | <option value="-1">------------------</option> | |
52 |
<option value=" |
|
52 | <option value="50">Vertical Drifts</option> | |
53 |
<option value=" |
|
53 | <option value="51">East West 1996 (W beam)</option> | |
54 |
<option value=" |
|
54 | <option value="52">East West 1996 (E beam)</option> | |
55 |
<option value=" |
|
55 | <option value="61">East West 2003</option> | |
56 |
<option value=" |
|
56 | <option value="60">Differential Phase 2000</option> | |
57 |
<option value=" |
|
57 | <option value="63">Differential Phase 2004 High Alt</option> | |
58 |
<option value=" |
|
58 | <option value="64">Differential Phase 2005 - 2006</option> | |
59 |
|
|
59 | <option value="54">DEWD 2005</option> | |
|
60 | <option value="53">DVD 2006 - 2008</option> | |||
60 | <option value="-1">------------------</option> |
|
61 | <option value="-1">------------------</option> | |
61 |
<option value=" |
|
62 | <option value="4">Oblique ISR On-Axis</option> | |
62 |
<option value=" |
|
63 | <option value="5">Oblique ISR 4.5</option> | |
63 |
<option value=" |
|
64 | <option value="6">Oblique ISR 6.0S</option> | |
64 |
<option value=" |
|
65 | <option value="7">Oblique ISR 3.0N</option> | |
65 | <option value="-1">------------------</option> |
|
66 | <option value="-1">------------------</option> | |
66 |
<option value=" |
|
67 | <option value="16">JULIA CP2</option> | |
67 |
<option value=" |
|
68 | <option value="17">JULIA CP3</option> | |
68 |
<option value=" |
|
69 | <option value="18">JULIA V (2005-2006)</option> | |
69 |
<option value=" |
|
70 | <option value="65">JULIA EW 2003</option> | |
70 |
|
|
71 | <option value="19">JULIA EW (2006-2007)</option> | |
71 | <option value="-1">------------------</option> |
|
72 | <option value="-1">------------------</option> | |
72 | <option value="0">Modulo Rx</option> |
|
73 | <option value="0">Modulo Rx</option> | |
73 | <option value="1">1/16 Rx</option> |
|
74 | <option value="1">1/16 Rx</option> | |
74 | <option value="2">1/4 Rx</option> |
|
75 | <option value="2">1/4 Rx</option> | |
75 | <option value="3">All Rx</option> |
|
76 | <option value="3">All Rx</option> | |
76 | <option value="-1">------------------</option> |
|
77 | <option value="-1">------------------</option> | |
77 |
<option value=" |
|
78 | <option value="21">EW Imaging 1996</option> | |
78 |
<option value=" |
|
79 | <option value="22">EW Imaging 2003</option> | |
79 |
|
|
80 | <option value="23">EW Imaging 2006-2008</option> | |
80 | <option value="-1">------------------</option> |
|
81 | <option value="-1">------------------</option> | |
81 |
<option value=" |
|
82 | <option value="359">MST North (Fritts)</option> | |
82 |
<option value=" |
|
83 | <option value="360">MST West (Fritts)</option> | |
83 |
<option value=" |
|
84 | <option value="361">MST South (Fritts)</option> | |
84 |
<option value=" |
|
85 | <option value="362">MST East (Fritts)</option> | |
85 | <option value="-1">------------------</option> |
|
86 | <option value="-1">------------------</option> | |
86 |
<option value=" |
|
87 | <option value="67">Vertical (Yellow Cables)</option> | |
87 | </select> |
|
88 | </select> | |
88 | <br> |
|
89 | <br> | |
89 | <p class="card-text">Choose object: |
|
90 | <p class="card-text">Choose object: | |
90 | <div class="form-check card-text"> |
|
91 | <div class="form-check card-text"> | |
91 |
<input class="form-check-input" type="checkbox" id="inlineCheckbox1" value=" |
|
92 | <input class="form-check-input" type="checkbox" id="inlineCheckbox1" value="bfield" name="celestial"> | |
92 | <label class="form-check-label" for="inlineCheckbox1">B Field</label><br> |
|
93 | <label class="form-check-label" for="inlineCheckbox1">B Field</label><br> | |
93 |
<input class="form-check-input" type="checkbox" id="inlineCheckbox1" value=" |
|
94 | <input class="form-check-input" type="checkbox" id="inlineCheckbox1" value="sun" name="celestial"> | |
94 | <label class="form-check-label" for="inlineCheckbox1">Sun</label><br> |
|
95 | <label class="form-check-label" for="inlineCheckbox1">Sun</label><br> | |
95 |
<input class="form-check-input" type="checkbox" id="inlineCheckbox1" value=" |
|
96 | <input class="form-check-input" type="checkbox" id="inlineCheckbox1" value="moon" name="celestial"> | |
96 | <label class="form-check-label" for="inlineCheckbox1">Moon</label><br> |
|
97 | <label class="form-check-label" for="inlineCheckbox1">Moon</label><br> | |
97 |
<input class="form-check-input" type="checkbox" id="inlineCheckbox1" value=" |
|
98 | <input class="form-check-input" type="checkbox" id="inlineCheckbox1" value="hydra" name="celestial"> | |
98 | <label class="form-check-label" for="inlineCheckbox1">Hydra</label><br> |
|
99 | <label class="form-check-label" for="inlineCheckbox1">Hydra</label><br> | |
99 |
<input class="form-check-input" type="checkbox" id="inlineCheckbox1" value=" |
|
100 | <input class="form-check-input" type="checkbox" id="inlineCheckbox1" value="galaxy" name="celestial"> | |
100 | <label class="form-check-label" for="inlineCheckbox1">Galaxy Center</label> |
|
101 | <label class="form-check-label" for="inlineCheckbox1">Galaxy Center</label> | |
101 | </div> |
|
102 | </div> | |
102 | <br> |
|
103 | <br> | |
103 | <div class="form-group card-text"> |
|
104 | <div class="form-group card-text"> | |
104 | <label class="form-check-label" for="overjro-angle">Max Angle [°]:</label> |
|
105 | <label class="form-check-label" for="overjro-angle">Max Angle [°]:</label> | |
105 | <input type="text" class="form-control form-control-sm tools-date" id="overjro-angle" placeholder="Enter Angle" |
|
106 | <input type="text" class="form-control form-control-sm tools-date" id="overjro-angle" placeholder="Enter Angle" | |
106 | value="5.0" required> |
|
107 | value="5.0" required> | |
107 | </div> |
|
108 | </div> | |
108 | <div class="form-group card-text"> |
|
109 | <div class="form-group card-text"> | |
109 | <label class="form-check-label" for="overjro-height">Height [km]:</label> |
|
110 | <label class="form-check-label" for="overjro-height">Heights [km]:</label> | |
110 | <input type="text" class="form-control form-control-sm tools-date" id="overjro-height" placeholder="Enter Height" |
|
111 | <input type="text" class="form-control form-control-sm tools-date" id="overjro-height" placeholder="Enter Heights [km]" | |
111 | value="" required> |
|
112 | value="100" required> | |
112 | </div> |
|
113 | </div> | |
113 | </p> |
|
114 | </p> | |
114 | </div> |
|
115 | </div> | |
115 | <a class="btn btn-primary m-1" data-toggle="modal" href="#toolModal" data-title="Over JRO" |
|
116 | <a class="btn btn-primary m-1" data-toggle="modal" href="#toolModal" data-title="Over JRO" | |
116 | data-image="{% url 'url_overjro' %}">Go</a> |
|
117 | data-image="{% url 'url_overjro' %}">Go</a> | |
117 | </div> |
|
118 | </div> | |
118 |
|
119 | |||
119 | <div class="card text-justify mb-4"> |
|
120 | <div class="card text-justify mb-4"> | |
120 | <img src="{% static 'images/kp.png' %}" class="card-img-top" alt="..."> |
|
121 | <img src="{% static 'images/kp.png' %}" class="card-img-top" alt="..."> | |
121 | <div class="card-body"> |
|
122 | <div class="card-body"> | |
122 | <h5 class="card-title">Kp Index</h5> |
|
123 | <h5 class="card-title">Kp Index</h5> | |
123 | <p class="card-text">The K-index, are used to characterize the magnitude of geomagnetic storms. Kp is an excellent |
|
124 | <p class="card-text">The K-index, are used to characterize the magnitude of geomagnetic storms. Kp is an excellent | |
124 | indicator of disturbances in the Earth's magnetic field (<a |
|
125 | indicator of disturbances in the Earth's magnetic field (<a | |
125 | href="https://www.swpc.noaa.gov/products/planetary-k-index" target="_blank">NOAA/SWPC</a>).</p> |
|
126 | href="https://www.swpc.noaa.gov/products/planetary-k-index" target="_blank">NOAA/SWPC</a>).</p> | |
126 | <a class="btn btn-primary" data-toggle="modal" href="#toolModal" data-title="Kp Index" |
|
127 | <a class="btn btn-primary" data-toggle="modal" href="#toolModal" data-title="Kp Index" | |
127 | data-image="https://services.swpc.noaa.gov/images/planetary-k-index.gif">Go</a> |
|
128 | data-image="https://services.swpc.noaa.gov/images/planetary-k-index.gif">Go</a> | |
128 | </div> |
|
129 | </div> | |
129 | </div> |
|
130 | </div> | |
130 | </div> |
|
131 | </div> | |
131 |
|
132 | |||
132 | <!-- Modal --> |
|
133 | <!-- Modal --> | |
133 | <div class="modal fade" id="toolModal" tabindex="-1" role="dialog" aria-labelledby="toolModalTitle" aria-hidden="true"> |
|
134 | <div class="modal fade" id="toolModal" tabindex="-1" role="dialog" aria-labelledby="toolModalTitle" aria-hidden="true"> | |
134 | <div class="modal-dialog modal-lg" role="document"> |
|
135 | <div class="modal-dialog modal-lg" role="document"> | |
135 | <div class="modal-content"> |
|
136 | <div class="modal-content"> | |
136 | <div class="modal-header"> |
|
137 | <div class="modal-header"> | |
137 | <h5 class="modal-title" id="toolModalTitle">Modal title</h5> |
|
138 | <h5 class="modal-title" id="toolModalTitle">Modal title</h5> | |
138 | <button type="button" class="close" data-dismiss="modal" aria-label="Close"> |
|
139 | <button type="button" class="close" data-dismiss="modal" aria-label="Close"> | |
139 | <span aria-hidden="true">×</span> |
|
140 | <span aria-hidden="true">×</span> | |
140 | </button> |
|
141 | </button> | |
141 | </div> |
|
142 | </div> | |
142 | <div class="modal-body text-center"> |
|
143 | <div class="modal-body text-center"> | |
143 | <img class="img-fluid" src=""> |
|
144 | <img class="img-fluid" src=""> | |
144 | </div> |
|
145 | </div> | |
|
146 | <div class="modal-body text-center"> | |||
|
147 | <p></p> | |||
|
148 | </div> | |||
145 | </div> |
|
149 | </div> | |
146 | </div> |
|
150 | </div> | |
147 | </div> |
|
151 | </div> | |
148 |
|
152 | |||
149 | {% endblock content %} |
|
153 | {% endblock content %} | |
150 |
|
154 | |||
151 | {% block script %} |
|
155 | {% block script %} | |
152 | <script> |
|
156 | <script> | |
153 |
|
157 | |||
154 | $('#toolModal').on('show.bs.modal', function (e) { |
|
158 | $('#toolModal').on('show.bs.modal', function (e) { | |
155 |
|
159 | |||
156 | //get data attribute of the clicked element |
|
160 | //get data attribute of the clicked element | |
157 | var title = $(e.relatedTarget).data('title'); |
|
161 | var title = $(e.relatedTarget).data('title'); | |
158 | var image = $(e.relatedTarget).data('image'); |
|
162 | var image = $(e.relatedTarget).data('image'); | |
|
163 | $(e.currentTarget).find('p').text(''); | |||
|
164 | $(e.currentTarget).find('img').attr('src', ''); | |||
159 |
|
165 | |||
160 | if (image.indexOf('skynoise') > 0) { |
|
166 | if (image.indexOf('skynoise') > 0) { | |
161 | var dt = $('#skynoise-date').val(); |
|
167 | var dt = $('#skynoise-date').val(); | |
162 | image += '?date=' + dt; |
|
168 | image += '?date=' + dt; | |
|
169 | //populate values | |||
|
170 | $(e.currentTarget).find('h5').text(title); | |||
|
171 | $(e.currentTarget).find('img').attr('src', image); | |||
163 | } |
|
172 | } | |
164 |
|
173 | |||
165 | //populate values |
|
174 | if (image.indexOf('overjro') > 0) { | |
166 | $(e.currentTarget).find('h5').text(title); |
|
175 | $(e.currentTarget).find('h5').text(title); | |
|
176 | ||||
|
177 | if ($('#overjro-experiment').val() == '-1'){ | |||
|
178 | $(e.currentTarget).find('p').text('Missing Experiment'); | |||
|
179 | } else { | |||
|
180 | ||||
|
181 | var dt = $('#overjro-date').val(); | |||
|
182 | var favorite = []; | |||
|
183 | $.each($("input[name='celestial']:checked"), function(){ | |||
|
184 | favorite.push($(this).val()); | |||
|
185 | }); | |||
|
186 | ||||
|
187 | image += '?date=' + dt; | |||
|
188 | image += '&experiment=' + $('#overjro-experiment').val(); | |||
|
189 | image += '&angle=' + $('#overjro-angle').val(); | |||
|
190 | image += '&height=' + $('#overjro-height').val(); | |||
|
191 | image += '&bodys=' + favorite.join(","); | |||
|
192 | ||||
167 | $(e.currentTarget).find('img').attr('src', image); |
|
193 | $(e.currentTarget).find('img').attr('src', image); | |
|
194 | } | |||
|
195 | } | |||
168 | }); |
|
196 | }); | |
169 |
|
197 | |||
170 | $('#doy-date').change(function() { |
|
198 | $('#doy-date').change(function() { | |
171 | var old = new Date($(this).val()); |
|
199 | var old = new Date($(this).val()); | |
172 | var now = new Date(old.getTime()+old.getTimezoneOffset()*60*1000); |
|
200 | var now = new Date(old.getTime()+old.getTimezoneOffset()*60*1000); | |
173 | var start = new Date(now.getFullYear(), 0, 0); |
|
201 | var start = new Date(now.getFullYear(), 0, 0); | |
174 | var diff = (now - start) // + ((start.getTimezoneOffset() - now.getTimezoneOffset()) * 60 * 1000); |
|
202 | var diff = (now - start) // + ((start.getTimezoneOffset() - now.getTimezoneOffset()) * 60 * 1000); | |
175 | var oneDay = 1000 * 60 * 60 * 24; |
|
203 | var oneDay = 1000 * 60 * 60 * 24; | |
176 | var doy = Math.floor(diff / oneDay); |
|
204 | var doy = Math.floor(diff / oneDay); | |
177 | $('#pdoy').text("DOY: " + doy); |
|
205 | $('#pdoy').text("DOY: " + doy); | |
178 | console.log(now); |
|
206 | console.log(now); | |
179 | console.log(start); |
|
207 | console.log(start); | |
180 | }); |
|
208 | }); | |
181 |
|
209 | |||
182 | </script> |
|
210 | </script> | |
183 | {% endblock script %} No newline at end of file |
|
211 | {% endblock script %} |
@@ -1,264 +1,269 | |||||
1 | #!/usr/bin/python |
|
1 | #!/usr/bin/python | |
2 | # -*- coding: UTF-8 -*- |
|
2 | # -*- coding: UTF-8 -*- | |
3 |
|
3 | |||
4 |
|
4 | |||
5 | import os |
|
5 | import os | |
6 | import time |
|
6 | import time | |
7 | from datetime import datetime |
|
7 | from datetime import datetime | |
8 |
|
8 | |||
9 | from django import forms |
|
9 | from django import forms | |
10 | from django.contrib import messages |
|
10 | from django.contrib import messages | |
11 | from django.utils.safestring import mark_safe |
|
11 | from django.utils.safestring import mark_safe | |
12 | from django.shortcuts import render |
|
12 | from django.shortcuts import render | |
13 | from django.http import HttpResponse |
|
13 | from django.http import HttpResponse | |
14 |
|
14 | |||
15 | import mongoengine |
|
15 | import mongoengine | |
16 |
|
16 | |||
17 | from plotter.models import Experiment, ExpDetail, PlotMeta, PlotData, JROReport |
|
17 | from plotter.models import Experiment, ExpDetail, PlotMeta, PlotData, JROReport | |
18 |
|
18 | |||
19 | from utils.plots import skynoise_plot |
|
19 | from utils.plots import skynoise_plot, overjro_plot | |
20 |
|
20 | |||
21 | host = os.environ.get('HOST_MONGO', 'localhost') |
|
21 | host = os.environ.get('HOST_MONGO', 'localhost') | |
22 | mongoengine.connect('dbplots', host=host, port=27017) |
|
22 | mongoengine.connect('dbplots', host=host, port=27017) | |
23 |
|
23 | |||
24 |
|
24 | |||
25 | # Forms |
|
25 | # Forms | |
26 | class SearchForm(forms.Form): |
|
26 | class SearchForm(forms.Form): | |
27 |
|
27 | |||
28 | experiment = forms.ChoiceField() |
|
28 | experiment = forms.ChoiceField() | |
29 | plot = forms.ChoiceField() |
|
29 | plot = forms.ChoiceField() | |
30 |
|
30 | |||
31 | def __init__(self, *args, **kwargs): |
|
31 | def __init__(self, *args, **kwargs): | |
32 |
|
32 | |||
33 | exp_choices = kwargs.pop('exp_choices', []) |
|
33 | exp_choices = kwargs.pop('exp_choices', []) | |
34 | plt_choices = kwargs.pop('plt_choices', []) |
|
34 | plt_choices = kwargs.pop('plt_choices', []) | |
35 | super(SearchForm, self).__init__(*args, **kwargs) |
|
35 | super(SearchForm, self).__init__(*args, **kwargs) | |
36 | self.fields['experiment'].choices = [(0, 'Select Experiment')] + exp_choices |
|
36 | self.fields['experiment'].choices = [(0, 'Select Experiment')] + exp_choices | |
37 | self.fields['plot'].choices = [(0, 'Select Plot')] + plt_choices |
|
37 | self.fields['plot'].choices = [(0, 'Select Plot')] + plt_choices | |
38 | # we use this class to change the parameter in Scatter plot using the function plotly.restyle in jroplot.js |
|
38 | # we use this class to change the parameter in Scatter plot using the function plotly.restyle in jroplot.js | |
39 | class ScatterSetupForm(forms.Form): |
|
39 | class ScatterSetupForm(forms.Form): | |
40 |
|
40 | |||
41 | plotdiv = forms.CharField(widget=forms.HiddenInput()) |
|
41 | plotdiv = forms.CharField(widget=forms.HiddenInput()) | |
42 | ymax = forms.CharField(initial=30) |
|
42 | ymax = forms.CharField(initial=30) | |
43 | ymin = forms.CharField(initial=10) |
|
43 | ymin = forms.CharField(initial=10) | |
44 |
|
44 | |||
45 | # we use this class to change the parameter in RTI plot using the function plotly.restyle in jroplot.js |
|
45 | # we use this class to change the parameter in RTI plot using the function plotly.restyle in jroplot.js | |
46 | class RTISetupForm(forms.Form): |
|
46 | class RTISetupForm(forms.Form): | |
47 |
|
47 | |||
48 | plotdiv = forms.CharField(widget=forms.HiddenInput()) |
|
48 | plotdiv = forms.CharField(widget=forms.HiddenInput()) | |
49 | colormap = forms.ChoiceField(choices=[('Jet', 'Jet'), ('Viridis', 'Viridis'), ('RdBu', 'RdBu')]) |
|
49 | colormap = forms.ChoiceField(choices=[('Jet', 'Jet'), ('Viridis', 'Viridis'), ('RdBu', 'RdBu')]) | |
50 | zmax = forms.CharField(initial=30) |
|
50 | zmax = forms.CharField(initial=30) | |
51 | zmin = forms.CharField(initial=10) |
|
51 | zmin = forms.CharField(initial=10) | |
52 | ymax = forms.CharField(initial=180) |
|
52 | ymax = forms.CharField(initial=180) | |
53 | ymin = forms.CharField(initial=80) |
|
53 | ymin = forms.CharField(initial=80) | |
54 |
|
54 | |||
55 | # we use this class to change the parameter in SPC plot using the function plotly.restyle in jroplot.js |
|
55 | # we use this class to change the parameter in SPC plot using the function plotly.restyle in jroplot.js | |
56 | class SPCSetupForm(forms.Form): |
|
56 | class SPCSetupForm(forms.Form): | |
57 |
|
57 | |||
58 | plotdiv = forms.CharField(widget=forms.HiddenInput()) |
|
58 | plotdiv = forms.CharField(widget=forms.HiddenInput()) | |
59 | colormap = forms.ChoiceField(choices=[('Jet', 'Jet'), ('Viridis', 'Viridis'), ('RdBu', 'RdBu')]) |
|
59 | colormap = forms.ChoiceField(choices=[('Jet', 'Jet'), ('Viridis', 'Viridis'), ('RdBu', 'RdBu')]) | |
60 | #como es un perfil xmin y xmax deben ser iguales a zmin y zmax |
|
60 | #como es un perfil xmin y xmax deben ser iguales a zmin y zmax | |
61 | xmax = forms.CharField(initial=30) |
|
61 | xmax = forms.CharField(initial=30) | |
62 | xmin = forms.CharField(initial=10) |
|
62 | xmin = forms.CharField(initial=10) | |
63 | #x2max = forms.CharField(initial=30) |
|
63 | #x2max = forms.CharField(initial=30) | |
64 | #x2min = forms.CharField(initial=10) |
|
64 | #x2min = forms.CharField(initial=10) | |
65 | ymax = forms.CharField(initial=180) |
|
65 | ymax = forms.CharField(initial=180) | |
66 | ymin = forms.CharField(initial=80) |
|
66 | ymin = forms.CharField(initial=80) | |
67 | zmax = forms.CharField(initial=30) |
|
67 | zmax = forms.CharField(initial=30) | |
68 | zmin = forms.CharField(initial=10) |
|
68 | zmin = forms.CharField(initial=10) | |
69 |
|
69 | |||
70 | # Create your views here. |
|
70 | # Create your views here. | |
71 | def main(request, tag=None): |
|
71 | def main(request, tag=None): | |
72 |
|
72 | |||
73 | kwargs = {} |
|
73 | kwargs = {} | |
74 | date = request.GET.get('date', datetime.now().strftime('%d-%m-%Y')) |
|
74 | date = request.GET.get('date', datetime.now().strftime('%d-%m-%Y')) | |
75 | exps = ExpDetail.objects(date=datetime.strptime(date, '%d-%m-%Y')) |
|
75 | exps = ExpDetail.objects(date=datetime.strptime(date, '%d-%m-%Y')) | |
76 |
|
76 | |||
77 | tmp = {} |
|
77 | tmp = {} | |
78 | for exp in exps: |
|
78 | for exp in exps: | |
79 | label = exp.tag.lower().strip() if exp.tag else 'other' |
|
79 | label = exp.tag.lower().strip() if exp.tag else 'other' | |
80 | if label in tmp: |
|
80 | if label in tmp: | |
81 | tmp[label] += 1 |
|
81 | tmp[label] += 1 | |
82 | else: |
|
82 | else: | |
83 | tmp[label] = 1 |
|
83 | tmp[label] = 1 | |
84 | tags = [] |
|
84 | tags = [] | |
85 |
|
85 | |||
86 | for key, value in tmp.items(): |
|
86 | for key, value in tmp.items(): | |
87 | if tag == key: |
|
87 | if tag == key: | |
88 | tags.append({'name': key, 'n': tmp[key], 'active': 'primary'}) |
|
88 | tags.append({'name': key, 'n': tmp[key], 'active': 'primary'}) | |
89 | else: |
|
89 | else: | |
90 | tags.append({'name': key, 'n': tmp[key], 'active': 'secondary'}) |
|
90 | tags.append({'name': key, 'n': tmp[key], 'active': 'secondary'}) | |
91 |
|
91 | |||
92 | kwargs['tags'] = tags |
|
92 | kwargs['tags'] = tags | |
93 |
|
93 | |||
94 | if tags and tag is None: |
|
94 | if tags and tag is None: | |
95 | if 'jicamarca' in [t['name'] for t in tags]: |
|
95 | if 'jicamarca' in [t['name'] for t in tags]: | |
96 | tag = 'jicamarca' |
|
96 | tag = 'jicamarca' | |
97 | elif 'julia' in [t['name'] for t in tags]: |
|
97 | elif 'julia' in [t['name'] for t in tags]: | |
98 | tag = 'julia' |
|
98 | tag = 'julia' | |
99 | else: |
|
99 | else: | |
100 | tag = tags[0]['name'] |
|
100 | tag = tags[0]['name'] | |
101 |
|
101 | |||
102 | for t in tags: |
|
102 | for t in tags: | |
103 | if tag == t['name']: |
|
103 | if tag == t['name']: | |
104 | t['active'] = 'primary' |
|
104 | t['active'] = 'primary' | |
105 |
|
105 | |||
106 |
|
106 | |||
107 | if tag: |
|
107 | if tag: | |
108 | experiments = [] |
|
108 | experiments = [] | |
109 | for exp in exps: |
|
109 | for exp in exps: | |
110 | label = exp.tag.lower().strip() if exp.tag else 'other' |
|
110 | label = exp.tag.lower().strip() if exp.tag else 'other' | |
111 | if label != tag: |
|
111 | if label != tag: | |
112 | continue |
|
112 | continue | |
113 | dum = {} |
|
113 | dum = {} | |
114 | dum['code'] = exp.experiment.code |
|
114 | dum['code'] = exp.experiment.code | |
115 | dum['plots'] = [] |
|
115 | dum['plots'] = [] | |
116 | dum['name'] = exp.experiment.name |
|
116 | dum['name'] = exp.experiment.name | |
117 |
|
117 | |||
118 | t = time.time() |
|
118 | t = time.time() | |
119 |
|
119 | |||
120 | if (t-exp['last_time']) > 6*exp['interval']: |
|
120 | if (t-exp['last_time']) > 6*exp['interval']: | |
121 | status = 'Offline' |
|
121 | status = 'Offline' | |
122 | clase = 'alertas-offline' |
|
122 | clase = 'alertas-offline' | |
123 | style = 'danger' |
|
123 | style = 'danger' | |
124 | elif (t-exp['last_time']) > 3*exp['interval']: |
|
124 | elif (t-exp['last_time']) > 3*exp['interval']: | |
125 | status = 'Delayed' |
|
125 | status = 'Delayed' | |
126 | clase = 'alertas-delayed' |
|
126 | clase = 'alertas-delayed' | |
127 | style = 'warning' |
|
127 | style = 'warning' | |
128 | else: |
|
128 | else: | |
129 | status = 'Online' |
|
129 | status = 'Online' | |
130 | clase = 'alertas-online' |
|
130 | clase = 'alertas-online' | |
131 | style = 'success' |
|
131 | style = 'success' | |
132 |
|
132 | |||
133 | dum['status'] = status |
|
133 | dum['status'] = status | |
134 | dum['class'] = clase |
|
134 | dum['class'] = clase | |
135 | dum['style']= style |
|
135 | dum['style']= style | |
136 | dum['date']= datetime.fromtimestamp(exp['last_time']) |
|
136 | dum['date']= datetime.fromtimestamp(exp['last_time']) | |
137 | for plot in exp.plots(): |
|
137 | for plot in exp.plots(): | |
138 | dum['plots'].append({'plot': plot.plot, 'name': plot.plot.replace('_', ' ').title(), 'id':plot.id}) |
|
138 | dum['plots'].append({'plot': plot.plot, 'name': plot.plot.replace('_', ' ').title(), 'id':plot.id}) | |
139 | experiments.append(dum) |
|
139 | experiments.append(dum) | |
140 |
|
140 | |||
141 | kwargs['experiments'] = experiments |
|
141 | kwargs['experiments'] = experiments | |
142 | kwargs['tag'] = tag |
|
142 | kwargs['tag'] = tag | |
143 |
|
143 | |||
144 | kwargs['date'] = date |
|
144 | kwargs['date'] = date | |
145 | kwargs['title'] = 'Home' |
|
145 | kwargs['title'] = 'Home' | |
146 |
|
146 | |||
147 | return render(request, 'home.html', kwargs) |
|
147 | return render(request, 'home.html', kwargs) | |
148 |
|
148 | |||
149 | def about(request): |
|
149 | def about(request): | |
150 | ''' |
|
150 | ''' | |
151 | ''' |
|
151 | ''' | |
152 | kwargs = { |
|
152 | kwargs = { | |
153 | 'title': 'About' |
|
153 | 'title': 'About' | |
154 | } |
|
154 | } | |
155 | return render(request, 'about.html', kwargs) |
|
155 | return render(request, 'about.html', kwargs) | |
156 |
|
156 | |||
157 |
|
157 | |||
158 | def tools(request): |
|
158 | def tools(request): | |
159 | ''' |
|
159 | ''' | |
160 | ''' |
|
160 | ''' | |
161 | kwargs = { |
|
161 | kwargs = { | |
162 | 'title': 'Tools', |
|
162 | 'title': 'Tools', | |
163 | 'doy': (datetime.today().date()-datetime.today().date().replace(month=1, day=1)).days + 1 |
|
163 | 'doy': (datetime.today().date()-datetime.today().date().replace(month=1, day=1)).days + 1 | |
164 | } |
|
164 | } | |
165 | return render(request, 'tools.html', kwargs) |
|
165 | return render(request, 'tools.html', kwargs) | |
166 |
|
166 | |||
167 | def reports(request, year=None): |
|
167 | def reports(request, year=None): | |
168 | ''' |
|
168 | ''' | |
169 | ''' |
|
169 | ''' | |
170 |
|
170 | |||
171 | reports = JROReport.objects.all() |
|
171 | reports = JROReport.objects.all() | |
172 | years = reports.values_list('date__year').distinct() |
|
172 | years = reports.values_list('date__year').distinct() | |
173 |
|
173 | |||
174 | if year is None: |
|
174 | if year is None: | |
175 | year = reports.order_by('-date')[0].date.year |
|
175 | year = reports.order_by('-date')[0].date.year | |
176 | else: |
|
176 | else: | |
177 | year = int(year) |
|
177 | year = int(year) | |
178 |
|
178 | |||
179 | reports = reports.filter(date__year=year).order_by('date') |
|
179 | reports = reports.filter(date__year=year).order_by('date') | |
180 |
|
180 | |||
181 | kwargs = { |
|
181 | kwargs = { | |
182 | 'title': 'Reports', |
|
182 | 'title': 'Reports', | |
183 | 'reports': reports, |
|
183 | 'reports': reports, | |
184 | 'years': [y[0] for y in years], |
|
184 | 'years': [y[0] for y in years], | |
185 | 'year' : year, |
|
185 | 'year' : year, | |
186 | } |
|
186 | } | |
187 | return render(request, 'reports.html', kwargs) |
|
187 | return render(request, 'reports.html', kwargs) | |
188 |
|
188 | |||
189 | def plot(request, code=None, plot=None): |
|
189 | def plot(request, code=None, plot=None): | |
190 | ''' |
|
190 | ''' | |
191 | ''' |
|
191 | ''' | |
192 |
|
192 | |||
193 | realtime = False |
|
193 | realtime = False | |
194 | date = request.GET.get('date', None) |
|
194 | date = request.GET.get('date', None) | |
195 | if date is None: |
|
195 | if date is None: | |
196 | date = datetime.now().strftime('%d-%m-%Y') |
|
196 | date = datetime.now().strftime('%d-%m-%Y') | |
197 | realtime = True |
|
197 | realtime = True | |
198 | exp = Experiment.objects.get(code=int(code)) |
|
198 | exp = Experiment.objects.get(code=int(code)) | |
199 | detail = ExpDetail.objects.get(experiment=exp, date=datetime.strptime(date, '%d-%m-%Y')) |
|
199 | detail = ExpDetail.objects.get(experiment=exp, date=datetime.strptime(date, '%d-%m-%Y')) | |
200 | meta = PlotMeta.objects.get(exp_detail=detail, plot=plot) |
|
200 | meta = PlotMeta.objects.get(exp_detail=detail, plot=plot) | |
201 | tag = detail.tag.lower().strip() if detail.tag else 'other' |
|
201 | tag = detail.tag.lower().strip() if detail.tag else 'other' | |
202 |
|
202 | |||
203 | kwargs = { |
|
203 | kwargs = { | |
204 | 'code': code, |
|
204 | 'code': code, | |
205 | 'plot': plot, |
|
205 | 'plot': plot, | |
206 | 'meta':meta, |
|
206 | 'meta':meta, | |
207 | 'date': date, |
|
207 | 'date': date, | |
208 | 'id': meta.pk, |
|
208 | 'id': meta.pk, | |
209 | 'realtime': realtime, |
|
209 | 'realtime': realtime, | |
210 | 'title': 'Home', |
|
210 | 'title': 'Home', | |
211 | 'name' : exp.name, |
|
211 | 'name' : exp.name, | |
212 | 'sidebar': True, |
|
212 | 'sidebar': True, | |
213 | 'tag' : tag, |
|
213 | 'tag' : tag, | |
214 | 'plots': [] |
|
214 | 'plots': [] | |
215 | } |
|
215 | } | |
216 |
|
216 | |||
217 | for plt in detail.plots(): |
|
217 | for plt in detail.plots(): | |
218 | kwargs['plots'].append({'plot': plt.plot, 'name': plt.plot.replace('_', ' ').title()}) |
|
218 | kwargs['plots'].append({'plot': plt.plot, 'name': plt.plot.replace('_', ' ').title()}) | |
219 |
|
219 | |||
220 | # Logic to show my views |
|
220 | # Logic to show my views | |
221 | if meta.metadata['type'] == 'pcolorbuffer': |
|
221 | if meta.metadata['type'] == 'pcolorbuffer': | |
222 | kwargs['setup_form'] = RTISetupForm() |
|
222 | kwargs['setup_form'] = RTISetupForm() | |
223 | kwargs['fn_plot'] = 'PcolorBuffer' |
|
223 | kwargs['fn_plot'] = 'PcolorBuffer' | |
224 | return render(request, 'plot.html', kwargs) |
|
224 | return render(request, 'plot.html', kwargs) | |
225 | elif meta.metadata['type'] == 'pcolor': |
|
225 | elif meta.metadata['type'] == 'pcolor': | |
226 | kwargs['setup_form'] = SPCSetupForm() |
|
226 | kwargs['setup_form'] = SPCSetupForm() | |
227 | kwargs['fn_plot'] = 'Pcolor' |
|
227 | kwargs['fn_plot'] = 'Pcolor' | |
228 | return render(request, 'plot.html', kwargs) |
|
228 | return render(request, 'plot.html', kwargs) | |
229 | elif meta.metadata['type'] == 'scatterbuffer': |
|
229 | elif meta.metadata['type'] == 'scatterbuffer': | |
230 | kwargs['setup_form'] = ScatterSetupForm() |
|
230 | kwargs['setup_form'] = ScatterSetupForm() | |
231 | kwargs['fn_plot'] = 'ScatterBuffer' |
|
231 | kwargs['fn_plot'] = 'ScatterBuffer' | |
232 | return render(request, 'plot.html', kwargs) |
|
232 | return render(request, 'plot.html', kwargs) | |
233 | elif meta.metadata['type'] == 'image': |
|
233 | elif meta.metadata['type'] == 'image': | |
234 | kwargs['image'] = True |
|
234 | kwargs['image'] = True | |
235 | kwargs['fn_plot'] = 'StaticPlot' |
|
235 | kwargs['fn_plot'] = 'StaticPlot' | |
236 | return render(request, 'plot.html', kwargs) |
|
236 | return render(request, 'plot.html', kwargs) | |
237 | else: |
|
237 | else: | |
238 | return render(request, 'home.html', {}) |
|
238 | return render(request, 'home.html', {}) | |
239 |
|
239 | |||
240 | def plot_skynoise(request): |
|
240 | def plot_skynoise(request): | |
241 |
|
241 | |||
242 | date = request.GET.get('date', None) |
|
242 | date = request.GET.get('date', None) | |
243 | if date is None: |
|
243 | if date is None: | |
244 | date = datetime.now() |
|
244 | date = datetime.now() | |
245 | else: |
|
245 | else: | |
246 | date = datetime.strptime(date, '%Y-%m-%d') |
|
246 | date = datetime.strptime(date, '%Y-%m-%d') | |
247 |
|
247 | |||
248 | data = skynoise_plot(date.year, date.month, date.day) |
|
248 | data = skynoise_plot(date.year, date.month, date.day) | |
249 | response = HttpResponse(data.getvalue(), content_type='image/png') |
|
249 | response = HttpResponse(data.getvalue(), content_type='image/png') | |
250 |
|
250 | |||
251 | return response |
|
251 | return response | |
252 |
|
252 | |||
253 | def plot_overjro(request): |
|
253 | def plot_overjro(request): | |
254 |
|
254 | |||
255 | date = request.GET.get('date', None) |
|
255 | date = request.GET.get('date', None) | |
256 | if date is None: |
|
256 | if date is None: | |
257 | date = datetime.now() |
|
257 | date = datetime.now() | |
258 | else: |
|
258 | else: | |
259 | date = datetime.strptime(date, '%Y-%m-%d') |
|
259 | date = datetime.strptime(date, '%Y-%m-%d') | |
260 |
|
260 | |||
261 | data = skynoise_plot(date.year, date.month, date.day) |
|
261 | pattern = int(request.GET.get('experiment', '1')) | |
|
262 | angle = float(request.GET.get('angle', '5')) | |||
|
263 | height = [float(h) for h in request.GET.get('height', '100').split(',')] | |||
|
264 | bodys = (request.GET.get('bodys', '')).split(',') | |||
|
265 | ||||
|
266 | data = overjro_plot(pattern, date, angle, height, bodys) | |||
262 | response = HttpResponse(data.getvalue(), content_type='image/png') |
|
267 | response = HttpResponse(data.getvalue(), content_type='image/png') | |
263 |
|
268 | |||
264 | return response |
|
269 | return response |
1 | NO CONTENT: modified file |
|
NO CONTENT: modified file | ||
The requested commit or file is too big and content was truncated. Show full diff |
General Comments 0
You need to be logged in to leave comments.
Login now