import ast import json import numpy as np from polymorphic import PolymorphicModel from django.db import models from django.core.urlresolvers import reverse from django.core.validators import MinValueValidator, MaxValueValidator from apps.main.models import Configuration from devices.rc import api from .utils import RCFile # Create your models here. LINE_TYPES = ( ('none', 'Not used'), ('tr', 'Transmission/reception selector signal'), ('tx', 'A modulating signal (Transmission pulse)'), ('codes', 'BPSK modulating signal'), ('windows', 'Sample window signal'), ('sync', 'Synchronizing signal'), ('flip', 'IPP related periodic signal'), ('prog_pulses', 'Programmable pulse'), ('mix', 'Mixed line'), ) SAMPLING_REFS = ( ('none', 'No Reference'), ('begin_baud', 'Begin of the first baud'), ('first_baud', 'Middle of the first baud'), ('sub_baud', 'Middle of the sub-baud') ) DAT_CMDS = { # Pulse Design commands 'DISABLE' : 0, # Disables pulse generation 'ENABLE' : 24, # Enables pulse generation 'DELAY_START' : 40, # Write delay status to memory 'FLIP_START' : 48, # Write flip status to memory 'SAMPLING_PERIOD' : 64, # Establish Sampling Period 'TX_ONE' : 72, # Output '0' in line TX 'TX_ZERO' : 88, # Output '0' in line TX 'SW_ONE' : 104, # Output '0' in line SW 'SW_ZERO' : 112, # Output '1' in line SW 'RESTART': 120, # Restarts CR8 Firmware 'CONTINUE' : 253, # Function Unknown # Commands available to new controllers # In Pulse Design Executable, the clock divisor code is written as 12 at the start, but it should be written as code 22(below) just before the final enable. 'CLOCK_DIVISOR_INIT' : 12, # Specifies Clock Divisor. Legacy command, ignored in the actual .dat conversion 'CLOCK_DIVISOR_LAST' : 22, # Specifies Clock Divisor (default 60 if not included) syntax: 255,22 254,N-1. 'CLOCK_DIVIDER' : 8, } class RCConfiguration(Configuration): ipp = models.FloatField(verbose_name='IPP [Km]', validators=[MinValueValidator(1), MaxValueValidator(9000)], default=300) ntx = models.PositiveIntegerField(verbose_name='Number of TX', validators=[MinValueValidator(1), MaxValueValidator(400)], default=1) clock_in = models.FloatField(verbose_name='Clock in [MHz]', validators=[MinValueValidator(1), MaxValueValidator(80)], default=1) clock_divider = models.PositiveIntegerField(verbose_name='Clock divider', validators=[MinValueValidator(1), MaxValueValidator(256)], default=1) clock = models.FloatField(verbose_name='Clock Master [MHz]', blank=True, default=1) time_before = models.PositiveIntegerField(verbose_name='Time before [μS]', default=12) time_after = models.PositiveIntegerField(verbose_name='Time after [μS]', default=1) sync = models.PositiveIntegerField(verbose_name='Synchro delay', default=0) sampling_reference = models.CharField(verbose_name='Sampling Reference', choices=SAMPLING_REFS, default='none', max_length=40) control_tx = models.BooleanField(verbose_name='Control Switch TX', default=False) control_sw = models.BooleanField(verbose_name='Control Switch SW', default=False) total_units = models.PositiveIntegerField(default=0) mix = models.BooleanField(default=False) class Meta: db_table = 'rc_configurations' def get_absolute_url_plot(self): return reverse('url_plot_rc_pulses', args=[str(self.id)]) def get_absolute_url_import(self): return reverse('url_import_rc_conf', args=[str(self.id)]) @property def ipp_unit(self): return '{} ({})'.format(self.ipp, int(self.ipp*self.km2unit)) @property def us2unit(self): return self.clock_in/self.clock_divider @property def km2unit(self): return 20./3*(self.clock_in/self.clock_divider) def clone(self, **kwargs): lines = self.get_lines() self.pk = None self.id = None for attr, value in kwargs.items(): setattr(self, attr, value) self.save() for line in lines: line.clone(rc_configuration=self) return self def get_lines(self, **kwargs): ''' Retrieve configuration lines ''' return RCLine.objects.filter(rc_configuration=self.pk, **kwargs) def clean_lines(self): ''' ''' empty_line = RCLineType.objects.get(name='none') for line in self.get_lines(): line.line_type = empty_line line.params = '{}' line.save() def parms_to_dict(self): ''' ''' ignored = ('parameters', 'type', 'polymorphic_ctype', 'configuration_ptr', 'created_date', 'programmed_date') data = {} for field in self._meta.fields: if field.name in ignored: continue data[field.name] = '{}'.format(field.value_from_object(self)) data['device_id'] = data.pop('device') data['lines'] = [] for line in self.get_lines(): line_data = json.loads(line.params) if 'TX_ref' in line_data and line_data['TX_ref'] not in (0, '0'): line_data['TX_ref'] = line.get_name() if 'code' in line_data: line_data['code'] = RCLineCode.objects.get(pk=line_data['code']).name line_data['type'] = line.line_type.name line_data['name'] = line.get_name() data['lines'].append(line_data) data['delays'] = self.get_delays() data['pulses'] = self.get_pulses() return data def dict_to_parms(self, data): ''' ''' self.name = data['name'] self.ipp = float(data['ipp']) self.ntx = int(data['ntx']) self.clock_in = float(data['clock_in']) self.clock_divider = int(data['clock_divider']) self.clock = float(data['clock']) self.time_before = data['time_before'] self.time_after = data['time_after'] self.sync = data['sync'] self.sampling_reference = data['sampling_reference'] self.total_units = self.ipp*self.ntx*self.km2unit self.save() self.clean_lines() lines = [] positions = {'tx':0, 'tr':0} for i, line_data in enumerate(data['lines']): line_type = RCLineType.objects.get(name=line_data.pop('type')) if line_type.name=='codes': code = RCLineCode.objects.get(name=line_data['code']) line_data['code'] = code.pk line = RCLine.objects.filter(rc_configuration=self, channel=i) if line: line = line[0] line.line_type = line_type line.params = json.dumps(line_data) else: line = RCLine(rc_configuration=self, line_type=line_type, params=json.dumps(line_data), channel=i) if line_type.name=='tx': line.position = positions['tx'] positions['tx'] += 1 if line_type.name=='tr': line.position = positions['tr'] positions['tr'] += 1 line.save() lines.append(line) for line, line_data in zip(lines, data['lines']): if 'TX_ref' in line_data: params = json.loads(line.params) if line_data['TX_ref'] in (0, '0'): params['TX_ref'] = '0' else: params['TX_ref'] = [l.pk for l in lines if l.line_type.name=='tx' and line_data['TX_ref'] in l.get_name()][0] line.params = json.dumps(params) line.save() def get_delays(self): pulses = [line.pulses_as_points() for line in self.get_lines()] points = [tup for tups in pulses for tup in tups] points = set([x for tup in points for x in tup]) points = list(points) points.sort() if points[0]<>0: points.insert(0, 0) return [points[i+1]-points[i] for i in range(len(points)-1)] def get_pulses(self, binary=True): pulses = [line.pulses_as_points() for line in self.get_lines()] points = [tup for tups in pulses for tup in tups] points = set([x for tup in points for x in tup]) points = list(points) points.sort() line_points = [line.pulses_as_points() for line in self.get_lines()] line_points = [[(x, x+y) for x,y in tups] for tups in line_points] line_points = [[t for x in tups for t in x] for tups in line_points] states = [[1 if x in tups else 0 for tups in line_points] for x in points] if binary: states.reverse() states = [int(''.join([str(x) for x in flips]), 2) for flips in states] return states[:-1] def add_cmd(self, cmd): if cmd in DAT_CMDS: return (255, DAT_CMDS[cmd]) def add_data(self, value): return (254, value-1) def parms_to_binary(self): ''' Create "dat" stream to be send to CR ''' data = [] # create header data.append(self.add_cmd('DISABLE')) data.append(self.add_cmd('CONTINUE')) data.append(self.add_cmd('RESTART')) if self.control_sw: data.append(self.add_cmd('SW_ONE')) else: data.append(self.add_cmd('SW_ZERO')) if self.control_tx: data.append(self.add_cmd('TX_ONE')) else: data.append(self.add_cmd('TX_ZERO')) # write divider data.append(self.add_cmd('CLOCK_DIVIDER')) data.append(self.add_data(self.clock_divider)) # write delays data.append(self.add_cmd('DELAY_START')) # first delay is always zero data.append(self.add_data(1)) delays = self.get_delays() for delay in delays: while delay>252: data.append(self.add_data(253)) delay -= 253 data.append(self.add_data(delay)) # write flips data.append(self.add_cmd('FLIP_START')) states = self.get_pulses(binary=False) for flips, delay in zip(states, delays): flips.reverse() flip = int(''.join([str(x) for x in flips]), 2) data.append(self.add_data(flip+1)) while delay>252: data.append(self.add_data(1)) delay -= 253 # write sampling period data.append(self.add_cmd('SAMPLING_PERIOD')) wins = self.get_lines(line_type__name='windows') if wins: win_params = json.loads(wins[0].params)['params'] if win_params: dh = int(win_params[0]['resolution']*self.km2unit) else: dh = 1 else: dh = 1 data.append(self.add_data(dh)) # write enable data.append(self.add_cmd('ENABLE')) return '\n'.join(['{}'.format(x) for tup in data for x in tup]) def update_from_file(self, filename): ''' Update instance from file ''' f = RCFile(filename) self.dict_to_parms(f.data) self.update_pulses() def update_pulses(self): for line in self.get_lines(): line.update_pulses() def plot_pulses(self, km=False): import matplotlib.pyplot as plt from bokeh.resources import CDN from bokeh.embed import components from bokeh.mpl import to_bokeh from bokeh.models.tools import WheelZoomTool, ResetTool, PanTool, PreviewSaveTool lines = self.get_lines() N = len(lines) npoints = self.total_units/self.km2unit if km else self.total_units fig = plt.figure(figsize=(10, 2+N*0.5)) ax = fig.add_subplot(111) labels = ['IPP'] for i, line in enumerate(lines): labels.append(line.get_name(channel=True)) l = ax.plot((0, npoints),(N-i-1, N-i-1)) points = [(tup[0], tup[1]-tup[0]) for tup in line.pulses_as_points(km=km) if tup<>(0,0)] ax.broken_barh(points, (N-i-1, 0.5), edgecolor=l[0].get_color(), facecolor='none') n = 0 f = ((self.ntx+50)/100)*5 if ((self.ntx+50)/100)*10>0 else 2 for x in np.arange(0, npoints, self.ipp if km else self.ipp*self.km2unit): if n%f==0: ax.text(x, N, '%s' % n, size=10) n += 1 labels.reverse() ax.set_yticklabels(labels) ax.set_xlabel = 'Units' plot = to_bokeh(fig, use_pandas=False) plot.tools = [PanTool(dimensions=['width']), WheelZoomTool(dimensions=['width']), ResetTool(), PreviewSaveTool()] return components(plot, CDN) def status_device(self): return 0 def stop_device(self): answer = api.disable(ip = self.device.ip_address, port = self.device.port_address) if answer[0] != "1": self.message = answer[0:] return 0 self.message = answer[2:] return 1 def start_device(self): answer = api.enable(ip = self.device.ip_address, port = self.device.port_address) if answer[0] != "1": self.message = answer[0:] return 0 self.message = answer[2:] return 1 def write_device(self): answer = api.write_config(ip = self.device.ip_address, port = self.device.port_address, parms = self.parms_to_dict()) if answer[0] != "1": self.message = answer[0:] return 0 self.message = answer[2:] return 1 class RCLineCode(models.Model): name = models.CharField(max_length=40) bits_per_code = models.PositiveIntegerField(default=0) number_of_codes = models.PositiveIntegerField(default=0) codes = models.TextField(blank=True, null=True) class Meta: db_table = 'rc_line_codes' ordering = ('name',) def __unicode__(self): return u'%s' % self.name class RCLineType(models.Model): name = models.CharField(choices=LINE_TYPES, max_length=40) description = models.TextField(blank=True, null=True) params = models.TextField(default='[]') class Meta: db_table = 'rc_line_types' def __unicode__(self): return u'%s - %s' % (self.name.upper(), self.get_name_display()) class RCLine(models.Model): rc_configuration = models.ForeignKey(RCConfiguration, on_delete=models.CASCADE) line_type = models.ForeignKey(RCLineType) channel = models.PositiveIntegerField(default=0) position = models.PositiveIntegerField(default=0) params = models.TextField(default='{}') pulses = models.TextField(default='') class Meta: db_table = 'rc_lines' ordering = ['channel'] def __unicode__(self): if self.rc_configuration: return u'%s - %s' % (self.rc_configuration, self.get_name()) def clone(self, **kwargs): self.pk = None for attr, value in kwargs.items(): setattr(self, attr, value) self.save() return self def get_name(self, channel=False): chars = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' s = '' if self.line_type.name in ('tx',): s = chars[self.position] elif self.line_type.name in ('codes', 'windows', 'tr'): if 'TX_ref' in json.loads(self.params): pk = json.loads(self.params)['TX_ref'] if pk in (0, '0'): s = ','.join(chars[l.position] for l in self.rc_configuration.get_lines(line_type__name='tx')) else: ref = RCLine.objects.get(pk=pk) s = chars[ref.position] s = '({})'.format(s) s = '{}{}'.format(self.line_type.name.upper(), s) if channel: return '{} {}'.format(s, self.channel) else: return s def get_lines(self, **kwargs): return RCLine.objects.filter(rc_configuration=self.rc_configuration, **kwargs) def pulses_as_array(self): y = np.zeros(self.rc_configuration.total_units) for tup in ast.literal_eval(self.pulses): y[tup[0]:tup[1]] = 1 return y.astype(np.int8) def pulses_as_points(self, km=False): if km: unit2km = 1/self.rc_configuration.km2unit return [(tup[0]*unit2km, tup[1]*unit2km) for tup in ast.literal_eval(self.pulses)] else: return ast.literal_eval(self.pulses) def get_win_ref(self, params, tx_id, km2unit): ref = self.rc_configuration.sampling_reference codes = [line for line in self.get_lines(line_type__name='codes') if int(json.loads(line.params)['TX_ref'])==int(tx_id)] if codes: tx_width = float(json.loads(RCLine.objects.get(pk=tx_id).params)['pulse_width'])*km2unit/len(json.loads(codes[0].params)['codes'][0]) else: tx_width = float(json.loads(RCLine.objects.get(pk=tx_id).params)['pulse_width'])*km2unit if ref=='first_baud': return int(1 + (tx_width + 1)/2 + params['first_height']*km2unit - params['resolution']*km2unit) elif ref=='sub_baud': return int(1 + params['first_height']*km2unit - params['resolution']*km2unit/2) else: return 0 def update_pulses(self): ''' Update pulses field ''' km2unit = self.rc_configuration.km2unit us2unit = self.rc_configuration.us2unit ipp = self.rc_configuration.ipp ntx = self.rc_configuration.ntx ipp_u = int(ipp*km2unit) total = ipp_u*ntx if self.rc_configuration.total_units==0 else self.rc_configuration.total_units y = [] if self.line_type.name=='tr': tr_params = json.loads(self.params) if tr_params['TX_ref'] in ('0', 0): txs = self.get_lines(line_type__name='tx') else: txs = RCLine.objects.filter(pk=tr_params['TX_ref']) for tx in txs: params = json.loads(tx.params) if float(params['pulse_width'])==0: continue delays = [float(d)*km2unit for d in params['delays'].split(',') if d] width = float(params['pulse_width'])*km2unit+int(self.rc_configuration.time_before*us2unit) before = 0 after = int(self.rc_configuration.time_after*us2unit) y_tx = self.points(ntx, ipp_u, width, delay=delays, before=before, after=after, sync=self.rc_configuration.sync) ranges = params['range'].split(',') if len(ranges)>0 and ranges[0]<>'0': y_tx = self.mask_ranges(y_tx, ranges) tr_ranges = tr_params['range'].split(',') if len(tr_ranges)>0 and tr_ranges[0]<>'0': y_tx = self.mask_ranges(y_tx, tr_ranges) y.extend(y_tx) self.pulses = unicode(y) y = self.array_to_points(self.pulses_as_array()) elif self.line_type.name=='tx': params = json.loads(self.params) delays = [float(d)*km2unit for d in params['delays'].split(',') if d] width = float(params['pulse_width'])*km2unit if width>0: before = int(self.rc_configuration.time_before*us2unit) after = 0 y = self.points(ntx, ipp_u, width, delay=delays, before=before, after=after, sync=self.rc_configuration.sync) ranges = params['range'].split(',') if len(ranges)>0 and ranges[0]<>'0': y = self.mask_ranges(y, ranges) elif self.line_type.name=='flip': n = float(json.loads(self.params)['number_of_flips']) width = n*ipp*km2unit y = self.points(int((ntx+1)/(2*n)), ipp_u*n*2, width) elif self.line_type.name=='codes': params = json.loads(self.params) tx = RCLine.objects.get(pk=params['TX_ref']) tx_params = json.loads(tx.params) delays = [float(d)*km2unit for d in tx_params['delays'].split(',') if d] f = int(float(tx_params['pulse_width'])*km2unit)/len(params['codes'][0]) codes = [(np.fromstring(''.join([s*f for s in code]), dtype=np.uint8)-48).astype(np.int8) for code in params['codes']] codes = [self.array_to_points(code) for code in codes] n = len(codes) for i, tup in enumerate(tx.pulses_as_points()): code = codes[i%n] y.extend([(c[0]+tup[0], c[1]+tup[0]) for c in code]) ranges = tx_params['range'].split(',') if len(ranges)>0 and ranges[0]<>'0': y = self.mask_ranges(y, ranges) elif self.line_type.name=='sync': params = json.loads(self.params) n = ipp_u*ntx if params['invert'] in ('1', 1): y = [(n-1, n)] else: y = [(0, 1)] elif self.line_type.name=='prog_pulses': params = json.loads(self.params) if int(params['periodic'])==0: nntx = 1 nipp = ipp_u*ntx else: nntx = ntx nipp = ipp_u if 'params' in params and len(params['params'])>0: for p in params['params']: y_pp = self.points(nntx, nipp, p['end']-p['begin'], before=p['begin']) y.extend(y_pp) elif self.line_type.name=='windows': params = json.loads(self.params) if 'params' in params and len(params['params'])>0: tr_params = json.loads(self.get_lines(line_type__name='tr')[0].params) tr_ranges = tr_params['range'].split(',') for p in params['params']: y_win = self.points(ntx, ipp_u, p['resolution']*p['number_of_samples']*km2unit, before=int(self.rc_configuration.time_before*us2unit)+self.get_win_ref(p, params['TX_ref'], km2unit), sync=self.rc_configuration.sync) if len(tr_ranges)>0 and tr_ranges[0]<>'0': y_win = self.mask_ranges(y_win, tr_ranges) y.extend(y_win) elif self.line_type.name=='mix': values = self.rc_configuration.parameters.split('-') confs = [RCConfiguration.objects.get(pk=value.split('|')[0]) for value in values] modes = [value.split('|')[1] for value in values] ops = [value.split('|')[2] for value in values] delays = [value.split('|')[3] for value in values] masks = [value.split('|')[4] for value in values] mask = list('{:8b}'.format(int(masks[0]))) mask.reverse() if mask[self.channel] in ('0', '', ' '): y = np.zeros(confs[0].total_units, dtype=np.int8) else: y = confs[0].get_lines(channel=self.channel)[0].pulses_as_array() for i in range(1, len(values)): mask = list('{:8b}'.format(int(masks[i]))) mask.reverse() if mask[self.channel] in ('0', '', ' '): continue Y = confs[i].get_lines(channel=self.channel)[0].pulses_as_array() delay = float(delays[i])*km2unit if modes[i]=='P': if delay>0: if delaylen(y): y_new = np.zeros(delay+len(Y), dtype=np.int8) y_new[:len(y)] = y y = y_new y_temp = np.zeros(delay+len(Y), dtype=np.int8) y_temp[-len(Y):] = Y elif delay+len(Y)==len(y): y_temp = np.zeros(delay+len(Y)) y_temp[-len(Y):] = Y elif delay+len(Y) total: self.rc_configuration.total_units = total self.rc_configuration.save() self.pulses = unicode(y) self.save() @staticmethod def array_to_points(X): d = X[1:]-X[:-1] up = np.where(d==1)[0] if X[0]==1: up = np.concatenate((np.array([-1]), up)) up += 1 dw = np.where(d==-1)[0] if X[-1]==1: dw = np.concatenate((dw, np.array([len(X)-1]))) dw += 1 return [(tup[0], tup[1]) for tup in zip(up, dw)] @staticmethod def mask_ranges(Y, ranges): y = [(0, 0) for __ in Y] for index in ranges: if '-' in index: args = [int(a) for a in index.split('-')] y[args[0]-1:args[1]] = Y[args[0]-1:args[1]] else: y[int(index-1)] = Y[int(index-1)] return y @staticmethod def points(ntx, ipp, width, delay=[0], before=0, after=0, sync=0): delays = len(delay) Y = [(ipp*x+before+delay[x%delays], ipp*x+width+before+delay[x%delays]+after) for x in range(ntx)] return Y