|
1 | NO CONTENT: new file 100644, binary diff hidden |
@@ -1,25 +1,11 | |||
|
1 | 1 | {% load static %} |
|
2 | 2 | {% load bootstrap3 %} |
|
3 | 3 | {% load main_tags %} |
|
4 | 4 | |
|
5 | 5 | {% block content %} |
|
6 | <style> | |
|
7 | </style> | |
|
8 | 6 | |
|
9 | 7 | <div id="PictureOverJRODown" style="float: right"> |
|
10 | <img id="imgMainDown" src="{% url 'url_plot_down_beam' beam.abs_conf.id beam.id %}" alt="Error in Parameters" style="width:360px;height:270px;"> | |
|
11 | <img id="imgLoaderDown" src="{% static 'images/loading_loading.gif' %}" alt="Error in Parameters" width="50" height="50" align="left"> | |
|
12 | ||
|
8 | <img id="imgMainDown" src="{% url 'url_plot_beam' beam.abs_conf.id beam.id 'down' %}" alt="Error ploting..." style="width:360px;height:360px; background-image: url({% static 'images/loader.gif' %});background-repeat: no-repeat;background-position: 50% 50%;"> | |
|
13 | 9 | </div> |
|
14 | 10 | |
|
15 | <script> | |
|
16 | ||
|
17 | $('#imgMainDown').hide(); | |
|
18 | $('#imgLoaderDown').show(); | |
|
19 | $('#imgMainDown').load(function(){ | |
|
20 | $('#imgLoaderDown').hide(); | |
|
21 | $('#imgMainDown').show(); | |
|
22 | }); | |
|
23 | //window.onload = function () { alert("It's loaded!") } | |
|
24 | </script> | |
|
25 | 11 | {% endblock %} |
@@ -1,54 +1,54 | |||
|
1 | 1 | {% extends "dev_conf.html" %} |
|
2 | 2 | {% load static %} |
|
3 | 3 | {% load bootstrap3 %} |
|
4 | 4 | {% load main_tags %} |
|
5 | 5 | |
|
6 | 6 | {% block content %} |
|
7 | 7 | <style> |
|
8 | 8 | |
|
9 | 9 | </style> |
|
10 | 10 | |
|
11 | 11 | |
|
12 | 12 | |
|
13 | 13 | {% if abs_beams %} |
|
14 | 14 | <div> |
|
15 | 15 | <h4>Beams:</h4> |
|
16 | 16 | |
|
17 | 17 | <div class="container"> |
|
18 | 18 | <div class="btn-group"> |
|
19 | 19 | {% for abs_beam in abs_beams %} |
|
20 | 20 | <button id="bt_beam{{ forloop.counter }}" type="button" class="btn btn-default">{{ forloop.counter }}</button> |
|
21 | 21 | {% endfor %} |
|
22 | 22 | </div> |
|
23 | 23 | </div> |
|
24 | 24 | |
|
25 | 25 | |
|
26 | 26 | </div> |
|
27 | 27 | <br> |
|
28 | 28 | |
|
29 | 29 | {% if beam %} |
|
30 | 30 | {% include "abs_pattern.html" %} |
|
31 | 31 | {% endif %} |
|
32 | 32 | |
|
33 | 33 | |
|
34 | 34 | {% else %} |
|
35 | 35 | <div> |
|
36 | 36 | <h4>Beams:</h4> |
|
37 | 37 | <p style="color:#b4bcc2; margin-left: 5%;"><i>No Beams...</i></p> |
|
38 | 38 | </div> |
|
39 | 39 | {% endif %} |
|
40 | 40 | |
|
41 | 41 | |
|
42 | 42 | <script> |
|
43 | 43 | {% for abs_beam in abs_beams %} |
|
44 | 44 | $("#bt_beam{{ forloop.counter }}").click(function() { |
|
45 | document.location = "{% url 'url_plot_abs_pattern' abs_beam.abs_conf.id abs_beam.id %}"; | |
|
45 | document.location = "{% url 'url_plot_abs_patterns' abs_beam.abs_conf.id abs_beam.id %}"; | |
|
46 | 46 | }); |
|
47 | 47 | {% endfor %} |
|
48 | 48 | //function ChangeColor() { |
|
49 | 49 | // document.getElementById("button_1").style.backgroundColor = "#2c3e50"; |
|
50 | 50 | // document.getElementById("button_1").style.color = "#ecf0f1"; |
|
51 | 51 | //} |
|
52 | 52 | </script> |
|
53 | 53 | |
|
54 | 54 | {% endblock %} |
@@ -1,25 +1,11 | |||
|
1 | 1 | {% load static %} |
|
2 | 2 | {% load bootstrap3 %} |
|
3 | 3 | {% load main_tags %} |
|
4 | 4 | |
|
5 | 5 | {% block content %} |
|
6 | <style> | |
|
7 | </style> | |
|
8 | 6 | |
|
9 | 7 | <div id="PictureOverJROUp" style="float: right"> |
|
10 | <img id="imgMain" src="{% url 'url_plot_up_beam' beam.abs_conf.id beam.id %}" alt="Error in Parameters" style="width:360px;height:270px;"> | |
|
11 | <img id="imgLoader" src="{% static 'images/loading_loading.gif' %}" alt="Error in Parameters" width="50" height="50"> | |
|
12 | ||
|
8 | <img id="imgMain" src="{% url 'url_plot_beam' beam.abs_conf.id beam.id 'up' %}" alt="Error ploting..." style="width:360px;height:360px; background-image: url({% static 'images/loader.gif' %});background-repeat: no-repeat;background-position: 50% 50%;"> | |
|
13 | 9 | </div> |
|
14 | 10 | |
|
15 | <script> | |
|
16 | ||
|
17 | $('#imgMain').hide(); | |
|
18 | $('#imgLoader').show(); | |
|
19 | $('#imgMain').load(function(){ | |
|
20 | $('#imgLoader').hide(); | |
|
21 | $('#imgMain').show(); | |
|
22 | }); | |
|
23 | ||
|
24 | </script> | |
|
25 | 11 | {% endblock %} |
@@ -1,18 +1,17 | |||
|
1 | 1 | from django.conf.urls import url |
|
2 | 2 | |
|
3 | 3 | from apps.abs import views |
|
4 | 4 | |
|
5 | 5 | urlpatterns = ( |
|
6 | 6 | url(r'^(?P<id_conf>-?\d+)/$', views.abs_conf, name='url_abs_conf'), |
|
7 | 7 | url(r'^(?P<id_conf>-?\d+)/edit/$', views.abs_conf_edit, name='url_edit_abs_conf'), |
|
8 | 8 | #url(r'^(?P<id_conf>-?\d+)/read/$', views.dev_conf_read, name='url_read_abs_conf'), |
|
9 | 9 | #url(r'^(?P<id_conf>-?\d+)/import/$', views.dev_conf_import, name='url_import_abs_conf'), |
|
10 | 10 | #url(r'^(?P<id_conf>-?\d+)/export/$', views.dev_conf_export, name='url_export_abs_conf'), |
|
11 | 11 | url(r'^(?P<id_conf>-?\d+)/plot/$', views.plot_patterns, name='url_plot_abs_patterns'), |
|
12 | url(r'^(?P<id_conf>-?\d+)/plot/(?P<id_beam>-?\d+)/$', views.plot_pattern, name='url_plot_abs_pattern'), | |
|
13 |
url(r'^(?P<id_conf>-?\d+)/plot |
|
|
14 | url(r'^(?P<id_conf>-?\d+)/plot_down_beam/(?P<id_beam>-?\d+)/$', views.plot_downpattern, name='url_plot_down_beam'), | |
|
12 | url(r'^(?P<id_conf>-?\d+)/plot/(?P<id_beam>-?\d+)/$', views.plot_patterns, name='url_plot_abs_patterns'), | |
|
13 | url(r'^(?P<id_conf>-?\d+)/plot/(?P<id_beam>-?\d+)/(?P<antenna>[\w\-]+)/pattern.png$', views.plot_pattern, name='url_plot_beam'), | |
|
15 | 14 | url(r'^(?P<id_conf>-?\d+)/add_beam/$', views.add_beam, name='url_add_abs_beam'), |
|
16 | 15 | url(r'^(?P<id_conf>-?\d+)/beam/(?P<id_beam>-?\d+)/delete/$', views.remove_beam, name='url_remove_abs_beam'), |
|
17 | 16 | url(r'^(?P<id_conf>-?\d+)/beam/(?P<id_beam>-?\d+)/edit/$', views.edit_beam, name='url_edit_abs_beam'), |
|
18 | 17 | ) |
@@ -1,51 +1,53 | |||
|
1 | 1 | """ |
|
2 | 2 | The GRAPHICS_MISC.py module gathers classes and/or functions useful for generation of plots. |
|
3 | 3 | |
|
4 | 4 | MODULES CALLED: |
|
5 | 5 | NUMPY, OS |
|
6 | 6 | |
|
7 | 7 | MODIFICATION HISTORY: |
|
8 | 8 | Created by Ing. Freddy Galindo (frederickgalindo@gmail.com). ROJ, 13 August 2009. |
|
9 | 9 | """ |
|
10 | 10 | |
|
11 | 11 | import os |
|
12 | 12 | import numpy |
|
13 | 13 | import sys |
|
14 | 14 | |
|
15 | 15 | |
|
16 | 16 | class ColorTable: |
|
17 | 17 | def __init__(self,table=1,filepath=None): |
|
18 | 18 | self.table = table |
|
19 | 19 | #set to path for data folder, file: col_koki.dat |
|
20 | 20 | if filepath==None: |
|
21 | filepath= './data/' | |
|
21 | filepath= './apps/abs/utils/data/' | |
|
22 | 22 | self.filepath = filepath |
|
23 | 23 | |
|
24 | 24 | def readTable(self): |
|
25 | 25 | if self.table>0: |
|
26 | 26 | if self.table==1: |
|
27 | f = open(os.path.join(self.filepath,'col_koki.dat'),'rb') | |
|
27 | ||
|
28 | f = open(os.path.join(self.filepath, './col_koki.dat') ,'rb') | |
|
29 | ||
|
28 | 30 | |
|
29 | 31 | #f = open('./col_koki.dat','rb') |
|
30 | 32 | |
|
31 | 33 | # Reading SkyNoise Power (lineal scale) |
|
32 | 34 | blue = numpy.fromfile(f,numpy.dtype([('var','b')]),256) |
|
33 | 35 | blue = numpy.int32(blue['var']) |
|
34 | 36 | val = numpy.where(blue<0) |
|
35 | 37 | if val[0].size:blue[val] = blue[val] + numpy.int32(256) |
|
36 | 38 | |
|
37 | 39 | green = numpy.fromfile(f,numpy.dtype([('var','b')]),256) |
|
38 | 40 | green = numpy.int32(green['var']) |
|
39 | 41 | val = numpy.where(green<0) |
|
40 | 42 | if val[0].size:green[val] = green[val] + numpy.int32(256) |
|
41 | 43 | |
|
42 | 44 | red = numpy.fromfile(f,numpy.dtype([('var','b')]),256) |
|
43 | 45 | red = numpy.int32(red['var']) |
|
44 | 46 | val = numpy.where(red<0) |
|
45 | 47 | if val[0].size:red[val] = red[val] + numpy.int32(256) |
|
46 | 48 | |
|
47 | 49 | f.close() |
|
48 | 50 | |
|
49 | 51 | colortable = numpy.array([red/255.,green/255.,blue/255.]) |
|
50 | 52 | |
|
51 | 53 | return colortable |
@@ -1,563 +1,621 | |||
|
1 | 1 | """ |
|
2 | 2 | The module GRAPHICS_OVERJRO.py gathers classes or/and functions to create graphics from OVER-JRO |
|
3 | 3 | project (e.g. antenna patterns, skynoise, ...). |
|
4 | 4 | |
|
5 | 5 | MODULES CALLED: |
|
6 | 6 | TIME, NUMPY, MATPLOTLIB, TIMETOOLS |
|
7 | 7 | |
|
8 | 8 | MODIFICATION HISTORY: |
|
9 | 9 | Created by Ing. Freddy Galindo (frederickgalindo@gmail.com). ROJ Oct 18, 2009. |
|
10 | 10 | """ |
|
11 | 11 | |
|
12 | 12 | import time |
|
13 | 13 | import numpy |
|
14 | 14 | import sys |
|
15 | 15 | import os |
|
16 | 16 | |
|
17 | 17 | # set HOME environment variable to a directory the httpd server can write to |
|
18 | 18 | #os.environ[ 'HOME' ] = '/usr/local/www/htdocs/overJro/tempReports' |
|
19 | 19 | #os.environ[ 'HOME' ] = '/home/dsuarez/Pictures' |
|
20 | 20 | #os.environ[ 'HOME' ] = '/tmp/' |
|
21 | 21 | import matplotlib |
|
22 | 22 | #if ide==1: |
|
23 | 23 | # matplotlib.use('Qt4Agg') |
|
24 | 24 | #elif ide==2: |
|
25 | 25 | # matplotlib.use("Agg") |
|
26 | 26 | #else: |
|
27 | 27 | # matplotlib.use('TKAgg') |
|
28 | 28 | #matplotlib.use("Agg") |
|
29 | 29 | #matplotlib.interactive(1) |
|
30 | 30 | import matplotlib.pyplot |
|
31 | 31 | #import Numeric |
|
32 | 32 | #import scipy |
|
33 | 33 | import scipy.interpolate |
|
34 | 34 | |
|
35 | 35 | import Astro_Coords |
|
36 | 36 | import TimeTools |
|
37 | 37 | import Graphics_Miscens |
|
38 | 38 | |
|
39 | 39 | import Misc_Routines |
|
40 | 40 | |
|
41 | 41 | class AntPatternPlot: |
|
42 | 42 | def __init__(self): |
|
43 | 43 | """ |
|
44 | 44 | AntPatternPlot creates an object to call methods to plot the antenna pattern. |
|
45 | 45 | |
|
46 | 46 | Modification History |
|
47 | 47 | -------------------- |
|
48 | 48 | Created by Freddy Galindo, ROJ, 06 October 2009. |
|
49 | 49 | """ |
|
50 | self.figure = None | |
|
51 | pass | |
|
52 | 50 | |
|
53 | def contPattern(self,iplot=0,gpath='',filename='',mesg='',amp=None ,x=None ,y=None ,getCut=None,title=''): | |
|
51 | self.fig = matplotlib.pyplot.figure(figsize=(8,8), facecolor='white') | |
|
52 | self.ax = self.fig.add_subplot(111) | |
|
53 | ||
|
54 | def contPattern(self,iplot=0,gpath='',filename='',mesg='',amp=None ,x=None ,y=None ,getCut=None,title='', save=True): | |
|
54 | 55 | """ |
|
55 | 56 | contPattern plots a contour map of the antenna pattern. |
|
56 | 57 | |
|
57 | 58 | Parameters |
|
58 | 59 | ---------- |
|
59 | 60 | iplot = A integer to specify if the plot is the first, second, ... The default va- |
|
60 | 61 | lue is 0. |
|
61 | 62 | |
|
62 | 63 | Examples |
|
63 | 64 | -------- |
|
64 | 65 | >> Over_Jro.JroPattern(pattern=2).contPattern() |
|
65 | 66 | |
|
66 | 67 | Modification history |
|
67 | 68 | -------------------- |
|
68 | 69 | Converted to Python by Freddy R. Galindo, ROJ, 06 October 2009. |
|
69 | 70 | """ |
|
70 | 71 | |
|
71 | 72 | if getCut == 1: |
|
72 | 73 | return |
|
73 | 74 | |
|
74 | 75 | xmax = numpy.max(x) |
|
75 | 76 | xmin = numpy.min(x) |
|
76 | 77 | ymax = numpy.max(y) |
|
77 | 78 | ymin = numpy.min(y) |
|
78 | 79 | |
|
79 | 80 | levels = numpy.array([1e-3,1e-2,1e-1,0.5,1.0]) |
|
80 | 81 | tmp = numpy.round(10*numpy.log10(levels),decimals=1) |
|
81 | 82 | labels = range(5) |
|
82 | 83 | for i in numpy.arange(5):labels[i] = str(numpy.int(tmp[i])) |
|
83 | 84 | |
|
84 | if iplot==0: | |
|
85 | xsize = 8.0 | |
|
86 | if matplotlib.get_backend()=='QT4Agg':xsize = 6.0 | |
|
87 | ysize = 8.0 | |
|
88 | self.figure = matplotlib.pyplot.figure(num=2,figsize=(xsize,ysize)) | |
|
89 | matplotlib.pyplot.clf() | |
|
90 | 85 | |
|
91 | 86 | colors = ((0,0,1.),(0,170/255.,0),(127/255.,1.,0),(1.,109/255.,0),(128/255.,0,0)) |
|
92 |
CS = |
|
|
87 | CS = self.ax.contour(x,y,amp.transpose(),levels,colors=colors) | |
|
93 | 88 | fmt = {} |
|
94 |
for l,s in zip(CS.levels,labels): |
|
|
95 | ||
|
96 | matplotlib.pyplot.annotate('Ng',xy=(-0.05,1.04),xytext=(0.01,0.962),xycoords='axes fraction',arrowprops=dict(facecolor='black', width=1.,shrink=0.2),fontsize=15.) | |
|
97 | matplotlib.pyplot.annotate(mesg,xy=(0,0),xytext=(0.01,0.01),xycoords='figure fraction') | |
|
98 | matplotlib.pyplot.clabel(CS,CS.levels,inline=True,fmt=fmt,fontsize=10) | |
|
99 | matplotlib.pyplot.xlim(xmin,xmax) | |
|
100 | matplotlib.pyplot.ylim(ymin,ymax) | |
|
101 | matplotlib.pyplot.title("Total Pattern" + title) | |
|
102 | matplotlib.pyplot.xlabel("West to South") | |
|
103 |
|
|
|
104 | matplotlib.pyplot.grid(True) | |
|
105 | print "SAVE_FIG" | |
|
106 | print gpath | |
|
107 | print filename | |
|
89 | for l,s in zip(CS.levels,labels): | |
|
90 | fmt[l] = s | |
|
91 | ||
|
92 | self.ax.annotate('Ng',xy=(-0.05,1.04),xytext=(0.01,0.962),xycoords='axes fraction',arrowprops=dict(facecolor='black', width=1.,shrink=0.2),fontsize=15.) | |
|
93 | self.ax.annotate(mesg,xy=(0,0),xytext=(0.01,0.01),xycoords='figure fraction') | |
|
94 | self.ax.clabel(CS,CS.levels,inline=True,fmt=fmt,fontsize=10) | |
|
95 | self.ax.set_xlim(xmin,xmax) | |
|
96 | self.ax.set_ylim(ymin,ymax) | |
|
97 | self.ax.set_title("Total Pattern: " + title) | |
|
98 | self.ax.set_xlabel("West to South") | |
|
99 | self.ax.set_ylabel("West to North") | |
|
100 | self.ax.grid(True) | |
|
101 | ||
|
102 | if save: | |
|
108 | 103 | save_fig = os.path.join(gpath,filename) |
|
109 |
|
|
|
104 | self.fig.savefig(save_fig,format='png') | |
|
105 | ||
|
106 | ||
|
107 | ||
|
108 | def close(self): | |
|
109 | ||
|
110 | matplotlib.pyplot.close(self.fig) | |
|
110 | 111 | |
|
111 | def plotRaDec(self,gpath=None,filename=None,jd=2452640.5,ra_obs=None,xg=None,yg=None,x=None,y=None): | |
|
112 | def plotRaDec(self,gpath=None,filename=None,jd=2452640.5,ra_obs=None,xg=None,yg=None,x=None,y=None, save=True): | |
|
112 | 113 | """ |
|
113 | 114 | plotRaDec draws right ascension and declination lines on a JRO plane. This function |
|
114 | 115 | must call after conPattern. |
|
115 | 116 | |
|
116 | 117 | Parameters |
|
117 | 118 | ---------- |
|
118 | 119 | jd = A scalar giving the Julian date. |
|
119 | 120 | ra_obs = Scalar giving the right ascension of the observatory. |
|
120 | 121 | xg = A 3-element array to specify .. |
|
121 | 122 | yg = A 3-element array to specify .. |
|
122 | 123 | |
|
123 | 124 | Examples |
|
124 | 125 | -------- |
|
125 | 126 | >> Over_Jro.JroPattern(pattern=2).contPattern() |
|
126 | 127 | >> Over_Jro.JroPattern(pattern=2).plotRaDec(jd=jd,ra_obs=ra_obs,xg=xg,yg=yg) |
|
127 | 128 | |
|
128 | 129 | Modification history |
|
129 | 130 | -------------------- |
|
130 | 131 | Converted to Python by Freddy R. Galindo, ROJ, 06 October 2009. |
|
131 | 132 | """ |
|
132 | 133 | |
|
133 | 134 | # Finding RA of observatory for a specific date |
|
134 |
if ra_obs |
|
|
135 |
if xg |
|
|
136 |
if yg |
|
|
135 | if ra_obs is None:ra_obs = numpy.array([23.37060849]) | |
|
136 | if xg is None:xg = numpy.array([0.62918474,-0.77725579,0.]) | |
|
137 | if yg is None:yg = numpy.array([0.77700346,0.62898048,0.02547905]) | |
|
137 | 138 | |
|
138 | 139 | # Getting HA and DEC axes |
|
139 | 140 | mindec = -28; maxdec = 4; incdec = 2. |
|
140 | 141 | ndec = numpy.int((maxdec - mindec)/incdec) + 1 |
|
141 | 142 | |
|
142 | 143 | minha = -20; maxha = 20; incha = 2. |
|
143 | 144 | nha = numpy.int((maxha - minha)/incha) + 1 |
|
144 | 145 | |
|
145 | mcosx = numpy.zeros((nha,ndec)) | |
|
146 | mcosy = numpy.zeros((nha,ndec)) | |
|
146 | #mcosx = numpy.zeros((nha,ndec)) | |
|
147 | #mcosy = numpy.zeros((nha,ndec)) | |
|
147 | 148 | |
|
148 | 149 | ha_axes = numpy.reshape(numpy.arange(nha)*incha + minha,(nha,1)) |
|
149 | 150 | ones_dec = numpy.reshape(numpy.zeros(ndec) + 1,(ndec,1)) |
|
150 | 151 | ha_axes = numpy.dot(ha_axes,ones_dec.transpose()) |
|
151 | 152 | ha_axes2 = numpy.array(ra_obs - ha_axes) |
|
152 | 153 | |
|
153 | 154 | dec_axes = numpy.reshape(numpy.arange(ndec)*incdec + mindec,(ndec,1)) |
|
154 | 155 | ones_ra = numpy.reshape(numpy.zeros(nha) + 1,(nha,1)) |
|
155 | 156 | dec_axes = numpy.dot(ones_ra,dec_axes.transpose()) |
|
156 | 157 | dec_axes2 = numpy.array(dec_axes) |
|
157 | 158 | |
|
158 | 159 | ObjHor = Astro_Coords.Equatorial(ha_axes2,dec_axes2,jd) |
|
159 | 160 | [alt,az,ha] = ObjHor.change2AltAz() |
|
160 | 161 | |
|
161 | 162 | z = numpy.transpose(alt)*Misc_Routines.CoFactors.d2r ; z = z.flatten() |
|
162 | 163 | az = numpy.transpose(az)*Misc_Routines.CoFactors.d2r ; az = az.flatten() |
|
163 | 164 | |
|
164 | 165 | vect = numpy.array([numpy.cos(z)*numpy.sin(az),numpy.cos(z)*numpy.cos(az),numpy.sin(z)]) |
|
165 | 166 | |
|
166 | 167 | xg = numpy.atleast_2d(xg) |
|
167 | 168 | dcosx = numpy.array(numpy.dot(xg,vect)) |
|
168 | 169 | yg = numpy.atleast_2d(yg) |
|
169 | 170 | dcosy = numpy.array(numpy.dot(yg,vect)) |
|
170 | 171 | |
|
171 | 172 | mcosx = dcosx.reshape(ndec,nha) |
|
172 | 173 | mcosy = dcosy.reshape(ndec,nha) |
|
173 | 174 | |
|
174 | 175 | # Defining NAN for points outof limits. |
|
175 | 176 | xmax = numpy.max(x) |
|
176 | 177 | xmin = numpy.min(x) |
|
177 | 178 | ymax = numpy.max(y) |
|
178 | 179 | ymin = numpy.min(y) |
|
179 | 180 | |
|
180 | 181 | factor = 1.3 |
|
181 | 182 | noval = numpy.where((mcosx>(xmax*factor)) | (mcosx<(xmin*factor))) |
|
182 | 183 | if noval[0].size>0:mcosx[noval] = numpy.nan |
|
183 | 184 | noval = numpy.where((mcosy>(ymax*factor)) | (mcosy<(ymin*factor))) |
|
184 | 185 | if noval[0].size>0:mcosy[noval] = numpy.nan |
|
185 | 186 | |
|
186 | 187 | # Plotting HA and declination grid. |
|
187 | 188 | iha0 = numpy.int((0 - minha)/incha) |
|
188 | 189 | idec0 = numpy.int((-14 - mindec)/incdec) |
|
189 | 190 | |
|
190 | 191 | colorgrid = (1.,109/255.,0) |
|
191 |
|
|
|
192 | self.ax.plot(mcosx.transpose(),mcosy.transpose(),color=colorgrid,linestyle='--') | |
|
192 | 193 | for idec in numpy.arange(ndec): |
|
193 | 194 | if idec != idec0: |
|
194 | 195 | valx = (mcosx[idec,iha0]<=xmax) & (mcosx[idec,iha0]>=xmin) |
|
195 | 196 | valy = (mcosy[idec,iha0]<=ymax) & (mcosy[idec,iha0]>=ymin) |
|
196 | 197 | if valx & valy: |
|
197 | 198 | text = str(numpy.int(mindec + incdec*idec))+'$^o$' |
|
198 |
|
|
|
199 | self.ax.text(mcosx[idec,iha0],mcosy[idec,iha0],text) | |
|
199 | 200 | |
|
200 | 201 | matplotlib.pyplot.plot(mcosx,mcosy,color=colorgrid,linestyle='--') |
|
201 | 202 | for iha in numpy.arange(nha): |
|
202 | 203 | if iha != iha0: |
|
203 | 204 | valx = (mcosx[idec0,iha]<=xmax) & (mcosx[idec0,iha]>=xmin) |
|
204 | 205 | valy = (mcosy[idec0,iha]<=ymax) & (mcosy[idec0,iha]>=ymin) |
|
205 | 206 | if valx & valy: |
|
206 | 207 | text = str(4*numpy.int(minha + incha*iha))+"'" |
|
207 |
|
|
|
208 | self.ax.text(mcosx[idec0,iha],mcosy[idec0,iha],text) | |
|
208 | 209 | |
|
209 | matplotlib.pyplot.xlim(xmin,xmax) | |
|
210 | matplotlib.pyplot.ylim(ymin,ymax) | |
|
210 | if save: | |
|
211 | save_fig = os.path.join(gpath,filename) | |
|
212 | matplotlib.pyplot.savefig(save_fig,format='png') | |
|
213 | ||
|
214 | ||
|
215 | def plotBField(self,gpath,filename,dcos,alpha, nlon, nlat, dcosxrange, dcosyrange, heights, alpha_i, save=True): | |
|
216 | """ | |
|
217 | plotBField draws the magnetic field in a directional cosines plot. | |
|
211 | 218 |
|
|
219 | Parameters | |
|
220 | ---------- | |
|
221 | dcos = An 4-dimensional array giving the directional cosines of the magnetic field | |
|
222 | over the desired place. | |
|
223 | alpha = An 3-dimensional array giving the angle of the magnetic field over the desi- | |
|
224 | red place. | |
|
225 | nlon = An integer to specify the number of elements per longitude. | |
|
226 | nlat = An integer to specify the number of elements per latitude. | |
|
227 | dcosxrange = A 2-element array giving the range of the directional cosines in the | |
|
228 | "x" axis. | |
|
229 | dcosyrange = A 2-element array giving the range of the directional cosines in the | |
|
230 | "y" axis. | |
|
231 | heights = An array giving the heights (km) where the magnetic field will be modeled By default the magnetic field will be computed at 100, 500 and 1000km. | |
|
232 | alpha_i = Angle to interpolate the magnetic field. | |
|
233 | Modification History | |
|
234 | -------------------- | |
|
235 | Converted to Python by Freddy R. Galindo, ROJ, 07 October 2009. | |
|
236 | """ | |
|
237 | ||
|
238 | handles = [] | |
|
239 | objects = [] | |
|
240 | colors = ['k','m','c','b','g','r','y'] | |
|
241 | marker = ['-+','-*','-D','-x','-s','->','-o','-^'] | |
|
242 | ||
|
243 | alpha_location = numpy.zeros((nlon,2,heights.size)) | |
|
244 | ||
|
245 | for ih in numpy.arange(heights.size): | |
|
246 | alpha_location[:,0,ih] = dcos[:,0,ih,0] | |
|
247 | for ilon in numpy.arange(nlon): | |
|
248 | myx = (alpha[ilon,:,ih])[::-1] | |
|
249 | myy = (dcos[ilon,:,ih,0])[::-1] | |
|
250 | tck = scipy.interpolate.splrep(myx,myy,s=0) | |
|
251 | mydcosx = scipy.interpolate.splev(alpha_i,tck,der=0) | |
|
252 | ||
|
253 | myx = (alpha[ilon,:,ih])[::-1] | |
|
254 | myy = (dcos[ilon,:,ih,1])[::-1] | |
|
255 | tck = scipy.interpolate.splrep(myx,myy,s=0) | |
|
256 | mydcosy = scipy.interpolate.splev(alpha_i,tck,der=0) | |
|
257 | alpha_location[ilon,:,ih] = numpy.array([mydcosx, mydcosy]) | |
|
258 | ||
|
259 | ||
|
260 | ObjFig, = self.ax.plot(alpha_location[:,0,ih],alpha_location[:,1,ih], | |
|
261 | marker[ih % 8],color=colors[numpy.int(ih/8)],ms=4.5,lw=0.5) | |
|
262 | handles.append(ObjFig) | |
|
263 | objects.append(numpy.str(heights[ih]) + ' km') | |
|
264 | ||
|
265 | self.ax.legend(handles,objects,loc="lower right", numpoints=1, handlelength=0.3, | |
|
266 | handletextpad=0.02, borderpad=0.3, labelspacing=0.1) | |
|
267 | ||
|
268 | if save: | |
|
212 | 269 | save_fig = os.path.join(gpath,filename) |
|
213 | 270 | matplotlib.pyplot.savefig(save_fig,format='png') |
|
214 | 271 | |
|
215 | 272 | |
|
273 | ||
|
216 | 274 | class BFieldPlot: |
|
217 | 275 | def __init__(self): |
|
218 | 276 | """ |
|
219 | 277 | BFieldPlot creates an object for drawing magnetic Field lines over Jicamarca. |
|
220 | 278 | |
|
221 | 279 | Modification History |
|
222 | 280 | -------------------- |
|
223 | 281 | Created by Freddy Galindo, ROJ, 07 October 2009. |
|
224 | 282 | """ |
|
225 | 283 | |
|
226 | 284 | self.alpha_location = 1 |
|
227 | 285 | # pass |
|
228 | 286 | |
|
229 | 287 | def plotBField(self,gpath,filename,dcos,alpha, nlon, nlat, dcosxrange, dcosyrange, heights, alpha_i): |
|
230 | 288 | """ |
|
231 | 289 | plotBField draws the magnetic field in a directional cosines plot. |
|
232 | 290 | |
|
233 | 291 | Parameters |
|
234 | 292 | ---------- |
|
235 | 293 | dcos = An 4-dimensional array giving the directional cosines of the magnetic field |
|
236 | 294 | over the desired place. |
|
237 | 295 | alpha = An 3-dimensional array giving the angle of the magnetic field over the desi- |
|
238 | 296 | red place. |
|
239 | 297 | nlon = An integer to specify the number of elements per longitude. |
|
240 | 298 | nlat = An integer to specify the number of elements per latitude. |
|
241 | 299 | dcosxrange = A 2-element array giving the range of the directional cosines in the |
|
242 | 300 | "x" axis. |
|
243 | 301 | dcosyrange = A 2-element array giving the range of the directional cosines in the |
|
244 | 302 | "y" axis. |
|
245 | 303 | heights = An array giving the heights (km) where the magnetic field will be modeled By default the magnetic field will be computed at 100, 500 and 1000km. |
|
246 | 304 | alpha_i = Angle to interpolate the magnetic field. |
|
247 | 305 | Modification History |
|
248 | 306 | -------------------- |
|
249 | 307 | Converted to Python by Freddy R. Galindo, ROJ, 07 October 2009. |
|
250 | 308 | """ |
|
251 | 309 | |
|
252 | 310 | handles = [] |
|
253 | 311 | objects = [] |
|
254 | 312 | colors = ['k','m','c','b','g','r','y'] |
|
255 | 313 | marker = ['-+','-*','-D','-x','-s','->','-o','-^'] |
|
256 | 314 | |
|
257 | 315 | alpha_location = numpy.zeros((nlon,2,heights.size)) |
|
258 | 316 | |
|
259 | 317 | for ih in numpy.arange(heights.size): |
|
260 | 318 | alpha_location[:,0,ih] = dcos[:,0,ih,0] |
|
261 | 319 | for ilon in numpy.arange(nlon): |
|
262 | 320 | myx = (alpha[ilon,:,ih])[::-1] |
|
263 | 321 | myy = (dcos[ilon,:,ih,0])[::-1] |
|
264 | 322 | tck = scipy.interpolate.splrep(myx,myy,s=0) |
|
265 | 323 | mydcosx = scipy.interpolate.splev(alpha_i,tck,der=0) |
|
266 | 324 | |
|
267 | 325 | myx = (alpha[ilon,:,ih])[::-1] |
|
268 | 326 | myy = (dcos[ilon,:,ih,1])[::-1] |
|
269 | 327 | tck = scipy.interpolate.splrep(myx,myy,s=0) |
|
270 | 328 | mydcosy = scipy.interpolate.splev(alpha_i,tck,der=0) |
|
271 | 329 | alpha_location[ilon,:,ih] = numpy.array([mydcosx, mydcosy]) |
|
272 | 330 | |
|
273 | 331 | |
|
274 | 332 | ObjFig, = matplotlib.pyplot.plot(alpha_location[:,0,ih],alpha_location[:,1,ih], \ |
|
275 | 333 | marker[ih % 8],color=colors[numpy.int(ih/8)],ms=4.5,lw=0.5) |
|
276 | 334 | handles.append(ObjFig) |
|
277 | 335 | objects.append(numpy.str(heights[ih]) + ' km') |
|
278 | 336 | |
|
279 | 337 | matplotlib.pyplot.xlim(dcosxrange[0],dcosxrange[1]) |
|
280 | 338 | matplotlib.pyplot.ylim(dcosyrange[0],dcosyrange[1]) |
|
281 | 339 | |
|
282 | 340 | try: |
|
283 | 341 | ObjlegB = matplotlib.pyplot.legend(handles,objects,loc="lower right", numpoints=1, handlelength=0.3, \ |
|
284 | 342 | handletextpad=0.02, borderpad=0.3, labelspacing=0.1) |
|
285 | 343 | except: |
|
286 | 344 | ObjlegB = matplotlib.pyplot.legend(handles,objects,loc=[0.01,0.75], numpoints=1, handlelength=0, \ |
|
287 | 345 | pad=0.015, handletextsep=0.02,labelsep=0.01) |
|
288 | 346 | |
|
289 | 347 | matplotlib.pyplot.setp(ObjlegB.get_texts(),fontsize='small') |
|
290 | 348 | matplotlib.pyplot.gca().add_artist(ObjlegB) |
|
291 | 349 | |
|
292 | 350 | save_fig = os.path.join(gpath,filename) |
|
293 | 351 | matplotlib.pyplot.savefig(save_fig,format='png') |
|
294 | 352 | self.alpha_location = alpha_location |
|
295 | 353 | |
|
296 | 354 | |
|
297 | 355 | class CelestialObjectsPlot: |
|
298 | 356 | def __init__(self,jd,dec,tod,maxha_min,show_object=None): |
|
299 | 357 | |
|
300 | 358 | self.jd = jd |
|
301 | 359 | self.dec = dec |
|
302 | 360 | self.tod = tod |
|
303 | 361 | self.maxha_min = maxha_min |
|
304 | 362 | |
|
305 | 363 | if show_object==None:show_object=numpy.zeros(4)+2 |
|
306 | 364 | self.show_object = show_object |
|
307 | 365 | |
|
308 | 366 | self.dcosx_sun = 1 |
|
309 | 367 | self.dcosy_sun = 1 |
|
310 | 368 | self.ha_sun = 1 |
|
311 | 369 | self.time_sun = 1 |
|
312 | 370 | |
|
313 | 371 | self.dcosx_moon = 1 |
|
314 | 372 | self.dcosy_moon = 1 |
|
315 | 373 | self.ha_moon = 1 |
|
316 | 374 | self.time_moon = 1 |
|
317 | 375 | |
|
318 | 376 | self.dcosx_hydra = 1 |
|
319 | 377 | self.dcosy_hydra = 1 |
|
320 | 378 | self.ha_hydra = 1 |
|
321 | 379 | self.time_hydra = 1 |
|
322 | 380 | |
|
323 | 381 | self.dcosx_galaxy = 1 |
|
324 | 382 | self.dcosy_galaxy = 1 |
|
325 | 383 | self.ha_galaxy = 1 |
|
326 | 384 | self.time_galaxy = 1 |
|
327 | 385 | |
|
328 | 386 | def drawObject(self,glat,glon,xg,yg,dcosxrange,dcosyrange,gpath='',filename=''): |
|
329 | 387 | |
|
330 | 388 | jd = self.jd |
|
331 | 389 | main_dec = self.dec |
|
332 | 390 | tod = self.tod |
|
333 | 391 | maxha_min = self.maxha_min |
|
334 | 392 | |
|
335 | 393 | mesg = "Drawing celestial objects over Observatory" |
|
336 | 394 | # print mesg |
|
337 | 395 | # if textid!=None:textid.append(mesg) |
|
338 | 396 | |
|
339 | 397 | maxlev = 24; minlev = 0; maxcol = 39; mincol = 10 |
|
340 | 398 | handles = [] |
|
341 | 399 | objects = ['$Sun$','$Moon$','$Hydra$','$Galaxy$'] |
|
342 | 400 | marker = ['--^','--s','--*','--o'] |
|
343 | 401 | |
|
344 | 402 | # Getting RGB table to plot celestial object over Jicamarca |
|
345 | 403 | colortable = Graphics_Miscens.ColorTable(table=1).readTable() |
|
346 | 404 | |
|
347 | 405 | for io in (numpy.arange(4)+1): |
|
348 | 406 | if self.show_object[io]!=0: |
|
349 | 407 | ObjBodies = Astro_Coords.CelestialBodies() |
|
350 | 408 | if io==1: |
|
351 | 409 | [ra,dec,sunlon,sunobliq] = ObjBodies.sunpos(jd) |
|
352 | 410 | elif io==2: |
|
353 | 411 | [ra,dec,dist,moonlon,moonlat] = ObjBodies.moonpos(jd) |
|
354 | 412 | elif io==3: |
|
355 | 413 | [ra,dec] = ObjBodies.hydrapos() |
|
356 | 414 | elif io==4: |
|
357 | 415 | [maxra,ra] = ObjBodies.skynoise_jro(dec_cut=main_dec) |
|
358 | 416 | ra = maxra*15. |
|
359 | 417 | dec = main_dec |
|
360 | 418 | |
|
361 | 419 | ObjEq = Astro_Coords.Equatorial(ra,dec,jd,lat=glat,lon=glon) |
|
362 | 420 | [alt, az, ha] = ObjEq.change2AltAz() |
|
363 | 421 | vect = numpy.array([az,alt]).transpose() |
|
364 | 422 | vect = Misc_Routines.Vector(vect,direction=0).Polar2Rect() |
|
365 | 423 | |
|
366 | 424 | dcosx = numpy.array(numpy.dot(vect,xg)) |
|
367 | 425 | dcosy = numpy.array(numpy.dot(vect,yg)) |
|
368 | 426 | wrap = numpy.where(ha>=180.) |
|
369 | 427 | if wrap[0].size>0:ha[wrap] = ha[wrap] - 360. |
|
370 | 428 | |
|
371 | 429 | val = numpy.where((numpy.abs(ha))<=(maxha_min*0.25)) |
|
372 | 430 | if val[0].size>2: |
|
373 | 431 | tod_1 = tod*1. |
|
374 | 432 | shift_1 = numpy.where(tod>12.) |
|
375 | 433 | tod_1[shift_1] = tod_1[shift_1] - 24. |
|
376 | 434 | tod_2 = tod*1. |
|
377 | 435 | shift_2 = numpy.where(tod<12.) |
|
378 | 436 | tod_2[shift_2] = tod_2[shift_2] + 24. |
|
379 | 437 | |
|
380 | 438 | diff0 = numpy.nanmax(tod[val]) - numpy.nanmin(tod[val]) |
|
381 | 439 | diff1 = numpy.nanmax(tod_1[val]) - numpy.nanmin(tod_1[val]) |
|
382 | 440 | diff2 = numpy.nanmax(tod_2[val]) - numpy.nanmin(tod_2[val]) |
|
383 | 441 | |
|
384 | 442 | if ((diff0<=diff1) & (diff0<=diff2)): |
|
385 | 443 | tod_0 = tod |
|
386 | 444 | elif ((diff1<diff0) & (diff1<diff2)): |
|
387 | 445 | tod_0 = tod_1 |
|
388 | 446 | else: |
|
389 | 447 | tod_0 = tod_2 |
|
390 | 448 | |
|
391 | 449 | if io==1: |
|
392 | 450 | self.dcosx_sun = dcosx[val] |
|
393 | 451 | self.dcosy_sun = dcosy[val] |
|
394 | 452 | self.ha_sun = ha[val] |
|
395 | 453 | self.time_sun = numpy.median(tod_0[val]) |
|
396 | 454 | elif io==2: |
|
397 | 455 | self.dcosx_moon = dcosx[val] |
|
398 | 456 | self.dcosy_moon = dcosy[val] |
|
399 | 457 | self.ha_moon = ha[val] |
|
400 | 458 | self.time_moon = numpy.median(tod_0[val]) |
|
401 | 459 | elif io==3: |
|
402 | 460 | self.dcosx_hydra = dcosx[val] |
|
403 | 461 | self.dcosy_hydra = dcosy[val] |
|
404 | 462 | self.ha_hydra = ha[val] |
|
405 | 463 | self.time_hydra = numpy.mean(tod_0[val]) |
|
406 | 464 | elif io==4: |
|
407 | 465 | self.dcosx_galaxy = dcosx[val] |
|
408 | 466 | self.dcosy_galaxy = dcosy[val] |
|
409 | 467 | self.ha_galaxy = ha[val] |
|
410 | 468 | self.time_galaxy = numpy.mean(tod_0[val]) |
|
411 | 469 | |
|
412 | 470 | index = numpy.mean(tod_0[val]) - minlev |
|
413 | 471 | index = (index*(maxcol - mincol)/(maxlev - minlev)) + mincol |
|
414 | 472 | index = numpy.int(index) |
|
415 | 473 | figobjects, = matplotlib.pyplot.plot(dcosx[val],dcosy[val],marker[io-1],\ |
|
416 | 474 | lw=1,ms=7,mew=0,color=tuple(colortable[:,index])) |
|
417 | 475 | handles.append(figobjects) |
|
418 | 476 | |
|
419 | 477 | xmax = numpy.max(dcosxrange[1]) |
|
420 | 478 | xmin = numpy.min(dcosxrange[0]) |
|
421 | 479 | ymax = numpy.max(dcosyrange[1]) |
|
422 | 480 | ymin = numpy.min(dcosyrange[0]) |
|
423 | 481 | matplotlib.pyplot.xlim(xmin,xmax) |
|
424 | 482 | matplotlib.pyplot.ylim(ymin,ymax) |
|
425 | 483 | |
|
426 | 484 | val = numpy.where(self.show_object[1:]>0) |
|
427 | 485 | objects = numpy.array(objects) |
|
428 | 486 | objects = list(objects[val]) |
|
429 | 487 | try: |
|
430 | 488 | ObjlegC = matplotlib.pyplot.legend(handles,objects,loc="lower left", numpoints=1, handlelength=0.3, \ |
|
431 | 489 | borderpad=0.3, handletextpad=0.02,labelspacing=0.1) |
|
432 | 490 | except: |
|
433 | 491 | ObjlegC = matplotlib.pyplot.legend(handles,objects,loc=[0.01,0.75], numpoints=1, handlelength=0, \ |
|
434 | 492 | pad=0.015, handletextsep=0.02,labelsep=0.01) |
|
435 | 493 | |
|
436 | 494 | matplotlib.pyplot.setp(ObjlegC.get_texts(),fontsize='small') |
|
437 | 495 | ObjlegC.isaxes = False |
|
438 | 496 | save_fig = os.path.join(gpath,filename) |
|
439 | 497 | matplotlib.pyplot.savefig(save_fig,format='png') |
|
440 | 498 | |
|
441 | 499 | |
|
442 | 500 | class PatternCutPlot: |
|
443 | 501 | def __init__(self,nsubplots): |
|
444 | 502 | self.nsubplots = nsubplots |
|
445 | 503 | |
|
446 | 504 | self.fig = None |
|
447 | 505 | |
|
448 | 506 | self.__plot_width = 8 |
|
449 | 507 | |
|
450 | 508 | if self.nsubplots == 5: |
|
451 | 509 | self.__plot_height = 11 |
|
452 | 510 | |
|
453 | 511 | if self.nsubplots == 4: |
|
454 | 512 | self.__plot_height = 9 |
|
455 | 513 | |
|
456 | 514 | if self.nsubplots == 3: |
|
457 | 515 | self.__plot_height = 7 |
|
458 | 516 | |
|
459 | 517 | if self.nsubplots == 2: |
|
460 | 518 | self.__plot_height = 5 |
|
461 | 519 | |
|
462 | 520 | if self.nsubplots == 1: |
|
463 | 521 | self.__plot_height = 3 |
|
464 | 522 | |
|
465 | 523 | self.fig = matplotlib.pyplot.figure(num = 4,figsize = (self.__plot_width, self.__plot_height)) |
|
466 | 524 | |
|
467 | 525 | if self.nsubplots < 5: |
|
468 | 526 | self.__height_inch = 1.1 #altura de los subplots (pulgadas) |
|
469 | 527 | top_inch = 1.5/2.7 #espacio entre el primer subplot y el limite superior del plot |
|
470 | 528 | self.__vspace_plot_inch = 1.0#1.5/2 # espacio vertical entre subplots |
|
471 | 529 | self.__left = 0.1 |
|
472 | 530 | else: |
|
473 | 531 | self.__height_inch = 1.1 #altura de los subplots (pulgadas) |
|
474 | 532 | top_inch = 1.5/2.7 #espacio entre el primer subplot y el limite superior del plot |
|
475 | 533 | self.__vspace_plot_inch = 1.0 # espacio vertical entre subplots |
|
476 | 534 | self.__left = 0.1 |
|
477 | 535 | |
|
478 | 536 | self.__bottom_inch = self.__plot_height - (self.__height_inch + top_inch) |
|
479 | 537 | self.__height = self.__height_inch/self.__plot_height |
|
480 | 538 | |
|
481 | 539 | self.__width = 0.8 |
|
482 | 540 | |
|
483 | 541 | |
|
484 | 542 | def drawCut(self,io,patterns,npatterns,ha,otitle,subtitle,ptitle): |
|
485 | 543 | |
|
486 | 544 | t_cuts = ['B','Sun','Moon','Hydra','Galaxy'] |
|
487 | 545 | self.__bottom = self.__bottom_inch/self.__plot_height |
|
488 | 546 | |
|
489 | 547 | |
|
490 | 548 | subp = self.fig.add_axes([self.__left,self.__bottom,self.__width,self.__height]) |
|
491 | 549 | |
|
492 | 550 | on_axis_angle = -4.65562 |
|
493 | 551 | for icut in numpy.arange(npatterns): |
|
494 | 552 | # Getting Antenna cut. |
|
495 | 553 | pattern = patterns[icut] |
|
496 | 554 | power = numpy.abs(pattern/numpy.nanmax(pattern)) |
|
497 | 555 | max_power_db = numpy.round(10.*numpy.log10(numpy.nanmax(pattern)),2) |
|
498 | 556 | |
|
499 | 557 | bval = numpy.where(power[:,0]==numpy.nanmax(power)) |
|
500 | 558 | beta = -0.25*(ha[bval[0]] + on_axis_angle) |
|
501 | 559 | # print 'Angle (deg): '+"%f"%(beta) |
|
502 | 560 | |
|
503 | 561 | subp.plot(ha,power) |
|
504 | 562 | |
|
505 | 563 | |
|
506 | 564 | xmax = numpy.max(numpy.nanmin(ha)) |
|
507 | 565 | xmin = numpy.min(numpy.nanmax(ha)) |
|
508 | 566 | ymax = numpy.max(1) |
|
509 | 567 | ymin = numpy.min(0) |
|
510 | 568 | |
|
511 | 569 | |
|
512 | 570 | subp.set_xlim(xmin, xmax) |
|
513 | 571 | |
|
514 | 572 | subp.set_ylim(ymin, ymax) |
|
515 | 573 | |
|
516 | 574 | subp.set_title(otitle + ' ' + ptitle,size="medium") |
|
517 | 575 | |
|
518 | 576 | subp.text(0.5, 1.26,subtitle[0], |
|
519 | 577 | horizontalalignment='center', |
|
520 | 578 | verticalalignment='center', |
|
521 | 579 | transform = subp.transAxes) |
|
522 | 580 | |
|
523 | 581 | xlabels = subp.get_xticks() |
|
524 | 582 | |
|
525 | 583 | subp.set_xticklabels(xlabels,size="small") |
|
526 | 584 | |
|
527 | 585 | ylabels = subp.get_yticks() |
|
528 | 586 | |
|
529 | 587 | subp.set_yticklabels(ylabels,size="small") |
|
530 | 588 | |
|
531 | 589 | subp.set_xlabel('Hour angle (min) (+ve to West)',size="small") |
|
532 | 590 | |
|
533 | 591 | subp.set_ylabel("Power [Max: " + str(max_power_db) + ' dB]',size="small") |
|
534 | 592 | |
|
535 | 593 | subp.grid() |
|
536 | 594 | |
|
537 | 595 | |
|
538 | 596 | self.__bottom_inch = self.__bottom_inch - (self.__height_inch + self.__vspace_plot_inch) |
|
539 | 597 | |
|
540 | 598 | |
|
541 | 599 | class SkyNoisePlot: |
|
542 | 600 | def __init__(self,date,powr,time,time_lst): |
|
543 | 601 | """ |
|
544 | 602 | SkyNoisePlot class creates an object which represents the SkyNoise Object to genera- |
|
545 | 603 | te a SkyNoise map. |
|
546 | 604 | |
|
547 | 605 | Parameters |
|
548 | 606 | ---------- |
|
549 | 607 | date = A List of 3 elements to define the desired date ([year, month, day]). |
|
550 | 608 | powr = An array giving the SkyNoise power for the desired time. |
|
551 | 609 | time = An array giving the number of seconds since 1970 to the desired time. |
|
552 | 610 | time_lst = Set this input to an array to define the Local Sidereal Time of the desi- |
|
553 | 611 | red time. |
|
554 | 612 | |
|
555 | 613 | Modification History |
|
556 | 614 | -------------------- |
|
557 | 615 | Created by Freddy Galindo, ROJ, 18 October 2009. |
|
558 | 616 | """ |
|
559 | 617 | |
|
560 | 618 | self.date = date |
|
561 | 619 | self.powr = powr |
|
562 | 620 | self.time = time |
|
563 | 621 | self.time_lst = time_lst |
@@ -1,1632 +1,1754 | |||
|
1 | 1 | #!/usr/bin/python |
|
2 | 2 | |
|
3 | 3 | |
|
4 | 4 | import sys, os, os.path |
|
5 | 5 | import traceback |
|
6 | 6 | import cgi, Cookie |
|
7 | 7 | import time, datetime |
|
8 | 8 | import types |
|
9 | 9 | import numpy |
|
10 | 10 | import numpy.fft |
|
11 | 11 | import scipy.linalg |
|
12 | 12 | import scipy.special |
|
13 | from StringIO import StringIO | |
|
13 | 14 | #import Numeric |
|
14 | 15 | |
|
15 | 16 | import Misc_Routines |
|
16 | 17 | import TimeTools |
|
17 | 18 | import JroAntSetup |
|
18 | 19 | import Graphics_OverJro |
|
19 | 20 | import Astro_Coords |
|
20 | 21 | |
|
21 | 22 | class JroPattern(): |
|
22 | 23 | def __init__(self,pattern=0,path=None,filename=None,nptsx=101,nptsy=101,maxphi=5,fftopt=0, \ |
|
23 | getcut=0,dcosx=None,dcosy=None,eomwl=6,airwl=4): | |
|
24 | getcut=0,dcosx=None,dcosy=None,eomwl=6,airwl=4, **kwargs): | |
|
24 | 25 | """ |
|
25 | 26 | JroPattern class creates an object to represent the useful parameters for beam mode- |
|
26 | 27 | lling of the Jicamarca VHF radar. |
|
27 | 28 | |
|
28 | 29 | Parameters |
|
29 | 30 | ---------- |
|
30 | 31 | pattern = An integer (See JroAntSetup to know the available values) to load a prede- |
|
31 | 32 | fined configuration. The default value is 0. To use a user-defined configuration |
|
32 | 33 | pattern must be None. |
|
33 | 34 | path = A string giving the directory that contains the user-configuration file. PATH |
|
34 | 35 | will work if pattern is None. |
|
35 | 36 | filename = A string giving the name of the user-configuration file. FILENAME will |
|
36 | 37 | work if pattern is None. |
|
37 | 38 | nptsx = A scalar to specify the number of points used to define the angular resolu- |
|
38 | 39 | tion in the "x" axis. The default value is 101. |
|
39 | 40 | nptsy = A scalar to specify the number of points used to define the angular resolu- |
|
40 | 41 | tion in the "x" axis. The default value is 101. |
|
41 | 42 | maxphi = A scalar giving the maximum (absolute) angle (in degree) to model the ante- |
|
42 | 43 | nna pattern. The default value is 5 degrees. |
|
43 | 44 | fftopt = Set this input to 1 to model the beam using FFT. To model using antenna |
|
44 | 45 | theory set to 0 (default value). |
|
45 | 46 | getcut = Set to 1 to show an antenna cut instead of a contour plot of itself (set to |
|
46 | 47 | 0). The defautl value is 0. |
|
47 | 48 | dcosx = An array giving the directional cosines for the x-axis. DCOSX will work if |
|
48 | 49 | getcut is actived. |
|
49 | 50 | dcosy = An array giving the directional cosines for the y-axis. DCOSY will work if |
|
50 | 51 | getcut is actived. |
|
51 | 52 | eomwl = A scalar giving the radar wavelength. The default value is 6m (50 MHZ). |
|
52 | 53 | airwl = Set this input to float (or intger) to specify the wavelength (in meters) of |
|
53 | 54 | the transmitted EOM wave in the air. The default value is 4m. |
|
54 | 55 | |
|
55 | 56 | Modification History |
|
56 | 57 | -------------------- |
|
57 | 58 | Converted to Object-oriented Programming by Freddy Galindo, ROJ, 20 September 2009. |
|
58 | 59 | """ |
|
59 | 60 | |
|
60 | 61 | |
|
61 | 62 | |
|
62 | 63 | # Getting antenna configuration. |
|
64 | if filename: | |
|
63 | 65 | setup = JroAntSetup.ReturnSetup(path=path,filename=filename,pattern=pattern) |
|
64 | 66 | |
|
65 | 67 | ues = setup["ues"] |
|
66 | 68 | phase = setup["phase"] |
|
67 | 69 | gaintx = setup["gaintx"] |
|
68 | 70 | gainrx = setup["gainrx"] |
|
69 | 71 | justrx = setup["justrx"] |
|
72 | self.title = setup["title"] | |
|
73 | else: | |
|
74 | ues = kwargs["ues"] | |
|
75 | phase = kwargs["phases"] | |
|
76 | gaintx = kwargs["gain_tx"] | |
|
77 | gainrx = kwargs["gain_rx"] | |
|
78 | justrx = kwargs["just_rx"] | |
|
79 | self.title = kwargs.get("title", "JRO Pattern") | |
|
70 | 80 | |
|
71 | 81 | # Defining attributes for JroPattern class. |
|
72 | 82 | # Antenna configuration |
|
83 | ||
|
73 | 84 | self.uestx = ues |
|
74 | 85 | self.phasetx = phase |
|
75 | 86 | self.gaintx = gaintx |
|
76 | 87 | self.uesrx = ues |
|
77 | 88 | self.phaserx = phase |
|
78 | 89 | self.gainrx = gainrx |
|
79 | 90 | self.justrx = justrx |
|
80 | 91 | |
|
81 | 92 | # Pattern resolution & method to model |
|
82 | 93 | self.maxphi = maxphi |
|
83 | 94 | self.nptsx = nptsx |
|
84 | 95 | self.nptsy = nptsy |
|
85 | 96 | self.fftopt = fftopt |
|
86 | 97 | |
|
87 | 98 | # To get a cut of the pattern. |
|
88 | 99 | self.getcut = getcut |
|
89 | 100 | |
|
90 | 101 | maxdcos = numpy.sin(maxphi*Misc_Routines.CoFactors.d2r) |
|
91 | 102 | if dcosx==None:dcosx = ((numpy.arange(nptsx,dtype=float)/(nptsx-1))-0.5)*2*maxdcos |
|
92 | 103 | if dcosy==None:dcosy = ((numpy.arange(nptsy,dtype=float)/(nptsy-1))-0.5)*2*maxdcos |
|
93 | 104 | self.dcosx = dcosx |
|
94 | 105 | self.dcosy = dcosy |
|
95 | 106 | self.nx = dcosx.size |
|
96 | 107 | self.ny = dcosy.size*(getcut==0) + (getcut==1) |
|
97 | 108 | |
|
98 | 109 | self.eomwl = eomwl |
|
99 | 110 | self.airwl = airwl |
|
100 | 111 | |
|
101 | 112 | self.kk = 2.*numpy.pi/eomwl |
|
102 | 113 | |
|
103 | 114 | self.pattern = None |
|
104 | 115 | self.meanpos = None |
|
105 | 116 | self.norpattern = None |
|
106 | 117 | self.maxpattern = None |
|
107 | 118 | |
|
108 | self.title = setup["title"] | |
|
119 | ||
|
109 | 120 | |
|
110 | 121 | self.getPattern() |
|
111 | 122 | |
|
112 | 123 | def getPattern(self): |
|
113 | 124 | """ |
|
114 |
getpattern method returns the model |
|
|
125 | getpattern method returns the modeled total antenna pattern and its mean position. | |
|
115 | 126 | |
|
116 | 127 | Return |
|
117 | 128 | ------ |
|
118 | 129 | pattern = An array giving the Modelled antenna pattern. |
|
119 | 130 | mean_pos = A 2-elements array giving the mean position of the main beam. |
|
120 | 131 | |
|
121 | 132 | Examples |
|
122 | 133 | -------- |
|
123 | 134 | >> [pattern, mean_pos] = JroPattern(pattern=2).getPattern() |
|
124 | 135 | >> print meanpos |
|
125 | 136 | [ 8.08728085e-14 -4.78193873e-14] |
|
126 | 137 | |
|
127 | 138 | Modification history |
|
128 | 139 | -------------------- |
|
129 | 140 | Developed by Jorge L. Chau. |
|
130 | 141 | Converted to Python by Freddy R. Galindo, ROJ, 20 September 2009. |
|
131 | 142 | """ |
|
132 | 143 | |
|
133 | 144 | if (self.fftopt>0) and (self.getcut>0): |
|
134 | 145 | #print "Conflict bewteen fftopt and getcut" |
|
135 | 146 | #print "To get a cut of the antenna pattern uses ffopt=0" |
|
136 | 147 | return None, None |
|
137 | 148 | |
|
138 | 149 | if (self.fftopt==0): |
|
139 | 150 | # Getting antenna pattern using the array method |
|
140 | 151 | self.pattern = self.__usingArray(rx=1) |
|
141 | 152 | if (self.justrx==0):self.pattern = self.pattern*self.__usingArray(rx=0) |
|
142 | 153 | |
|
143 | 154 | elif (self.fftopt>0): |
|
144 | 155 | # Getting antenna pattern using FFT method |
|
145 | 156 | self.pattern = self.__usingFFT(rx=1) |
|
146 | 157 | if (self.justrx==0):self.pattern = self.pattern*self.__usingFFT(rx=0) |
|
147 | 158 | |
|
148 | 159 | self.maxpattern = numpy.nanmax(self.pattern) |
|
149 | 160 | self.norpattern = self.pattern/self.maxpattern |
|
150 | 161 | if self.getcut==0:self.__getBeamPars() |
|
151 | 162 | |
|
152 | 163 | def __usingArray(self,rx): |
|
153 | 164 | """ |
|
154 | 165 | __usingArray method returns the Jicamarca antenna pattern computed using array model |
|
155 | 166 | |
|
156 | 167 | pattern = dipolepattern x modulepattern |
|
157 | 168 | |
|
158 | 169 | Parameters |
|
159 | 170 | ---------- |
|
160 | 171 | rx = Set to 1 to use the Rx information. Otherwise set to 0 for Tx. |
|
161 | 172 | |
|
162 | 173 | Return |
|
163 | 174 | ------ |
|
164 | 175 | pattern = An array giving the modelled antenna pattern using the array model. |
|
165 | 176 | |
|
166 | 177 | Modification history |
|
167 | 178 | -------------------- |
|
168 | 179 | Developed by Jorge L. Chau. |
|
169 | 180 | Converted to Python by Freddy R. Galindo, ROJ, 20 September 2009. |
|
170 | 181 | """ |
|
171 | 182 | |
|
172 | 183 | if rx==1: |
|
173 | 184 | ues = self.uesrx |
|
174 | 185 | phase = self.phaserx |
|
175 | 186 | gain = self.gainrx |
|
176 | 187 | elif rx==0: |
|
177 | 188 | ues = self.uestx |
|
178 | 189 | phase = self.phasetx |
|
179 | 190 | gain = self.gaintx |
|
180 | 191 | |
|
181 | 192 | ues = ues*360./self.airwl |
|
182 | 193 | phase = phase*360./self.airwl |
|
183 | 194 | |
|
184 | 195 | for ii in range(4): |
|
185 | 196 | if ii==0:dim = numpy.array([4,0,8,4]) # WEST |
|
186 | 197 | elif ii==1:dim = numpy.array([0,0,4,4]) # NORTH |
|
187 | 198 | elif ii==2:dim = numpy.array([0,4,4,8]) # EAST |
|
188 | 199 | elif ii==3:dim = numpy.array([4,4,8,8]) # SOUTH |
|
189 | 200 | xi = dim[0]; xf = dim[2]; yi = dim[1]; yf = dim[3] |
|
190 | 201 | phase[xi:xf,yi:yf] = phase[xi:xf,yi:yf] + ues[ii] |
|
191 | 202 | |
|
192 | 203 | phase = -phase |
|
193 | 204 | |
|
194 | 205 | ar = self.eomwl*numpy.array([[0.5,6., 24.5],[0.5,6.,24.5]]) |
|
195 | 206 | nr = numpy.array([[12.,4.,2.],[12.,4.,2.]]) |
|
196 | 207 | lr = 0.25*self.eomwl*numpy.array([[0,0.,0],[0.,0,0]]) |
|
197 | 208 | |
|
198 | 209 | # Computing module and dipole patterns. |
|
199 | 210 | pattern = (numpy.abs(self.__dipPattern(ar,nr,lr)*self.__modPattern(phase,gain)))**2 |
|
200 | 211 | |
|
201 | 212 | return pattern |
|
202 | 213 | |
|
203 | 214 | def __usingFFT(self,rx): |
|
204 | 215 | """ |
|
205 | 216 | __usingFFT method returns the Jicamarca antenna pattern computed using The Fast Fou- |
|
206 | 217 | rier Transform. |
|
207 | 218 | |
|
208 | 219 | pattern = iFFT(FFT(gain*EXP(j*phase))) |
|
209 | 220 | |
|
210 | 221 | Parameters |
|
211 | 222 | ---------- |
|
212 | 223 | rx = Set to 1 to use the Rx information. Otherwise set to 0 for Tx. |
|
213 | 224 | |
|
214 | 225 | Return |
|
215 | 226 | ------ |
|
216 | 227 | pattern = An array giving the modelled antenna pattern using the array model. |
|
217 | 228 | |
|
218 | 229 | Modification history |
|
219 | 230 | -------------------- |
|
220 | 231 | Developed by Jorge L. Chau. |
|
221 | 232 | Converted to Python by Freddy R. Galindo, ROJ, 20 September 2009. |
|
222 | 233 | """ |
|
223 | 234 | |
|
224 | 235 | if rx==1: |
|
225 | 236 | ues = self.uesrx |
|
226 | 237 | phase = self.phaserx |
|
227 | 238 | gain = self.gainrx |
|
228 | 239 | elif rx==0: |
|
229 | 240 | ues = self.uestx |
|
230 | 241 | phase = self.phasetx |
|
231 | 242 | gain = self.gaintx |
|
232 | 243 | |
|
233 | 244 | ues = ues*360./self.airwl |
|
234 | 245 | phase = phase*360./self.airwl |
|
235 | 246 | |
|
236 | 247 | for ii in range(4): |
|
237 | 248 | if ii==0:dim = numpy.array([4,0,8,4]) # WEST |
|
238 | 249 | elif ii==1:dim = numpy.array([0,0,4,4]) # NORTH |
|
239 | 250 | elif ii==2:dim = numpy.array([0,4,4,8]) # EAST |
|
240 | 251 | elif ii==3:dim = numpy.array([4,4,8,8]) # SOUTH |
|
241 | 252 | xi = dim[0]; xf = dim[2]; yi = dim[1]; yf = dim[3] |
|
242 | 253 | phase[xi:xf,yi:yf] = phase[xi:xf,yi:yf] + ues[ii] |
|
243 | 254 | |
|
244 | 255 | phase = -phase |
|
245 | 256 | |
|
246 | 257 | delta_x = self.eomwl/2. |
|
247 | 258 | delta_y = self.eomwl/2. |
|
248 | 259 | |
|
249 | 260 | nxfft = 2048 |
|
250 | 261 | nyfft = 2048 |
|
251 | 262 | dcosx = (numpy.arange(nxfft) - (0.5*nxfft))/(nxfft*delta_x)*self.eomwl |
|
252 | 263 | dcosy = (numpy.arange(nyfft) - (0.5*nyfft))/(nyfft*delta_y)*self.eomwl |
|
253 | 264 | |
|
254 | 265 | fft_gain = numpy.zeros((nxfft,nyfft)) |
|
255 | 266 | fft_phase = numpy.zeros((nxfft,nyfft)) |
|
256 | 267 | |
|
257 | 268 | nx = 8 |
|
258 | 269 | ny = 8 |
|
259 | 270 | ndx =12 |
|
260 | 271 | ndy =12 |
|
261 | 272 | for iy in numpy.arange(ny): |
|
262 | 273 | for ix in numpy.arange(nx): |
|
263 | 274 | ix1 = nxfft/2-self.nx/2*ndx+ix*ndx |
|
264 | 275 | if ix<(nx/2):ix1 = ix1 - 1 |
|
265 | 276 | if ix>=(nx/2):ix1 = ix1 + 1 |
|
266 | 277 | |
|
267 | 278 | iy1 = nyfft/2-ny/2*ndx+iy*ndy |
|
268 | 279 | if iy<(ny/2):iy1 = iy1 - 1 |
|
269 | 280 | if iy>=(ny/2):iy1 = iy1 + 1 |
|
270 | 281 | |
|
271 | 282 | fft_gain[ix1:ix1+ndx-1,iy1:iy1+ndy-1] = gain[ix,ny-1-iy] |
|
272 | 283 | fft_phase[ix1:ix1+ndx-1,iy1:iy1+ndy-1] = phase[ix,ny-1-iy] |
|
273 | 284 | |
|
274 | 285 | |
|
275 | 286 | fft_phase = fft_phase*Misc_Routines.CoFactors.d2r |
|
276 | 287 | |
|
277 | 288 | pattern = numpy.abs(numpy.fft.fft2(fft_gain*numpy.exp(numpy.complex(0,1)*fft_phase)))**2 |
|
278 | 289 | pattern = numpy.fft.fftshift(pattern) |
|
279 | 290 | |
|
280 | 291 | xvals = numpy.where((dcosx>=(numpy.min(self.dcosx))) & (dcosx<=(numpy.max(self.dcosx)))) |
|
281 | 292 | yvals = numpy.where((dcosy>=(numpy.min(self.dcosy))) & (dcosy<=(numpy.max(self.dcosy)))) |
|
282 | 293 | |
|
283 | 294 | pattern = pattern[xvals[0][0]:xvals[0][-1],yvals[0][0]:yvals[0][-1]] |
|
284 | 295 | |
|
285 | 296 | return pattern |
|
286 | 297 | |
|
287 | 298 | def __readAttenuation(self): |
|
288 | 299 | """ |
|
289 | 300 | _readAttenuation reads the attenuations' file and returns an array giving these va- |
|
290 | 301 | lues (dB). The ext file must be in the directory "resource". |
|
291 | 302 | |
|
292 | 303 | Return |
|
293 | 304 | ------ |
|
294 | 305 | attenuation = An array giving attenuation values read from the text file. |
|
295 | 306 | |
|
296 | 307 | Modification history |
|
297 | 308 | -------------------- |
|
298 | 309 | Developed by Jorge L. Chau. |
|
299 | 310 | Converted to Python by Freddy R. Galindo, ROJ, 20 September 2009. |
|
300 | 311 | """ |
|
301 | 312 | |
|
302 | 313 | attenuation = None |
|
303 | 314 | # foldr = sys.path[-1] + os.sep + "resource" + os.sep |
|
304 | 315 | base_path = os.path.dirname(os.path.abspath(__file__)) |
|
305 | 316 | #foldr = './resource' |
|
306 | 317 | #filen = "attenuation.txt" |
|
307 | 318 | attenuationFile = os.path.join(base_path,"resource","attenuation.txt") |
|
308 | 319 | #ff = open(os.path.join(foldr,filen),'r') |
|
309 | 320 | ff = open(attenuationFile,'r') |
|
310 | 321 | exec(ff.read()) |
|
311 | 322 | ff.close() |
|
312 | 323 | |
|
313 | 324 | return attenuation |
|
314 | 325 | |
|
315 | 326 | def __dipPattern(self,ar,nr,lr): |
|
316 | 327 | """ |
|
317 | 328 | _dipPattern function computes the dipole's pattern to the Jicamarca radar. The next |
|
318 | 329 | equation defines the pattern as a function of the mainlobe direction: |
|
319 | 330 | |
|
320 | 331 | sincx = SIN(k/2*n0x*(a0x*SIN(phi)*COS(alpha)))/SIN(k/2*(a0x*SIN(phi)*COS(alpha))) |
|
321 | 332 | sincy = SIN(k/2*n0y*(a0y*SIN(phi)*SIN(alpha)))/SIN(k/2*(a0y*SIN(phi)*SIN(alpha))) |
|
322 | 333 | A0(phi,alpha) = sincx*sincy |
|
323 | 334 | Parameters |
|
324 | 335 | ---------- |
|
325 | 336 | ar = ? |
|
326 | 337 | nr = ? |
|
327 | 338 | lr = ? |
|
328 | 339 | |
|
329 | 340 | Return |
|
330 | 341 | ------ |
|
331 | 342 | dipole = An array giving antenna pattern from the dipole point of view.. |
|
332 | 343 | |
|
333 | 344 | Modification history |
|
334 | 345 | -------------------- |
|
335 | 346 | Developed by Jorge L. Chau. |
|
336 | 347 | Converted to Python by Freddy R. Galindo, ROJ, 20 September 2009. |
|
337 | 348 | """ |
|
338 | 349 | |
|
339 | 350 | dipole = numpy.zeros((self.nx,self.ny),dtype=complex) |
|
340 | 351 | for iy in range(self.ny): |
|
341 | 352 | for ix in range(self.nx): |
|
342 | 353 | yindex = iy*(self.getcut==0) + ix*(self.getcut==1) |
|
343 | 354 | |
|
344 | 355 | argx = ar[0,0]*self.dcosx[ix] - lr[0,0] |
|
356 | if argx == 0.0: | |
|
357 | junkx = nr[0,0] | |
|
358 | else: | |
|
345 | 359 | junkx = numpy.sin(0.5*self.kk*nr[0,0]*argx)/numpy.sin(0.5*self.kk*argx) |
|
346 | if argx == 0.0: junkx = nr[0,0] | |
|
360 | ||
|
347 | 361 | |
|
348 | 362 | argy = ar[1,0]*self.dcosy[yindex] - lr[1,0] |
|
363 | if argy == 0.0: | |
|
364 | junky = nr[1,0] | |
|
365 | else: | |
|
349 | 366 | junky = numpy.sin(0.5*self.kk*nr[1,0]*argy)/numpy.sin(0.5*self.kk*argy) |
|
350 | if argy == 0.0: junky = nr[1,0] | |
|
367 | ||
|
351 | 368 | |
|
352 | 369 | dipole[ix,iy] = junkx*junky |
|
353 | 370 | |
|
354 | 371 | return dipole |
|
355 | 372 | |
|
356 | 373 | def __modPattern(self,phase,gain): |
|
357 | 374 | """ |
|
358 | 375 | ModPattern computes the module's pattern to the Jicamarca radar. The next equation |
|
359 | 376 | defines the pattern as a function mainlobe direction: |
|
360 | 377 | |
|
361 | 378 | phasex = pos(x)*SIN(phi)*COS(alpha) |
|
362 | 379 | phasey = pos(y)*SIN(phi)*SIN(alpha) |
|
363 | 380 | |
|
364 | 381 | A1(phi,alpha) = TOTAL(gain*EXP(COMPLEX(0,k*(phasex+phasey)+phase))) |
|
365 | 382 | |
|
366 | 383 | Parameters |
|
367 | 384 | ---------- |
|
368 | 385 | phase = Bidimensional array (8x8) giving the phase (in meters) of each module. |
|
369 | 386 | gain = Bidimensional array (8x8) giving to define modules will be active (ones) |
|
370 | 387 | and which will not (zeros). |
|
371 | 388 | |
|
372 | 389 | Return |
|
373 | 390 | ------ |
|
374 | 391 | module = An array giving antenna pattern from the module point of view.. |
|
375 | 392 | |
|
376 | 393 | Modification history |
|
377 | 394 | -------------------- |
|
378 | 395 | Developed by Jorge L. Chau. |
|
379 | 396 | Converted to Python by Freddy R. Galindo, ROJ, 20 September 2009. |
|
380 | 397 | """ |
|
381 | 398 | |
|
382 | 399 | pos = self.eomwl*self.__readAttenuation() |
|
383 | 400 | posx = pos[0,:,:] |
|
384 | 401 | posy = pos[1,:,:] |
|
385 | 402 | |
|
386 | 403 | phase = phase*Misc_Routines.CoFactors.d2r |
|
387 | 404 | module = numpy.zeros((self.nx,self.ny),dtype=complex) |
|
388 | 405 | for iy in range(self.ny): |
|
389 | 406 | for ix in range(self.nx): |
|
390 | 407 | yindex = iy*(self.getcut==0) + ix*(self.getcut==1) |
|
391 | 408 | phasex = posx*self.dcosx[ix] |
|
392 | 409 | phasey = posy*self.dcosy[yindex] |
|
393 | 410 | tmp = gain*numpy.exp(numpy.complex(0,1.)*(self.kk*(phasex+phasey)+phase)) |
|
394 | 411 | module[ix,iy] = tmp.sum() |
|
395 | 412 | |
|
396 | 413 | return module |
|
397 | 414 | |
|
398 | 415 | def __getBeamPars(self): |
|
399 | 416 | """ |
|
400 | 417 | _getBeamPars computes the main-beam parameters of the antenna. |
|
401 | 418 | |
|
402 | 419 | Modification history |
|
403 | 420 | -------------------- |
|
404 | 421 | Developed by Jorge L. Chau. |
|
405 | 422 | Converted to Python by Freddy R. Galindo, ROJ, 20 September 2009. |
|
406 | 423 | """ |
|
407 | 424 | |
|
408 | 425 | dx = self.dcosx[1] - self.dcosx[0] |
|
409 | 426 | dy = self.dcosy[1] - self.dcosy[0] |
|
410 | 427 | |
|
411 | 428 | amp = self.norpattern |
|
412 | 429 | |
|
413 | 430 | xx = numpy.resize(self.dcosx,(self.nx,self.nx)).transpose() |
|
414 | 431 | yy = numpy.resize(self.dcosy,(self.ny,self.ny)) |
|
415 | 432 | |
|
416 | 433 | mm0 = amp[numpy.where(amp > 0.5)] |
|
417 | 434 | xx0 = xx[numpy.where(amp > 0.5)] |
|
418 | 435 | yy0 = yy[numpy.where(amp > 0.5)] |
|
419 | 436 | |
|
420 | 437 | xc = numpy.sum(mm0*xx0)/numpy.sum(mm0) |
|
421 | 438 | yc = numpy.sum(mm0*yy0)/numpy.sum(mm0) |
|
422 | 439 | rc = numpy.sqrt(mm0.size*dx*dy/numpy.pi) |
|
423 | 440 | |
|
424 | 441 | nnx = numpy.where(numpy.abs(self.dcosx - xc) < rc) |
|
425 | 442 | nny = numpy.where(numpy.abs(self.dcosy - yc) < rc) |
|
426 | 443 | |
|
427 | 444 | mm1 = amp[numpy.min(nnx):numpy.max(nnx)+1,numpy.min(nny):numpy.max(nny)+1] |
|
428 | 445 | xx1 = self.dcosx[numpy.min(nnx):numpy.max(nnx)+1] |
|
429 | 446 | yy1 = self.dcosy[numpy.min(nny):numpy.max(nny)+1] |
|
430 | 447 | |
|
431 | 448 | # fitting data into the main beam. |
|
432 | 449 | import gaussfit |
|
433 | 450 | params = gaussfit.fitgaussian(mm1) |
|
434 | 451 | |
|
435 | 452 | # Tranforming from indexes to axis' values |
|
436 | 453 | xcenter = xx1[0] + (((xx1[xx1.size-1] - xx1[0])/(xx1.size -1))*(params[1])) |
|
437 | 454 | ycenter = yy1[0] + (((yy1[yy1.size-1] - yy1[0])/(yy1.size -1))*(params[2])) |
|
438 | 455 | xwidth = ((xx1[xx1.size-1] - xx1[0])/(xx1.size-1))*(params[3])*(1/Misc_Routines.CoFactors.d2r) |
|
439 | 456 | ywidth = ((yy1[yy1.size-1] - yy1[0])/(yy1.size-1))*(params[4])*(1/Misc_Routines.CoFactors.d2r) |
|
440 | 457 | meanwx = (xwidth*ywidth) |
|
441 | 458 | meanpos = numpy.array([xcenter,ycenter]) |
|
442 | 459 | |
|
443 | 460 | #print 'Position: %f %f' %(xcenter,ycenter) |
|
444 | 461 | #print 'Widths: %f %f' %(xwidth, ywidth) |
|
445 | 462 | #print 'BWHP: %f' %(2*numpy.sqrt(2*meanwx)*numpy.sqrt(-numpy.log(0.5))) |
|
446 | 463 | |
|
447 | 464 | self.meanpos = meanpos |
|
448 | 465 | |
|
449 | 466 | |
|
450 | 467 | class BField(): |
|
451 | 468 | def __init__(self,year=None,doy=None,site=1,heights=None,alpha_i=90): |
|
452 | 469 | """ |
|
453 | 470 | BField class creates an object to get the Magnetic field for a specific date and |
|
454 | 471 | height(s). |
|
455 | 472 | |
|
456 | 473 | Parameters |
|
457 | 474 | ---------- |
|
458 | 475 | year = A scalar giving the desired year. If the value is None (default value) then |
|
459 | 476 | the current year will be used. |
|
460 | 477 | doy = A scalar giving the desired day of the year. If the value is None (default va- |
|
461 | 478 | lue) then the current doy will be used. |
|
462 | 479 | site = An integer to choose the geographic coordinates of the place where the magne- |
|
463 | 480 | tic field will be computed. The default value is over Jicamarca (site=1) |
|
464 | 481 | heights = An array giving the heights (km) where the magnetic field will be modeled By default the magnetic field will be computed at 100, 500 and 1000km. |
|
465 | 482 | alpha_i = Angle to interpolate the magnetic field. |
|
466 | 483 | |
|
467 | 484 | Modification History |
|
468 | 485 | -------------------- |
|
469 | 486 | Converted to Object-oriented Programming by Freddy Galindo, ROJ, 07 October 2009. |
|
470 | 487 | """ |
|
471 | 488 | |
|
472 | 489 | tmp = time.localtime() |
|
473 | 490 | if year==None: year = tmp[0] |
|
474 | 491 | if doy==None: doy = tmp[7] |
|
475 | 492 | self.year = year |
|
476 | 493 | self.doy = doy |
|
477 | 494 | self.site = site |
|
478 | 495 | if heights==None:heights = numpy.array([100,500,1000]) |
|
479 | 496 | self.heights = heights |
|
480 | 497 | self.alpha_i = alpha_i |
|
481 | 498 | |
|
482 | 499 | def getBField(self,maglimits=numpy.array([-7,-7,7,7])): |
|
483 | 500 | """ |
|
484 | 501 | getBField models the magnetic field for a different heights in a specific date. |
|
485 | 502 | |
|
486 | 503 | Parameters |
|
487 | 504 | ---------- |
|
488 | 505 | maglimits = An 4-elements array giving ..... The default value is [-7,-7,7,7]. |
|
489 | 506 | |
|
490 | 507 | Return |
|
491 | 508 | ------ |
|
492 | 509 | dcos = An 4-dimensional array giving the directional cosines of the magnetic field |
|
493 | 510 | over the desired place. |
|
494 | 511 | alpha = An 3-dimensional array giving the angle of the magnetic field over the desi- |
|
495 | 512 | red place. |
|
496 | 513 | |
|
497 | 514 | Modification History |
|
498 | 515 | -------------------- |
|
499 | 516 | Converted to Python by Freddy R. Galindo, ROJ, 07 October 2009. |
|
500 | 517 | """ |
|
501 | 518 | |
|
502 | 519 | x_ant = numpy.array([1,0,0]) |
|
503 | 520 | y_ant = numpy.array([0,1,0]) |
|
504 | 521 | z_ant = numpy.array([0,0,1]) |
|
505 | 522 | |
|
506 | 523 | if self.site==0: |
|
507 | 524 | title_site = "Magnetic equator" |
|
508 | 525 | coord_site = numpy.array([-76+52./60.,-11+57/60.,0.5]) |
|
509 | 526 | elif self.site==1: |
|
510 | 527 | title_site = 'Jicamarca' |
|
511 | 528 | coord_site = [-76-52./60.,-11-57/60.,0.5] |
|
512 | 529 | theta = (45+5.35)*numpy.pi/180. # (50.35 and 1.46 from Fleish Thesis) |
|
513 | 530 | delta = -1.46*numpy.pi/180 |
|
514 | 531 | |
|
515 | 532 | x_ant1 = numpy.roll(self.rotvector(self.rotvector(x_ant,1,delta),3,theta),1) |
|
516 | 533 | y_ant1 = numpy.roll(self.rotvector(self.rotvector(y_ant,1,delta),3,theta),1) |
|
517 | 534 | z_ant1 = numpy.roll(self.rotvector(self.rotvector(z_ant,1,delta),3,theta),1) |
|
518 | 535 | |
|
519 | 536 | ang0 = -1*coord_site[0]*numpy.pi/180. |
|
520 | 537 | ang1 = coord_site[1]*numpy.pi/180. |
|
521 | 538 | x_ant = self.rotvector(self.rotvector(x_ant1,2,ang1),3,ang0) |
|
522 | 539 | y_ant = self.rotvector(self.rotvector(y_ant1,2,ang1),3,ang0) |
|
523 | 540 | z_ant = self.rotvector(self.rotvector(z_ant1,2,ang1),3,ang0) |
|
524 | 541 | else: |
|
525 | 542 | # print "No defined Site. Skip..." |
|
526 | 543 | return None |
|
527 | 544 | |
|
528 | 545 | nhei = self.heights.size |
|
529 | 546 | pt_intercep = numpy.zeros((nhei,2)) |
|
530 | 547 | nfields = 1 |
|
531 | 548 | |
|
532 | 549 | grid_res = 0.5 |
|
533 | nlon = numpy.int(maglimits[2] - maglimits[0])/grid_res + 1 | |
|
534 | nlat = numpy.int(maglimits[3] - maglimits[1])/grid_res + 1 | |
|
550 | nlon = int(numpy.int(maglimits[2] - maglimits[0])/grid_res + 1) | |
|
551 | nlat = int(numpy.int(maglimits[3] - maglimits[1])/grid_res + 1) | |
|
535 | 552 | |
|
536 | 553 | location = numpy.zeros((nlon,nlat,2)) |
|
537 | 554 | mlon = numpy.atleast_2d(numpy.arange(nlon)*grid_res + maglimits[0]) |
|
538 | 555 | mrep = numpy.atleast_2d(numpy.zeros(nlat) + 1) |
|
539 | 556 | location0 = numpy.dot(mlon.transpose(),mrep) |
|
540 | 557 | |
|
541 | 558 | mlat = numpy.atleast_2d(numpy.arange(nlat)*grid_res + maglimits[1]) |
|
542 | 559 | mrep = numpy.atleast_2d(numpy.zeros(nlon) + 1) |
|
543 | 560 | location1 = numpy.dot(mrep.transpose(),mlat) |
|
544 | 561 | |
|
545 | 562 | location[:,:,0] = location0 |
|
546 | 563 | location[:,:,1] = location1 |
|
547 | 564 | |
|
548 | 565 | alpha = numpy.zeros((nlon,nlat,nhei)) |
|
549 | 566 | rr = numpy.zeros((nlon,nlat,nhei,3)) |
|
550 | 567 | dcos = numpy.zeros((nlon,nlat,nhei,2)) |
|
551 | 568 | |
|
552 | 569 | global first_time |
|
553 | 570 | |
|
554 | 571 | first_time = None |
|
555 | 572 | for ilon in numpy.arange(nlon): |
|
556 | 573 | for ilat in numpy.arange(nlat): |
|
557 | 574 | outs = self.__bdotk(self.heights, |
|
558 | 575 | self.year + self.doy/366., |
|
559 | 576 | coord_site[1], |
|
560 | 577 | coord_site[0], |
|
561 | 578 | coord_site[2], |
|
562 | 579 | coord_site[1]+location[ilon,ilat,1], |
|
563 | 580 | location[ilon,ilat,0]*720./180.) |
|
564 | 581 | |
|
565 | 582 | alpha[ilon, ilat,:] = outs[1] |
|
566 | 583 | rr[ilon, ilat,:,:] = outs[3] |
|
567 | 584 | |
|
568 | 585 | mrep = numpy.atleast_2d((numpy.zeros(nhei)+1)).transpose() |
|
569 | 586 | tmp = outs[3]*numpy.dot(mrep,numpy.atleast_2d(x_ant)) |
|
570 | 587 | tmp = tmp.sum(axis=1) |
|
571 | 588 | dcos[ilon,ilat,:,0] = tmp/numpy.sqrt((outs[3]**2).sum(axis=1)) |
|
572 | 589 | |
|
573 | 590 | mrep = numpy.atleast_2d((numpy.zeros(nhei)+1)).transpose() |
|
574 | 591 | tmp = outs[3]*numpy.dot(mrep,numpy.atleast_2d(y_ant)) |
|
575 | 592 | tmp = tmp.sum(axis=1) |
|
576 | 593 | dcos[ilon,ilat,:,1] = tmp/numpy.sqrt((outs[3]**2).sum(axis=1)) |
|
577 | 594 | |
|
578 | 595 | return dcos, alpha, nlon, nlat |
|
579 | 596 | |
|
580 | 597 | |
|
581 | 598 | def __bdotk(self,heights,tm,gdlat=-11.95,gdlon=-76.8667,gdalt=0.0,decd=-12.88, ham=-4.61666667): |
|
582 | 599 | |
|
583 | 600 | global first_time |
|
584 | 601 | # Mean Earth radius in Km WGS 84 |
|
585 | 602 | a_igrf = 6371.2 |
|
586 | 603 | |
|
587 | 604 | bk = numpy.zeros(heights.size) |
|
588 | 605 | alpha = numpy.zeros(heights.size) |
|
589 | 606 | bfm = numpy.zeros(heights.size) |
|
590 | 607 | rr = numpy.zeros((heights.size,3)) |
|
591 | 608 | rgc = numpy.zeros((heights.size,3)) |
|
592 | 609 | |
|
593 | 610 | ObjGeodetic = Astro_Coords.Geodetic(gdlat,gdalt) |
|
594 | 611 | [gclat,gcalt] = ObjGeodetic.change2geocentric() |
|
595 | 612 | |
|
596 | 613 | gclat = gclat*numpy.pi/180. |
|
597 | 614 | gclon = gdlon*numpy.pi/180. |
|
598 | 615 | |
|
599 | 616 | # Antenna position from center of Earth |
|
600 | 617 | ca_vector = [numpy.cos(gclat)*numpy.cos(gclon),numpy.cos(gclat)*numpy.sin(gclon),numpy.sin(gclat)] |
|
601 | 618 | ca_vector = gcalt*numpy.array(ca_vector) |
|
602 | 619 | |
|
603 | 620 | dec = decd*numpy.pi/180. |
|
604 | 621 | |
|
605 | 622 | # K vector respect to the center of earth. |
|
606 | 623 | klon = gclon + ham*numpy.pi/720. |
|
607 | 624 | k_vector = [numpy.cos(dec)*numpy.cos(klon),numpy.cos(dec)*numpy.sin(klon),numpy.sin(dec)] |
|
608 | 625 | k_vector = numpy.array(k_vector) |
|
609 | 626 | |
|
610 | 627 | for ih in numpy.arange(heights.size): |
|
611 | 628 | # Vector from Earth's center to volume of interest |
|
612 | 629 | rr[ih,:] = k_vector*heights[ih] |
|
613 | 630 | cv_vector = numpy.squeeze(ca_vector) + rr[ih,:] |
|
614 | 631 | |
|
615 | 632 | cv_gcalt = numpy.sqrt(numpy.sum(cv_vector**2.)) |
|
616 | 633 | cvxy = numpy.sqrt(numpy.sum(cv_vector[0:2]**2.)) |
|
617 | 634 | |
|
618 | 635 | radial = cv_vector/cv_gcalt |
|
619 | 636 | east = numpy.array([-1*cv_vector[1],cv_vector[0],0])/cvxy |
|
620 | 637 | comp1 = east[1]*radial[2] - radial[1]*east[2] |
|
621 | 638 | comp2 = east[2]*radial[0] - radial[2]*east[0] |
|
622 | 639 | comp3 = east[0]*radial[1] - radial[0]*east[1] |
|
623 | 640 | north = -1*numpy.array([comp1, comp2, comp3]) |
|
624 | 641 | |
|
625 | 642 | rr_k = cv_vector - numpy.squeeze(ca_vector) |
|
626 | 643 | u_rr = rr_k/numpy.sqrt(numpy.sum(rr_k**2.)) |
|
627 | 644 | |
|
628 | 645 | cv_gclat = numpy.arctan2(cv_vector[2],cvxy) |
|
629 | 646 | cv_gclon = numpy.arctan2(cv_vector[1],cv_vector[0]) |
|
630 | 647 | |
|
631 | 648 | bhei = cv_gcalt-a_igrf |
|
632 | 649 | blat = cv_gclat*180./numpy.pi |
|
633 | 650 | blon = cv_gclon*180./numpy.pi |
|
634 | 651 | bfield = self.__igrfkudeki(bhei,tm,blat,blon) |
|
635 | 652 | |
|
636 | 653 | B = (bfield[0]*north + bfield[1]*east - bfield[2]*radial)*1.0e-5 |
|
637 | 654 | |
|
638 | 655 | bfm[ih] = numpy.sqrt(numpy.sum(B**2.)) #module |
|
639 | 656 | bk[ih] = numpy.sum(u_rr*B) |
|
640 | 657 | alpha[ih] = numpy.arccos(bk[ih]/bfm[ih])*180/numpy.pi |
|
641 | 658 | rgc[ih,:] = numpy.array([cv_gclon, cv_gclat, cv_gcalt]) |
|
642 | 659 | |
|
643 | 660 | return bk, alpha, bfm, rr, rgc |
|
644 | 661 | |
|
645 | 662 | |
|
646 | 663 | def __igrfkudeki(self,heights,time,latitude,longitude,ae=6371.2): |
|
647 | 664 | """ |
|
648 | 665 | __igrfkudeki calculates the International Geomagnetic Reference Field for given in- |
|
649 | 666 | put conditions based on IGRF2005 coefficients. |
|
650 | 667 | |
|
651 | 668 | Parameters |
|
652 | 669 | ---------- |
|
653 | 670 | heights = Scalar or vector giving the height above the Earth of the point in ques- |
|
654 | 671 | tion in kilometers. |
|
655 | 672 | time = Scalar or vector giving the decimal year of time in question (e.g. 1991.2). |
|
656 | 673 | latitude = Latitude of point in question in decimal degrees. Scalar or vector. |
|
657 | 674 | longitude = Longitude of point in question in decimal degrees. Scalar or vector. |
|
658 | 675 | ae = |
|
659 | 676 | first_time = |
|
660 | 677 | |
|
661 | 678 | Return |
|
662 | 679 | ------ |
|
663 | 680 | bn = |
|
664 | 681 | be = |
|
665 | 682 | bd = |
|
666 | 683 | bmod = |
|
667 | 684 | balpha = |
|
668 | 685 | first_time = |
|
669 | 686 | |
|
670 | 687 | Modification History |
|
671 | 688 | -------------------- |
|
672 | 689 | Converted to Python by Freddy R. Galindo, ROJ, 03 October 2009. |
|
673 | 690 | """ |
|
674 | 691 | |
|
675 | 692 | global first_time |
|
676 | 693 | global gs, hs, nvec, mvec, maxcoef |
|
677 | 694 | |
|
678 | 695 | heights = numpy.atleast_1d(heights) |
|
679 | 696 | time = numpy.atleast_1d(time) |
|
680 | 697 | latitude = numpy.atleast_1d(latitude) |
|
681 | 698 | longitude = numpy.atleast_1d(longitude) |
|
682 | 699 | |
|
683 | 700 | if numpy.max(latitude)==90: |
|
684 | 701 | # print "Field calculations are not supported at geographic poles" |
|
685 | 702 | pass |
|
686 | 703 | |
|
687 | 704 | # output arrays |
|
688 | 705 | bn = numpy.zeros(heights.size) |
|
689 | 706 | be = numpy.zeros(heights.size) |
|
690 | 707 | bd = numpy.zeros(heights.size) |
|
691 | 708 | |
|
692 | 709 | if first_time==None:first_time=0 |
|
693 | 710 | |
|
694 | 711 | time0 = time[0] |
|
695 | 712 | if time!=first_time: |
|
696 | 713 | #print "Getting coefficients for", time0 |
|
697 | 714 | [periods,g,h ] = self.__readIGRFcoeff() |
|
698 | 715 | top_year = numpy.max(periods) |
|
699 | 716 | nperiod = (top_year - 1900)/5 + 1 |
|
700 | 717 | |
|
701 | 718 | maxcoef = 10 |
|
702 | 719 | if time0>=2000:maxcoef = 12 |
|
703 | 720 | |
|
704 | 721 | |
|
705 | 722 | # Normalization array for Schmidt fucntions |
|
706 | 723 | multer = numpy.zeros((2+maxcoef,1+maxcoef)) + 1 |
|
707 | 724 | for cn in (numpy.arange(maxcoef)+1): |
|
708 | 725 | for rm in (numpy.arange(cn)+1): |
|
709 | 726 | tmp = numpy.arange(2*rm) + cn - rm + 1. |
|
710 | 727 | multer[rm+1,cn] = ((-1.)**rm)*numpy.sqrt(2./tmp.prod()) |
|
711 | 728 | |
|
712 | 729 | schmidt = multer[1:,1:].transpose() |
|
713 | 730 | |
|
714 | 731 | # n and m arrays |
|
715 | 732 | nvec = numpy.atleast_2d(numpy.arange(maxcoef)+2) |
|
716 | 733 | mvec = numpy.atleast_2d(numpy.arange(maxcoef+1)).transpose() |
|
717 | 734 | |
|
718 | 735 | # Time adjusted igrf g and h with Schmidt normalization |
|
719 | 736 | # IGRF coefficient arrays: g0(n,m), n=1, maxcoeff,m=0, maxcoeff, ... |
|
720 | 737 | if time0<top_year: |
|
721 | 738 | dtime = (time0 - 1900) % 5 |
|
722 | 739 | ntime = (time0 - 1900 - dtime)/5 |
|
723 | 740 | else: |
|
724 | 741 | # Estimating coefficients for times > top_year |
|
725 | 742 | dtime = (time0 - top_year) + 5 |
|
726 | 743 | ntime = g[:,0,0].size - 2 |
|
727 | 744 | |
|
728 | 745 | g0 = g[ntime,1:maxcoef+1,:maxcoef+1] |
|
729 | 746 | h0 = h[ntime,1:maxcoef+1,:maxcoef+1] |
|
730 | 747 | gdot = g[ntime+1,1:maxcoef+1,:maxcoef+1]-g[ntime,1:maxcoef+1,:maxcoef+1] |
|
731 | 748 | hdot = h[ntime+1,1:maxcoef+1,:maxcoef+1]-h[ntime,1:maxcoef+1,:maxcoef+1] |
|
732 | 749 | gs = (g0 + dtime*(gdot/5.))*schmidt[:maxcoef,0:maxcoef+1] |
|
733 | 750 | hs = (h0 + dtime*(hdot/5.))*schmidt[:maxcoef,0:maxcoef+1] |
|
734 | 751 | |
|
735 | 752 | first_time = time0 |
|
736 | 753 | |
|
737 | 754 | for ii in numpy.arange(heights.size): |
|
738 | 755 | # Height dependence array rad = (ae/(ae+height))**(n+3) |
|
739 | 756 | rad = numpy.atleast_2d((ae/(ae + heights[ii]))**(nvec+1)) |
|
740 | 757 | |
|
741 | 758 | # Sin and Cos of m times longitude phi arrays |
|
742 | 759 | mphi = mvec*longitude[ii]*numpy.pi/180. |
|
743 | 760 | cosmphi = numpy.atleast_2d(numpy.cos(mphi)) |
|
744 | 761 | sinmphi = numpy.atleast_2d(numpy.sin(mphi)) |
|
745 | 762 | |
|
746 | 763 | # Cos of colatitude theta |
|
747 | 764 | c = numpy.cos((90 - latitude[ii])*numpy.pi/180.) |
|
748 | 765 | |
|
749 | 766 | # Legendre functions p(n,m|c) |
|
750 | 767 | [p,dp]= scipy.special.lpmn(maxcoef+1,maxcoef+1,c) |
|
751 | 768 | p = p[:,:-1].transpose() |
|
752 | 769 | s = numpy.sqrt((1. - c)*(1 + c)) |
|
753 | 770 | |
|
754 | 771 | # Generate derivative array dpdtheta = -s*dpdc |
|
755 | 772 | dpdtheta = c*p/s |
|
756 | 773 | for m in numpy.arange(maxcoef+2): dpdtheta[:,m] = m*dpdtheta[:,m] |
|
757 | 774 | dpdtheta = dpdtheta + numpy.roll(p,-1,axis=1) |
|
758 | 775 | |
|
759 | 776 | # Extracting arrays required for field calculations |
|
760 | 777 | p = p[1:maxcoef+1,:maxcoef+1] |
|
761 | 778 | dpdtheta = dpdtheta[1:maxcoef+1,:maxcoef+1] |
|
762 | 779 | |
|
763 | 780 | # Weigh p and dpdtheta with gs and hs coefficients. |
|
764 | 781 | gp = gs*p |
|
765 | 782 | hp = hs*p |
|
766 | 783 | gdpdtheta = gs*dpdtheta |
|
767 | 784 | hdpdtheta = hs*dpdtheta |
|
768 | 785 | # Calcultate field components |
|
769 | 786 | matrix0 = numpy.dot(gdpdtheta,cosmphi) |
|
770 | 787 | matrix1 = numpy.dot(hdpdtheta,sinmphi) |
|
771 | 788 | bn[ii] = numpy.dot(rad,(matrix0 + matrix1)) |
|
772 | 789 | matrix0 = numpy.dot(hp,(mvec*cosmphi)) |
|
773 | 790 | matrix1 = numpy.dot(gp,(mvec*sinmphi)) |
|
774 | 791 | be[ii] = numpy.dot((-1*rad),((matrix0 - matrix1)/s)) |
|
775 | 792 | matrix0 = numpy.dot(gp,cosmphi) |
|
776 | 793 | matrix1 = numpy.dot(hp,sinmphi) |
|
777 | 794 | bd[ii] = numpy.dot((-1*nvec*rad),(matrix0 + matrix1)) |
|
778 | 795 | |
|
779 | 796 | bmod = numpy.sqrt(bn**2. + be**2. + bd**2.) |
|
780 | 797 | btheta = numpy.arctan(bd/numpy.sqrt(be**2. + bn**2.))*180/numpy.pi |
|
781 | 798 | balpha = numpy.arctan(be/bn)*180./numpy.pi |
|
782 | 799 | |
|
783 | 800 | #bn : north |
|
784 | 801 | #be : east |
|
785 | 802 | #bn : radial |
|
786 | 803 | #bmod : module |
|
787 | 804 | |
|
788 | 805 | |
|
789 | 806 | return bn, be, bd, bmod, btheta, balpha |
|
790 | 807 | |
|
791 | 808 | def str2num(self, datum): |
|
792 | 809 | try: |
|
793 | 810 | return int(datum) |
|
794 | 811 | except: |
|
795 | 812 | try: |
|
796 | 813 | return float(datum) |
|
797 | 814 | except: |
|
798 | 815 | return datum |
|
799 | 816 | |
|
800 | 817 | def __readIGRFfile(self, filename): |
|
801 | 818 | list_years=[] |
|
802 | 819 | for i in range(1,24): |
|
803 | 820 | list_years.append(1895.0 + i*5) |
|
804 | 821 | |
|
805 | 822 | epochs=list_years |
|
806 | 823 | epochs.append(epochs[-1]+5) |
|
807 | 824 | nepochs = numpy.shape(epochs) |
|
808 | 825 | |
|
809 | 826 | gg = numpy.zeros((13,14,nepochs[0]),dtype=float) |
|
810 | 827 | hh = numpy.zeros((13,14,nepochs[0]),dtype=float) |
|
811 | 828 | |
|
812 | 829 | coeffs_file=open(filename) |
|
813 | 830 | lines=coeffs_file.readlines() |
|
814 | 831 | |
|
815 | 832 | coeffs_file.close() |
|
816 | 833 | |
|
817 | 834 | for line in lines: |
|
818 | 835 | items = line.split() |
|
819 | 836 | g_h = items[0] |
|
820 | 837 | n = self.str2num(items[1]) |
|
821 | 838 | m = self.str2num(items[2]) |
|
822 | 839 | |
|
823 | 840 | coeffs = items[3:] |
|
824 | 841 | |
|
825 | 842 | for i in range(len(coeffs)-1): |
|
826 | 843 | coeffs[i] = self.str2num(coeffs[i]) |
|
827 | 844 | |
|
828 | 845 | #coeffs = numpy.array(coeffs) |
|
829 | 846 | ncoeffs = numpy.shape(coeffs)[0] |
|
830 | 847 | |
|
831 | 848 | if g_h == 'g': |
|
832 | 849 | # print n," g ",m |
|
833 | 850 | gg[n-1,m,:]=coeffs |
|
834 | 851 | elif g_h=='h': |
|
835 | 852 | # print n," h ",m |
|
836 | 853 | hh[n-1,m,:]=coeffs |
|
837 | 854 | # else : |
|
838 | 855 | # continue |
|
839 | 856 | |
|
840 | 857 | # Ultimo Reordenamiento para almacenar . |
|
841 | 858 | gg[:,:,nepochs[0]-1] = gg[:,:,nepochs[0]-2] + 5*gg[:,:,nepochs[0]-1] |
|
842 | 859 | hh[:,:,nepochs[0]-1] = hh[:,:,nepochs[0]-2] + 5*hh[:,:,nepochs[0]-1] |
|
843 | 860 | |
|
844 | 861 | # return numpy.array([gg,hh]) |
|
845 | 862 | periods = numpy.array(epochs) |
|
846 | 863 | g = gg |
|
847 | 864 | h = hh |
|
848 | 865 | return periods, g, h |
|
849 | 866 | |
|
850 | 867 | |
|
851 | 868 | def __readIGRFcoeff(self,filename="igrf10coeffs.dat"): |
|
852 | 869 | """ |
|
853 | 870 | __readIGRFcoeff reads the coefficients from a binary file which is located in the |
|
854 | 871 | folder "resource." |
|
855 | 872 | |
|
856 | 873 | Parameter |
|
857 | 874 | --------- |
|
858 | 875 | filename = A string to specify the name of the file which contains thec coeffs. The |
|
859 | 876 | default value is "igrf10coeffs.dat" |
|
860 | 877 | |
|
861 | 878 | Return |
|
862 | 879 | ------ |
|
863 | 880 | periods = A lineal array giving... |
|
864 | 881 | g1 = |
|
865 | 882 | h1 = |
|
866 | 883 | |
|
867 | 884 | Modification History |
|
868 | 885 | -------------------- |
|
869 | 886 | Converted to Python by Freddy R. Galindo, ROJ, 03 October 2009. |
|
870 | 887 | """ |
|
871 | 888 | |
|
872 | 889 | # # igrfile = sys.path[-1] + os.sep + "resource" + os.sep + filename |
|
873 | 890 | # igrfile = os.path.join('./resource',filename) |
|
874 | 891 | # f = open(igrfile,'rb') |
|
875 | 892 | # #f = open(os.getcwd() + os.sep + "resource" + os.sep + filename,'rb') |
|
876 | 893 | # |
|
877 | 894 | # # Reading SkyNoise Power (lineal scale) |
|
878 | 895 | # periods = numpy.fromfile(f,numpy.dtype([('var','<f4')]),23) |
|
879 | 896 | # periods = periods['var'] |
|
880 | 897 | # |
|
881 | 898 | # g = numpy.fromfile(f,numpy.dtype([('var','<f8')]),23*14*14) |
|
882 | 899 | # g = g['var'].reshape((14,14,23)).transpose() |
|
883 | 900 | # |
|
884 | 901 | # h = numpy.fromfile(f,numpy.dtype([('var','<f8')]),23*14*14) |
|
885 | 902 | # h = h['var'].reshape((14,14,23)).transpose() |
|
886 | 903 | # |
|
887 | 904 | # f.close() |
|
888 | 905 | base_path = os.path.dirname(os.path.abspath(__file__)) |
|
889 | 906 | filename = os.path.join(base_path,"resource","igrf11coeffs.txt") |
|
890 | 907 | |
|
891 | 908 | period_v, g_v, h_v = self.__readIGRFfile(filename) |
|
892 | 909 | g2 = numpy.zeros((14,14,24)) |
|
893 | 910 | h2 = numpy.zeros((14,14,24)) |
|
894 | 911 | g2[1:14,:,:] = g_v |
|
895 | 912 | h2[1:14,:,:] = h_v |
|
896 | 913 | |
|
897 | 914 | g = numpy.transpose(g2, (2,0,1)) |
|
898 | 915 | h = numpy.transpose(h2, (2,0,1)) |
|
899 | 916 | periods = period_v.copy() |
|
900 | 917 | |
|
901 | 918 | return periods, g, h |
|
902 | 919 | |
|
903 | 920 | def rotvector(self,vector,axis=1,ang=0): |
|
904 | 921 | """ |
|
905 | 922 | rotvector function returns the new vector generated rotating the rectagular coords. |
|
906 | 923 | |
|
907 | 924 | Parameters |
|
908 | 925 | ---------- |
|
909 | 926 | vector = A lineal 3-elements array (x,y,z). |
|
910 | 927 | axis = A integer to specify the axis used to rotate the coord systems. The default |
|
911 | 928 | value is 1. |
|
912 | 929 | axis = 1 -> Around "x" |
|
913 | 930 | axis = 2 -> Around "y" |
|
914 | 931 | axis = 3 -> Around "z" |
|
915 | 932 | ang = Angle of rotation (in radians). The default value is zero. |
|
916 | 933 | |
|
917 | 934 | Return |
|
918 | 935 | ------ |
|
919 | 936 | rotvector = A lineal array of 3 elements giving the new coordinates. |
|
920 | 937 | |
|
921 | 938 | Modification History |
|
922 | 939 | -------------------- |
|
923 | 940 | Converted to Python by Freddy R. Galindo, ROJ, 01 October 2009. |
|
924 | 941 | """ |
|
925 | 942 | |
|
926 | 943 | if axis==1: |
|
927 | 944 | t = [[1,0,0],[0,numpy.cos(ang),numpy.sin(ang)],[0,-numpy.sin(ang),numpy.cos(ang)]] |
|
928 | 945 | elif axis==2: |
|
929 | 946 | t = [[numpy.cos(ang),0,-numpy.sin(ang)],[0,1,0],[numpy.sin(ang),0,numpy.cos(ang)]] |
|
930 | 947 | elif axis==3: |
|
931 | 948 | t = [[numpy.cos(ang),numpy.sin(ang),0],[-numpy.sin(ang),numpy.cos(ang),0],[0,0,1]] |
|
932 | 949 | |
|
933 | 950 | rotvector = numpy.array(numpy.dot(numpy.array(t),numpy.array(vector))) |
|
934 | 951 | |
|
935 | 952 | return rotvector |
|
936 | 953 | |
|
937 | 954 | |
|
938 | 955 | class overJroShow: |
|
939 | 956 | |
|
940 | 957 | # __serverdocspath = '/usr/local/www/htdocs' |
|
941 | 958 | # __tmpDir = 'overJro/tempReports' |
|
942 | 959 | # __serverdocspath = '/Users/dsuarez/Pictures' |
|
943 | 960 | # __tmpDir = 'overjro' |
|
944 |
__serverdocspath = |
|
|
945 |
__tmpDir = |
|
|
961 | __serverdocspath = '' | |
|
962 | __tmpDir = '' | |
|
946 | 963 | |
|
947 | def __init__(self): | |
|
964 | def __init__(self, title=''): | |
|
948 | 965 | self.year = None |
|
949 | 966 | self.month = None |
|
950 | 967 | self.dom = None |
|
951 | 968 | self.pattern = None |
|
952 | 969 | self.maxphi = None |
|
953 | 970 | self.heights = None |
|
954 | 971 | self.filename = None |
|
955 | 972 | self.showType = None |
|
956 | 973 | self.path = None |
|
957 | 974 | self.objects = None |
|
958 | 975 | self.nptsx = 101 |
|
959 | 976 | self.nptsy = 101 |
|
960 | 977 | self.fftopt = 0 |
|
961 | 978 | self.site = 1 |
|
962 | 979 | self.dcosx = 1 |
|
963 | 980 | self.dcosy = 1 |
|
964 | 981 | self.dcosxrange = None |
|
965 | 982 | self.dcosyrange = None |
|
966 | 983 | self.maxha_min= 0. |
|
967 | 984 | self.show_object = None |
|
968 | 985 | self.dcosx_mag = None |
|
969 | 986 | self.dcosy_mag = None |
|
970 | 987 | self.ha_mag = None |
|
971 | 988 | self.time_mag = None |
|
972 | 989 | self.main_dec = None |
|
973 | 990 | self.ObjC = None |
|
974 |
self.ptitle = |
|
|
991 | self.ptitle = title | |
|
975 | 992 | self.path4plotname = None |
|
976 | 993 | self.plotname0 = None |
|
977 | 994 | self.plotname1 = None |
|
978 | 995 | self.plotname2 = None |
|
979 | 996 | self.scriptHeaders = 0 |
|
997 | self.glat = -11.95 | |
|
998 | self.glon = -76.8667 | |
|
999 | self.UT = 5 #timezone | |
|
1000 | ||
|
1001 | self.glat = -11.951481 | |
|
1002 | self.glon = -76.874383 | |
|
980 | 1003 | # self.outputHead('Show Plot') |
|
981 | 1004 | # self.printBody() |
|
982 | 1005 | |
|
983 | 1006 | def setScriptState(self): |
|
984 | 1007 | self.madForm = cgi.FieldStorage() |
|
985 | 1008 | |
|
986 | 1009 | if self.madForm.has_key('serverdocspath'): |
|
987 | 1010 | self.__serverdocspath = self.madForm.getvalue('serverdocspath')#'/usr/local/www/htdocs' |
|
988 | 1011 | |
|
989 | 1012 | if self.madForm.has_key('tmpdir'): |
|
990 | 1013 | self.__tmpDir = self.madForm.getvalue('tmpdir')#'overJro/tempReports' |
|
991 | 1014 | |
|
992 | 1015 | if self.madForm.has_key('showType'): |
|
993 | 1016 | self.showType = int(self.madForm.getvalue('showType')) |
|
994 | 1017 | |
|
995 | 1018 | if self.showType == 0 or self.showType == 1: |
|
996 | 1019 | |
|
997 | 1020 | # if self.madForm.has_key('year') and \ |
|
998 | 1021 | # self.madForm.has_key('month') and \ |
|
999 | 1022 | # self.madForm.has_key('dom') and \ |
|
1000 | 1023 | # self.madForm.has_key('pattern') and \ |
|
1001 | 1024 | # self.madForm.has_key('maxphi') and \ |
|
1002 | 1025 | # self.madForm.has_key('objects') and \ |
|
1003 | 1026 | # self.madForm.has_key('heights'): |
|
1004 | 1027 | |
|
1005 | 1028 | if self.madForm.has_key('year') and \ |
|
1006 | 1029 | self.madForm.has_key('month') and \ |
|
1007 | 1030 | self.madForm.has_key('dom') and \ |
|
1008 | 1031 | self.madForm.has_key('maxphi') and \ |
|
1009 | 1032 | self.madForm.has_key('objects') and \ |
|
1010 | 1033 | self.madForm.has_key('heights'): |
|
1011 | 1034 | |
|
1012 | 1035 | self.year = int(self.madForm.getvalue('year')) |
|
1013 | 1036 | self.month = int(self.madForm.getvalue('month')) |
|
1014 | 1037 | self.dom = int(self.madForm.getvalue('dom')) |
|
1015 | 1038 | self.maxphi = float(self.madForm.getvalue('maxphi')) |
|
1016 | 1039 | |
|
1017 | 1040 | if self.madForm.has_key('pattern'): |
|
1018 | 1041 | |
|
1019 | 1042 | tmp_pattern = self.madForm.getvalue('pattern') #pattern es predifinido en listado o definido por el usuario |
|
1020 | 1043 | self.pattern=[] |
|
1021 | 1044 | if tmp_pattern[0] == '[': |
|
1022 | 1045 | tmp_pattern=tmp_pattern[1:] |
|
1023 | 1046 | |
|
1024 | 1047 | if tmp_pattern[-1] == ']': |
|
1025 | 1048 | tmp_pattern=tmp_pattern[0:len(tmp_pattern)-1] |
|
1026 | 1049 | |
|
1027 | 1050 | for s in tmp_pattern.split(','): |
|
1028 | 1051 | self.pattern.append(float(s)) |
|
1029 | 1052 | elif self.madForm.has_key('filename'): |
|
1030 | 1053 | if self.madForm.has_key('filename'): |
|
1031 | 1054 | self.filename = self.madForm.getvalue('filename') # nombre de archivo: patron de radiacion definido por el usuario |
|
1032 | 1055 | |
|
1033 | 1056 | if self.madForm.has_key('path'): |
|
1034 | 1057 | self.path = self.madForm.getvalue('path') #path donde se encuentra el archivo: patron de radiacion del usuario |
|
1035 | 1058 | |
|
1036 | 1059 | else: |
|
1037 | 1060 | print "Content-Type: text/html\n" |
|
1038 | 1061 | print '<h3> This cgi plot script was called without the proper arguments.</h3>' |
|
1039 | 1062 | print '<p> This is a script used to plot Antenna Cuts over Jicamarca Antenna</p>' |
|
1040 | 1063 | print '<p> Required arguments:</p>' |
|
1041 | 1064 | print '<p> pattern - chekbox indicating objects over jicamarca antenna</p>' |
|
1042 | 1065 | print '<p> or' |
|
1043 | 1066 | print '<p> filename - The pattern defined by users is a file text' |
|
1044 | 1067 | print '<p> path - folder with pattern files' |
|
1045 | 1068 | sys.exit(0) |
|
1046 | 1069 | |
|
1047 | 1070 | |
|
1048 | 1071 | tmp_heights = self.madForm.getvalue('heights') |
|
1049 | 1072 | self.heights=[] |
|
1050 | 1073 | if tmp_heights[0] == '[': |
|
1051 | 1074 | tmp_heights=tmp_heights[1:] |
|
1052 | 1075 | |
|
1053 | 1076 | if tmp_heights[-1] == ']': |
|
1054 | 1077 | tmp_heights=tmp_heights[0:len(tmp_heights)-1] |
|
1055 | 1078 | |
|
1056 | 1079 | for s in tmp_heights.split(','): |
|
1057 | 1080 | self.heights.append(float(s)) |
|
1058 | 1081 | self.heights = numpy.array(self.heights) |
|
1059 | 1082 | |
|
1060 | 1083 | tmp_objects = self.madForm.getvalue('objects') #lista con los objetos a graficar en el patron de radiacion |
|
1061 | 1084 | self.objects=[] |
|
1062 | 1085 | if tmp_objects[0] == '[': |
|
1063 | 1086 | tmp_objects=tmp_objects[1:] |
|
1064 | 1087 | |
|
1065 | 1088 | if tmp_objects[-1] == ']': |
|
1066 | 1089 | tmp_objects=tmp_objects[0:len(tmp_objects)-1] |
|
1067 | 1090 | |
|
1068 | 1091 | for s in tmp_objects.split(','): |
|
1069 | 1092 | self.objects.append(int(s)) |
|
1070 | 1093 | |
|
1071 | 1094 | if self.showType == 1: |
|
1072 | 1095 | if numpy.sum(self.objects) == 0: |
|
1073 | 1096 | if self.scriptHeaders == 0: |
|
1074 | 1097 | print "Content-Type: text/html\n" |
|
1075 | 1098 | print '<h3> This cgi plot script was called without the proper arguments.</h3>' |
|
1076 | 1099 | print '<p> This is a script used to plot Antenna Cuts over Jicamarca Antenna</p>' |
|
1077 | 1100 | print '<p> Required arguments:</p>' |
|
1078 | 1101 | print '<p> objects - chekbox indicating objects over jicamarca antenna</p>' |
|
1079 | 1102 | print '<p> Please, options in "Select Object" must be checked' |
|
1080 | 1103 | sys.exit(0) |
|
1081 | 1104 | |
|
1082 | 1105 | #considerar para futura implementacion |
|
1083 | 1106 | if self.madForm.has_key('filename'): |
|
1084 | 1107 | self.filename = self.madForm.getvalue('filename') # nombre de archivo: patron de radiacion definido por el usuario |
|
1085 | 1108 | |
|
1086 | 1109 | if self.madForm.has_key('path'): |
|
1087 | 1110 | self.path = self.madForm.getvalue('path') #path donde se encuentra el archivo: patron de radiacion del usuario |
|
1088 | 1111 | |
|
1089 | 1112 | |
|
1090 | 1113 | else: |
|
1091 | 1114 | if self.scriptHeaders == 0: |
|
1092 | 1115 | print "Content-Type: text/html\n" |
|
1093 | 1116 | |
|
1094 | 1117 | print '<h3> This cgi plot script was called without the proper arguments.</h3>' |
|
1095 | 1118 | print '<p> This is a script used to plot Pattern Field and Celestial Objects over Jicamarca Antenna</p>' |
|
1096 | 1119 | print '<p> Required arguments:</p>' |
|
1097 | 1120 | print '<p> year - year of event</p>' |
|
1098 | 1121 | print '<p> month - month of event</p>' |
|
1099 | 1122 | print '<p> dom - day of month</p>' |
|
1100 | 1123 | print '<p> pattern - pattern is defined by "Select an Experiment" list box</p>' |
|
1101 | 1124 | print '<p> maxphi - maxphi is defined by "Max Angle" text box</p>' |
|
1102 | 1125 | print '<p> objects - objects is a list defined by checkbox in "Select Object"</p>' |
|
1103 | 1126 | print '<p> heights - heights is defined by "Heights" text box, for default heights=[100,500,1000]</p>' |
|
1104 | 1127 | print '<p> showType - showType is a hidden element for show plot of Pattern&Object or Antenna Cuts or Sky Noise</p>' |
|
1105 | 1128 | |
|
1106 | 1129 | sys.exit(0) |
|
1107 | 1130 | |
|
1108 | 1131 | if self.showType == 2: |
|
1109 | 1132 | if self.madForm.has_key('year') and \ |
|
1110 | 1133 | self.madForm.has_key('month') and \ |
|
1111 | 1134 | self.madForm.has_key('dom'): |
|
1112 | 1135 | |
|
1113 | 1136 | self.year = int(self.madForm.getvalue('year')) |
|
1114 | 1137 | self.month = int(self.madForm.getvalue('month')) |
|
1115 | 1138 | self.dom = int(self.madForm.getvalue('dom')) |
|
1116 | 1139 | |
|
1117 | 1140 | else: |
|
1118 | 1141 | if self.scriptHeaders == 0: |
|
1119 | 1142 | print "Content-Type: text/html\n" |
|
1120 | 1143 | print '<h3> This cgi plot script was called without the proper arguments.</h3>' |
|
1121 | 1144 | print '<p> This is a script used to plot Sky Noise over Jicamarca Antenna</p>' |
|
1122 | 1145 | print '<p> Required arguments:</p>' |
|
1123 | 1146 | print '<p> year - year of event</p>' |
|
1124 | 1147 | print '<p> month - month of event</p>' |
|
1125 | 1148 | print '<p> dom - day of month</p>' |
|
1126 | 1149 | |
|
1127 | 1150 | sys.exit(0) |
|
1128 | 1151 | |
|
1129 | 1152 | |
|
1130 | 1153 | def initParameters1(self): |
|
1131 | 1154 | |
|
1132 | 1155 | gui=1 |
|
1133 | 1156 | if self.pattern==None: |
|
1134 | 1157 | if gui==1: self.filename = self.filename.split(',') |
|
1135 | 1158 | |
|
1136 | 1159 | pattern = numpy.atleast_1d(self.pattern) |
|
1137 | 1160 | filename = numpy.atleast_1d(self.filename) |
|
1138 | 1161 | |
|
1139 | 1162 | npatterns = numpy.max(numpy.array([pattern.size,filename.size])) |
|
1140 | 1163 | |
|
1141 | 1164 | self.pattern = numpy.resize(pattern,npatterns) |
|
1142 | 1165 | self.filename = numpy.resize(filename,npatterns) |
|
1143 | 1166 | |
|
1144 | 1167 | self.doy = datetime.datetime(self.year,self.month,self.dom).timetuple().tm_yday |
|
1145 | 1168 | |
|
1146 | 1169 | |
|
1147 | 1170 | if self.objects==None: |
|
1148 | 1171 | self.objects=numpy.zeros(5) |
|
1149 | 1172 | else: |
|
1150 | 1173 | tmp = numpy.atleast_1d(self.objects) |
|
1151 | 1174 | self.objects = numpy.zeros(5) |
|
1152 | 1175 | self.objects[0:tmp.size] = tmp |
|
1153 | 1176 | |
|
1154 | 1177 | self.show_object = self.objects |
|
1155 | 1178 | |
|
1156 | 1179 | self.maxha_min = 4*self.maxphi*numpy.sqrt(2)*1.25 |
|
1157 | 1180 | |
|
1158 | 1181 | |
|
1159 | 1182 | if self.heights==None: |
|
1160 | 1183 | self.heights = numpy.array([100.,500.,1000.]) |
|
1161 | 1184 | |
|
1162 | 1185 | |
|
1163 | 1186 | |
|
1164 | 1187 | #ROJ geographic coordinates and time zone |
|
1165 | 1188 | self.glat = -11.95 |
|
1166 | 1189 | self.glon = -76.8667 |
|
1167 | 1190 | self.UT = 5 #timezone |
|
1168 | 1191 | |
|
1169 | 1192 | self.glat = -11.951481 |
|
1170 | 1193 | self.glon = -76.874383 |
|
1171 | 1194 | |
|
1172 | 1195 | |
|
1173 | 1196 | self.junkjd = TimeTools.Time(self.year,self.month,self.dom).change2julday() |
|
1174 | 1197 | self.junklst = TimeTools.Julian(self.junkjd).change2lst(longitude=self.glon) |
|
1175 | 1198 | |
|
1176 | 1199 | # Finding RA of observatory for a specific date |
|
1177 | 1200 | self.ra_obs = self.junklst*Misc_Routines.CoFactors.h2d |
|
1178 | 1201 | |
|
1179 | 1202 | def initParameters(self): |
|
1180 | 1203 | |
|
1181 | 1204 | # Defining plot filenames |
|
1182 | 1205 | self.path4plotname = os.path.join(self.__serverdocspath,self.__tmpDir) |
|
1183 | print "PATH4" | |
|
1184 | print os.path.join(self.__serverdocspath,self.__tmpDir) | |
|
1185 | 1206 | self.plotname0 = 'over_jro_0_%i.png'% (time.time()) #plot pattern & objects |
|
1186 | 1207 | self.plotname1 = 'over_jro_1_%i.png'% (time.time()) #plot antenna cuts |
|
1187 | 1208 | self.plotname2 = 'over_jro_2_%i.png'% (time.time()) #plot sky noise |
|
1188 | 1209 | |
|
1189 | 1210 | # Defining antenna axes respect to geographic coordinates (See Ochs report). |
|
1190 | 1211 | # alfa = 1.46*Misc_Routines.CoFactors.d2r |
|
1191 | 1212 | # theta = 51.01*Misc_Routines.CoFactors.d2r |
|
1192 | 1213 | |
|
1193 | 1214 | alfa = 1.488312*Misc_Routines.CoFactors.d2r |
|
1194 | 1215 | th = 6.166710 + 45.0 |
|
1195 | 1216 | theta = th*Misc_Routines.CoFactors.d2r |
|
1196 | 1217 | |
|
1197 | 1218 | sina = numpy.sin(alfa) |
|
1198 | 1219 | cosa = numpy.cos(alfa) |
|
1199 | 1220 | MT1 = numpy.array([[1,0,0],[0,cosa,-sina],[0,sina,cosa]]) |
|
1200 | 1221 | sinb = numpy.sin(theta) |
|
1201 | 1222 | cosb = numpy.cos(theta) |
|
1202 | 1223 | MT2 = numpy.array([[cosb,sinb,0],[-sinb,cosb,0],[0,0,1]]) |
|
1203 | 1224 | self.MT3 = numpy.array(numpy.dot(MT2, MT1)).transpose() |
|
1204 | 1225 | |
|
1205 | 1226 | self.xg = numpy.dot(self.MT3.transpose(),numpy.array([1,0,0])) |
|
1206 | 1227 | self.yg = numpy.dot(self.MT3.transpose(),numpy.array([0,1,0])) |
|
1207 | 1228 | self.zg = numpy.dot(self.MT3.transpose(),numpy.array([0,0,1])) |
|
1208 | 1229 | |
|
1230 | def plotPattern2(self, date, phases, gain_tx, gain_rx, ues, just_rx): | |
|
1231 | # Plotting Antenna patterns. | |
|
1232 | ||
|
1233 | self.initParameters() | |
|
1234 | self.doy = datetime.datetime(date.year,date.month,date.day).timetuple().tm_yday | |
|
1235 | self.junkjd = TimeTools.Time(self.year,self.month,self.dom).change2julday() | |
|
1236 | self.junklst = TimeTools.Julian(self.junkjd).change2lst(longitude=self.glon) | |
|
1237 | self.ra_obs = self.junklst*Misc_Routines.CoFactors.h2d | |
|
1238 | ||
|
1239 | date = TimeTools.Time(date.year,date.month,date.day).change2strdate(mode=2) | |
|
1240 | ||
|
1241 | mesg = 'Over Jicamarca: ' + date[0] | |
|
1242 | ||
|
1243 | ObjAnt = JroPattern(pattern=0, | |
|
1244 | filename=None, | |
|
1245 | path=None, | |
|
1246 | nptsx=self.nptsx, | |
|
1247 | nptsy=self.nptsy, | |
|
1248 | #maxphi=self.maxphi, | |
|
1249 | fftopt=self.fftopt, | |
|
1250 | phases=numpy.array(phases), | |
|
1251 | gain_tx=numpy.array(gain_tx), | |
|
1252 | gain_rx=numpy.array(gain_rx), | |
|
1253 | ues=numpy.array(ues), | |
|
1254 | just_rx=just_rx | |
|
1255 | ) | |
|
1256 | ||
|
1257 | dum = Graphics_OverJro.AntPatternPlot() | |
|
1258 | ||
|
1259 | dum.contPattern(iplot=0, | |
|
1260 | gpath=self.path4plotname, | |
|
1261 | filename=self.plotname0, | |
|
1262 | mesg=mesg, | |
|
1263 | amp=ObjAnt.norpattern, | |
|
1264 | x=ObjAnt.dcosx, | |
|
1265 | y=ObjAnt.dcosy, | |
|
1266 | getCut=ObjAnt.getcut, | |
|
1267 | title=self.ptitle, | |
|
1268 | save=False) | |
|
1269 | ||
|
1270 | ||
|
1271 | dum.plotRaDec(gpath=self.path4plotname, | |
|
1272 | filename=self.plotname0, | |
|
1273 | jd=self.junkjd, | |
|
1274 | ra_obs=self.ra_obs, | |
|
1275 | xg=self.xg, | |
|
1276 | yg=self.yg, | |
|
1277 | x=ObjAnt.dcosx, | |
|
1278 | y=ObjAnt.dcosy, | |
|
1279 | save=False) | |
|
1280 | ||
|
1281 | ObjB = BField(self.year,self.doy,1,self.heights) | |
|
1282 | [dcos, alpha, nlon, nlat] = ObjB.getBField() | |
|
1283 | ||
|
1284 | dum.plotBField('', '',dcos,alpha,nlon,nlat, | |
|
1285 | self.dcosxrange, | |
|
1286 | self.dcosyrange, | |
|
1287 | ObjB.heights, | |
|
1288 | ObjB.alpha_i, | |
|
1289 | save=False) | |
|
1290 | ||
|
1291 | return dum.fig | |
|
1292 | ||
|
1293 | ||
|
1209 | 1294 | def plotPattern(self): |
|
1210 | 1295 | # Plotting Antenna patterns. |
|
1211 | 1296 | npatterns = numpy.size(self.pattern) |
|
1212 | 1297 | |
|
1213 | 1298 | if npatterns==1: |
|
1214 | 1299 | if self.pattern[0] == None: npatterns = self.filename.__len__() |
|
1215 | 1300 | |
|
1216 | 1301 | date = TimeTools.Time(self.year,self.month,self.dom).change2strdate(mode=2) |
|
1217 | 1302 | |
|
1218 | 1303 | mesg = 'Over Jicamarca: ' + date[0] |
|
1219 | 1304 | |
|
1220 | 1305 | title = '' |
|
1221 | 1306 | |
|
1222 | 1307 | for ii in numpy.arange(npatterns): |
|
1223 | 1308 | ObjAnt = JroPattern(pattern=self.pattern[ii], |
|
1224 | 1309 | filename=self.filename[ii], |
|
1225 | 1310 | path=self.path, |
|
1226 | 1311 | nptsx=self.nptsx, |
|
1227 | 1312 | nptsy=self.nptsy, |
|
1228 | 1313 | maxphi=self.maxphi, |
|
1229 | 1314 | fftopt=self.fftopt) |
|
1230 | 1315 | |
|
1231 | 1316 | title += ObjAnt.title |
|
1232 | 1317 | # Plotting Contour Map |
|
1233 | print "Antes de la creacion" | |
|
1234 |
self.path4plotname = '/home/ |
|
|
1235 | print self.path4plotname | |
|
1236 | print self.plotname0 | |
|
1318 | ||
|
1319 | self.path4plotname = '/home/jespinoza/workspace/radarsys/trunk/webapp/apps/abs/static/images' | |
|
1237 | 1320 | dum = Graphics_OverJro.AntPatternPlot() |
|
1238 | 1321 | dum.contPattern(iplot=ii, |
|
1239 | 1322 | gpath=self.path4plotname, |
|
1240 | 1323 | filename=self.plotname0, |
|
1241 | 1324 | mesg=mesg, |
|
1242 | 1325 | amp=ObjAnt.norpattern, |
|
1243 | 1326 | x=ObjAnt.dcosx, |
|
1244 | 1327 | y=ObjAnt.dcosy, |
|
1245 | 1328 | getCut=ObjAnt.getcut, |
|
1246 | 1329 | title=title) |
|
1247 | 1330 | # title=ObjAnt.title) |
|
1248 | 1331 | # self.ptitle = ObjAnt.title |
|
1249 | if ii==0: | |
|
1250 | self.figure = dum.figure | |
|
1251 | 1332 | |
|
1252 | 1333 | if ii != (npatterns-1): |
|
1253 | 1334 | title += '+' |
|
1254 | 1335 | |
|
1255 | 1336 | |
|
1256 | 1337 | vect_ant = numpy.array([ObjAnt.meanpos[0],ObjAnt.meanpos[1],numpy.sqrt(1-numpy.sum(ObjAnt.meanpos**2.))]) |
|
1257 | 1338 | |
|
1258 | 1339 | vect_geo = numpy.dot(scipy.linalg.inv(self.MT3),vect_ant) |
|
1259 | 1340 | |
|
1260 | 1341 | vect_polar = Misc_Routines.Vector(numpy.array(vect_geo),direction=1).Polar2Rect() |
|
1261 | 1342 | |
|
1262 | 1343 | [ra,dec,ha] = Astro_Coords.AltAz(vect_polar[1],vect_polar[0],self.junkjd).change2equatorial() |
|
1263 | 1344 | |
|
1264 | 1345 | print'Main beam position (HA(min), DEC(degrees)): %f %f'%(ha*4.,dec) |
|
1265 | 1346 | |
|
1266 | 1347 | self.main_dec = dec |
|
1267 | 1348 | |
|
1268 | 1349 | self.ptitle = title |
|
1269 | 1350 | |
|
1270 | Graphics_OverJro.AntPatternPlot().plotRaDec(gpath=self.path4plotname,filename=self.plotname0,jd=self.junkjd, ra_obs=self.ra_obs, xg=self.xg, yg=self.yg, x=ObjAnt.dcosx, y=ObjAnt.dcosy) | |
|
1351 | Graphics_OverJro.AntPatternPlot().plotRaDec(gpath=self.path4plotname, | |
|
1352 | filename=self.plotname0, | |
|
1353 | jd=self.junkjd, | |
|
1354 | ra_obs=self.ra_obs, | |
|
1355 | xg=self.xg, | |
|
1356 | yg=self.yg, | |
|
1357 | x=ObjAnt.dcosx, | |
|
1358 | y=ObjAnt.dcosy) | |
|
1271 | 1359 | |
|
1272 | 1360 | self.dcosx = ObjAnt.dcosx |
|
1273 | 1361 | |
|
1274 | 1362 | self.dcosy = ObjAnt.dcosy |
|
1275 | 1363 | |
|
1276 | 1364 | self.dcosxrange = [numpy.min(self.dcosx),numpy.max(self.dcosx)] |
|
1277 | 1365 | |
|
1278 | 1366 | self.dcosyrange = [numpy.min(self.dcosy),numpy.max(self.dcosy)] |
|
1279 | 1367 | |
|
1280 | 1368 | def plotBfield(self): |
|
1281 | 1369 | |
|
1282 | 1370 | if self.show_object[0]>0: |
|
1283 | 1371 | # Getting B field |
|
1284 | 1372 | ObjB = BField(self.year,self.doy,self.site,self.heights) |
|
1285 | 1373 | |
|
1286 | 1374 | |
|
1287 | 1375 | [dcos, alpha, nlon, nlat] = ObjB.getBField() |
|
1288 | 1376 | |
|
1289 | 1377 | # Plotting B field. |
|
1290 | 1378 | # print "Drawing magnetic field over Observatory" |
|
1291 | 1379 | |
|
1292 | 1380 | Obj = Graphics_OverJro.BFieldPlot() |
|
1293 | 1381 | |
|
1294 | 1382 | Obj.plotBField(self.path4plotname,self.plotname0,dcos,alpha,nlon,nlat,self.dcosxrange,self.dcosyrange,ObjB.heights,ObjB.alpha_i) |
|
1295 | 1383 | |
|
1296 | 1384 | if self.show_object[0]>1: |
|
1297 | 1385 | |
|
1298 | 1386 | Bhei = 0 |
|
1299 | 1387 | |
|
1300 | 1388 | dcosx = Obj.alpha_location[:,0,Bhei] |
|
1301 | 1389 | |
|
1302 | 1390 | dcosy = Obj.alpha_location[:,1,Bhei] |
|
1303 | 1391 | |
|
1304 | 1392 | vect_ant = [dcosx,dcosy,numpy.sqrt(1.-(dcosx**2. + dcosy**2.))] |
|
1305 | 1393 | |
|
1306 | 1394 | vect_ant = numpy.array(vect_ant) |
|
1307 | 1395 | |
|
1308 | 1396 | vect_geo = numpy.dot(scipy.linalg.inv(self.MT3),vect_ant) |
|
1309 | 1397 | |
|
1310 | 1398 | vect_geo = numpy.array(vect_geo).transpose() |
|
1311 | 1399 | |
|
1312 | 1400 | vect_polar = Misc_Routines.Vector(vect_geo,direction=1).Polar2Rect() |
|
1313 | 1401 | |
|
1314 | 1402 | [ra,dec,ha] = Astro_Coords.AltAz(vect_polar[1,:],vect_polar[0,:],self.junkjd).change2equatorial() |
|
1315 | 1403 | |
|
1316 | 1404 | val = numpy.where(ha>=180) |
|
1317 | 1405 | |
|
1318 | 1406 | if val[0].size>0:ha[val] = ha[val] -360. |
|
1319 | 1407 | |
|
1320 | 1408 | val = numpy.where(numpy.abs(ha)<=self.maxphi) |
|
1321 | 1409 | |
|
1322 | 1410 | if val[0].size>2: |
|
1323 | 1411 | |
|
1324 | 1412 | self.dcosx_mag = dcosx[val] |
|
1325 | 1413 | |
|
1326 | 1414 | self.dcosy_mag = dcosy[val] |
|
1327 | 1415 | |
|
1328 | 1416 | self.ha_mag = ha[val] |
|
1329 | 1417 | |
|
1330 | 1418 | self.time_mag = 0 |
|
1331 | 1419 | |
|
1332 | 1420 | def plotCelestial(self): |
|
1333 | 1421 | |
|
1334 | 1422 | ntod = 24.*16. |
|
1335 | 1423 | |
|
1336 | 1424 | tod = numpy.arange(ntod)/ntod*24. |
|
1337 | 1425 | |
|
1338 | 1426 | [month,dom] = TimeTools.Doy2Date(self.year,self.doy).change2date() |
|
1339 | 1427 | |
|
1340 | 1428 | jd = TimeTools.Time(self.year,month,dom,tod+self.UT).change2julday() |
|
1341 | 1429 | |
|
1342 | 1430 | if numpy.sum(self.show_object[1:]>0)!=0: |
|
1343 | 1431 | |
|
1344 | 1432 | self.ObjC = Graphics_OverJro.CelestialObjectsPlot(jd,self.main_dec,tod,self.maxha_min,self.show_object) |
|
1345 | 1433 | |
|
1346 | 1434 | self.ObjC.drawObject(self.glat, |
|
1347 | 1435 | self.glon, |
|
1348 | 1436 | self.xg, |
|
1349 | 1437 | self.yg, |
|
1350 | 1438 | self.dcosxrange, |
|
1351 | 1439 | self.dcosyrange, |
|
1352 | 1440 | self.path4plotname, |
|
1353 | 1441 | self.plotname0) |
|
1354 | 1442 | |
|
1355 | 1443 | def plotAntennaCuts(self): |
|
1356 | 1444 | # print "Drawing antenna cuts" |
|
1357 | 1445 | |
|
1358 | 1446 | incha = 0.05 # min |
|
1359 | 1447 | nha = numpy.int32(2*self.maxha_min/incha) + 1. |
|
1360 | 1448 | newha = numpy.arange(nha)/nha*2.*self.maxha_min - self.maxha_min |
|
1361 | 1449 | nha_star = numpy.int32(200./incha) |
|
1362 | 1450 | star_ha = (numpy.arange(nha_star) - (nha_star/2))*nha_star |
|
1363 | 1451 | |
|
1364 | 1452 | #Init ObjCut for PatternCutPlot() |
|
1365 | 1453 | view_objects = numpy.where(self.show_object>0) |
|
1366 | 1454 | subplots = len(view_objects[0]) |
|
1367 | 1455 | ObjCut = Graphics_OverJro.PatternCutPlot(subplots) |
|
1368 | 1456 | |
|
1369 | 1457 | for io in (numpy.arange(5)): |
|
1370 | 1458 | if self.show_object[io]==2: |
|
1371 | 1459 | if io==0: |
|
1372 | 1460 | if self.dcosx_mag.size!=0: |
|
1373 | 1461 | dcosx = self.dcosx_mag |
|
1374 | 1462 | dcosy = self.dcosy_mag |
|
1375 | 1463 | dcosz = 1 - numpy.sqrt(dcosx**2. + dcosy**2.) |
|
1376 | 1464 | |
|
1377 | 1465 | # Finding rotation of B respec to antenna coords. |
|
1378 | 1466 | [mm,bb] = scipy.polyfit(dcosx,dcosy,1) |
|
1379 | 1467 | alfa = 0.0 |
|
1380 | 1468 | theta = -1.*numpy.arctan(mm) |
|
1381 | 1469 | sina = numpy.sin(alfa); cosa = numpy.cos(alfa) |
|
1382 | 1470 | MT1 = [[1,0,0],[0,cosa,-sina],[0,sina,cosa]] |
|
1383 | 1471 | MT1 = numpy.array(MT1) |
|
1384 | 1472 | sinb = numpy.sin(theta); cosb = numpy.cos(theta) |
|
1385 | 1473 | MT2 = [[cosb,sinb,0],[-sinb,cosb,0],[0,0,1]] |
|
1386 | 1474 | MT2 = numpy.array(MT2) |
|
1387 | 1475 | MT3_mag = numpy.dot(MT2, MT1) |
|
1388 | 1476 | MT3_mag = numpy.array(MT3_mag).transpose() |
|
1389 | 1477 | # Getting dcos respec to B coords |
|
1390 | 1478 | vector = numpy.array([dcosx,dcosy,dcosz]) |
|
1391 | 1479 | nvector = numpy.dot(MT3_mag,vector) |
|
1392 | 1480 | nvector = numpy.array(nvector).transpose() |
|
1393 | 1481 | |
|
1394 | 1482 | ## print 'Rotation (deg) %f'%(theta/Misc_Routines.CoFactors.d2r) |
|
1395 | 1483 | |
|
1396 | 1484 | yoffset = numpy.sum(nvector[:,1])/nvector[:,1].size |
|
1397 | 1485 | # print 'Dcosyoffset %f'%(yoffset) |
|
1398 | 1486 | |
|
1399 | 1487 | ha = self.ha_mag*4. |
|
1400 | 1488 | time = self.time_mag |
|
1401 | 1489 | width_star = 0.1 # half width in minutes |
|
1402 | 1490 | otitle = 'B Perp. cut' |
|
1403 | 1491 | # else: |
|
1404 | 1492 | # print "No B perp. over Observatory" |
|
1405 | 1493 | # |
|
1406 | 1494 | # |
|
1407 | 1495 | elif io==1: |
|
1408 | 1496 | if self.ObjC.dcosx_sun.size!=0: |
|
1409 | 1497 | dcosx = self.ObjC.dcosx_sun |
|
1410 | 1498 | dcosy = self.ObjC.dcosy_sun |
|
1411 | 1499 | ha = self.ObjC.ha_sun*4.0 |
|
1412 | 1500 | time = self.ObjC.time_sun |
|
1413 | 1501 | width_star = 2. # half width in minutes |
|
1414 | 1502 | otitle = 'Sun cut' |
|
1415 | 1503 | # else: |
|
1416 | 1504 | # print "Sun is not passing over Observatory" |
|
1417 | 1505 | |
|
1418 | 1506 | elif io==2: |
|
1419 | 1507 | if self.ObjC.dcosx_moon.size!=0: |
|
1420 | 1508 | dcosx = self.ObjC.dcosx_moon |
|
1421 | 1509 | dcosy = self.ObjC.dcosy_moon |
|
1422 | 1510 | ha = self.ObjC.ha_moon*4 |
|
1423 | 1511 | time = self.ObjC.time_moon |
|
1424 | 1512 | m_distance = 404114.6 # distance to the Earth in km |
|
1425 | 1513 | m_diameter = 1734.4 # diameter in km. |
|
1426 | 1514 | width_star = numpy.arctan(m_distance/m_diameter) |
|
1427 | 1515 | width_star = width_star/2./Misc_Routines.CoFactors.d2r*4. |
|
1428 | 1516 | otitle = 'Moon cut' |
|
1429 | 1517 | # else: |
|
1430 | 1518 | # print "Moon is not passing over Observatory" |
|
1431 | 1519 | |
|
1432 | 1520 | elif io==3: |
|
1433 | 1521 | if self.ObjC.dcosx_hydra.size!=0: |
|
1434 | 1522 | dcosx = self.ObjC.dcosx_hydra |
|
1435 | 1523 | dcosy = self.ObjC.dcosy_hydra |
|
1436 | 1524 | ha = self.ObjC.ha_hydra*4. |
|
1437 | 1525 | time = self.ObjC.time_hydra |
|
1438 | 1526 | width_star = 0.25 # half width in minutes |
|
1439 | 1527 | otitle = 'Hydra cut' |
|
1440 | 1528 | # else: |
|
1441 | 1529 | # print "Hydra is not passing over Observatory" |
|
1442 | 1530 | |
|
1443 | 1531 | elif io==4: |
|
1444 | 1532 | if self.ObjC.dcosx_galaxy.size!=0: |
|
1445 | 1533 | dcosx = self.ObjC.dcosx_galaxy |
|
1446 | 1534 | dcosy = self.ObjC.dcosy_galaxy |
|
1447 | 1535 | ha = self.ObjC.ha_galaxy*4. |
|
1448 | 1536 | time = self.ObjC.time_galaxy |
|
1449 | 1537 | width_star = 25. # half width in minutes |
|
1450 | 1538 | otitle = 'Galaxy cut' |
|
1451 | 1539 | # else: |
|
1452 | 1540 | # print "Galaxy center is not passing over Jicamarca" |
|
1453 | 1541 | # |
|
1454 | 1542 | # |
|
1455 | 1543 | hour = numpy.int32(time) |
|
1456 | 1544 | mins = numpy.int32((time - hour)*60.) |
|
1457 | 1545 | secs = numpy.int32(((time - hour)*60. - mins)*60.) |
|
1458 | 1546 | |
|
1459 | 1547 | ObjT = TimeTools.Time(self.year,self.month,self.dom,hour,mins,secs) |
|
1460 | 1548 | subtitle = ObjT.change2strdate() |
|
1461 | 1549 | |
|
1462 | 1550 | star_cut = numpy.exp(-(star_ha/width_star)**2./2.) |
|
1463 | 1551 | |
|
1464 | 1552 | pol = scipy.polyfit(ha,dcosx,3.) |
|
1465 | 1553 | polx = numpy.poly1d(pol); newdcosx = polx(newha) |
|
1466 | 1554 | pol = scipy.polyfit(ha,dcosy,3.) |
|
1467 | 1555 | poly = numpy.poly1d(pol);newdcosy = poly(newha) |
|
1468 | 1556 | |
|
1469 | 1557 | patterns = [] |
|
1470 | 1558 | for icut in numpy.arange(self.pattern.size): |
|
1471 | 1559 | # Getting Antenna cut. |
|
1472 | 1560 | Obj = JroPattern(dcosx=newdcosx, |
|
1473 | 1561 | dcosy=newdcosy, |
|
1474 | 1562 | getcut=1, |
|
1475 | 1563 | pattern=self.pattern[icut], |
|
1476 | 1564 | path=self.path, |
|
1477 | 1565 | filename=self.filename[icut]) |
|
1478 | 1566 | |
|
1479 | 1567 | Obj.getPattern() |
|
1480 | 1568 | |
|
1481 | 1569 | patterns.append(Obj.pattern) |
|
1482 | 1570 | |
|
1483 | 1571 | |
|
1484 | 1572 | ObjCut.drawCut(io, |
|
1485 | 1573 | patterns, |
|
1486 | 1574 | self.pattern.size, |
|
1487 | 1575 | newha, |
|
1488 | 1576 | otitle, |
|
1489 | 1577 | subtitle, |
|
1490 | 1578 | self.ptitle) |
|
1491 | 1579 | |
|
1492 | 1580 | ObjCut.saveFig(self.path4plotname,self.plotname1) |
|
1493 | 1581 | |
|
1494 | 1582 | def plotSkyNoise(self): |
|
1495 | 1583 | # print 'Creating SkyNoise map over Jicamarca' |
|
1496 | 1584 | dom = self.dom |
|
1497 | 1585 | month = self.month |
|
1498 | 1586 | year = self.year |
|
1499 | 1587 | |
|
1500 | 1588 | julian = TimeTools.Time(year,month,dom).change2julday() |
|
1501 | 1589 | |
|
1502 | 1590 | [powr,time, lst] = Astro_Coords.CelestialBodies().skyNoise(julian) |
|
1503 | 1591 | |
|
1504 | 1592 | Graphics_OverJro.SkyNoisePlot([year,month,dom],powr,time,lst).getPlot(self.path4plotname,self.plotname2) |
|
1505 | 1593 | |
|
1506 | 1594 | |
|
1507 | 1595 | def outputHead(self,title): |
|
1508 | 1596 | print "Content-Type: text/html" |
|
1509 | 1597 | |
|
1510 | 1598 | self.scriptHeaders = 1 |
|
1511 | 1599 | print '<html>' |
|
1512 | 1600 | print '<head>' |
|
1513 | 1601 | print '\t<title>' + title + '</title>' |
|
1514 | 1602 | print '<style type="text/css">' |
|
1515 | 1603 | print 'body' |
|
1516 | 1604 | print '{' |
|
1517 | 1605 | print 'background-color:#ffffff;' |
|
1518 | 1606 | print '}' |
|
1519 | 1607 | print 'h1' |
|
1520 | 1608 | print '{' |
|
1521 | 1609 | print 'color:black;' |
|
1522 | 1610 | print 'font-size:18px;' |
|
1523 | 1611 | print 'text-align:center;' |
|
1524 | 1612 | print '}' |
|
1525 | 1613 | print 'p' |
|
1526 | 1614 | print '{' |
|
1527 | 1615 | print 'font-family:"Arial";' |
|
1528 | 1616 | print 'font-size:16px;' |
|
1529 | 1617 | print 'color:black;' |
|
1530 | 1618 | print '}' |
|
1531 | 1619 | print '</style>' |
|
1532 | 1620 | # self.printJavaScript() |
|
1533 | 1621 | print '</head>' |
|
1534 | 1622 | |
|
1535 | 1623 | def printJavaScript(self): |
|
1536 | 1624 | |
|
1537 | 1625 | |
|
1538 | 1626 | def printBody(self): |
|
1539 | 1627 | print '<body>' |
|
1540 | 1628 | # print '<h1>Test Input Parms</h1>' |
|
1541 | 1629 | # for key in self.madForm.keys(): |
|
1542 | 1630 | # #print '<p> name=' + str(key) |
|
1543 | 1631 | # if type(self.madForm.getvalue(key)) == types.ListType: |
|
1544 | 1632 | # for value in self.madForm.getvalue(key): |
|
1545 | 1633 | # print '<p> name=' + str(key) + \ |
|
1546 | 1634 | # ' value=' + value + '' |
|
1547 | 1635 | # else: |
|
1548 | 1636 | # print '<p> name=' + str(key) + \ |
|
1549 | 1637 | # ' value=' + str(cgi.escape(self.madForm.getvalue(key))) + '' |
|
1550 | 1638 | |
|
1551 | 1639 | print '<form name="form1" method="post" target="showFrame">' |
|
1552 | 1640 | print ' <div align="center">' |
|
1553 | 1641 | print ' <table width=98% border="1" cellpadding="1">' |
|
1554 | 1642 | print ' <tr>' |
|
1555 | 1643 | print ' <td colspan="2" align="center">' |
|
1556 | 1644 | if self.showType == 0: |
|
1557 | 1645 | print ' <IMG SRC="%s" BORDER="0" >'%(os.path.join(os.sep + self.__tmpDir,self.plotname0)) |
|
1558 | 1646 | if self.showType == 1: |
|
1559 | 1647 | print ' <IMG SRC="%s" BORDER="0" >'%(os.path.join(os.sep + self.__tmpDir,self.plotname1)) |
|
1560 | 1648 | if self.showType == 2: |
|
1561 | 1649 | print ' <IMG SRC="%s" BORDER="0" >'%(os.path.join(os.sep + self.__tmpDir,self.plotname2)) |
|
1562 | 1650 | print ' </td>' |
|
1563 | 1651 | print ' </tr>' |
|
1564 | 1652 | print ' </table>' |
|
1565 | 1653 | print ' </div>' |
|
1566 | 1654 | print '</form>' |
|
1567 | 1655 | |
|
1568 | 1656 | print '</body>' |
|
1569 | 1657 | print '</html>' |
|
1570 | 1658 | |
|
1571 | 1659 | #def execute(self, serverdocspath, tmpdir, currentdate, finalpath, showType=0, maxphi=5.0, objects="[1,1]", heights="[150,500,1000]"): |
|
1572 | 1660 | def setInputParameters(self, serverpath, currentdate, finalpath, showType=0, maxphi=5.0, objects="[1,1]", heights="[150,500,1000]"): |
|
1573 | 1661 | self.objects=[] |
|
1574 | 1662 | self.heights=[] |
|
1575 | 1663 | #self.__serverdocspath = serverdocspath |
|
1576 | 1664 | self.__serverdocspath = os.path.split(serverpath)[0] |
|
1577 | 1665 | #self.__tmpDir = tmpdir |
|
1578 | 1666 | self.__tmpDir = os.path.split(serverpath)[1] |
|
1579 | 1667 | self.showType = int(showType) |
|
1580 | 1668 | self.year = int(currentdate.strftime("%Y")) # Get year of currentdate |
|
1581 | 1669 | self.month = int(currentdate.strftime("%m")) # Get month of currentdate |
|
1582 | 1670 | self.dom = int(currentdate.strftime("%d")) # Get day of currentdate |
|
1583 | 1671 | self.filename = os.path.split(finalpath)[1] |
|
1584 | 1672 | self.path = os.path.split(finalpath)[0] |
|
1585 | 1673 | self.maxphi = float(maxphi) |
|
1586 | 1674 | |
|
1587 | 1675 | tmp_objects = (objects.replace("[","")).replace("]","") |
|
1588 | 1676 | for s in tmp_objects.split(','): |
|
1589 | 1677 | self.objects.append(int(s)) |
|
1590 | 1678 | |
|
1591 | 1679 | tmp_heights = (heights.replace("[","")).replace("]","") |
|
1592 | 1680 | for s in tmp_heights.split(','): |
|
1593 | 1681 | self.heights.append(float(s)) |
|
1594 | 1682 | self.heights = numpy.array(self.heights) |
|
1595 | 1683 | |
|
1596 | 1684 | def setupParameters(self): |
|
1597 | 1685 | self.initParameters() |
|
1598 | 1686 | |
|
1599 | 1687 | def initParametersCGI(self): |
|
1600 | 1688 | self.setScriptState() |
|
1601 | 1689 | self.initParameters() |
|
1602 | 1690 | |
|
1603 | 1691 | def execute(self): |
|
1604 | 1692 | if self.showType == 0 or self.showType == 1: |
|
1605 | 1693 | self.initParameters1() |
|
1606 | 1694 | self.plotPattern() |
|
1607 | 1695 | |
|
1608 | 1696 | if numpy.sum(self.show_object>0) != 0: |
|
1609 | 1697 | self.plotBfield() |
|
1610 | 1698 | self.plotCelestial() |
|
1611 | 1699 | |
|
1612 | 1700 | if numpy.sum(self.show_object>1) != 0: |
|
1613 | 1701 | self.plotAntennaCuts() |
|
1614 | 1702 | |
|
1615 | 1703 | if self.showType == 2: |
|
1616 | 1704 | self.plotSkyNoise() |
|
1617 | 1705 | |
|
1618 | 1706 | def getPlot(self): |
|
1619 | print "GETPLot" | |
|
1620 | print os.path.join(self.__serverdocspath,self.__tmpDir,self.plotname0) | |
|
1707 | ||
|
1621 | 1708 | return os.path.join(self.__serverdocspath,self.__tmpDir,self.plotname0) |
|
1622 | 1709 | |
|
1623 | 1710 | |
|
1624 | 1711 | if __name__ == '__main__': |
|
1625 | 1712 | |
|
1626 | 1713 | # Script overJroShow.py |
|
1627 | 1714 | # This script only calls the init function of the class overJroShow() |
|
1628 | 1715 | # All work is done by the init function |
|
1629 | 1716 | |
|
1630 | newOverJro = overJroShow() | |
|
1631 | newOverJro.initParametersCGI() | |
|
1632 | newOverJro.execute() | |
|
1717 | phases = numpy.array([[2.0,0.0,1.5,1.5,1.0,1.0,1.0,0.5], | |
|
1718 | [2.0,2.5,2.5,3.5,0.5,1.0,1.0,1.0], | |
|
1719 | [2.5,2.5,1.0,1.0,0.5,0.5,0.5,0.5], | |
|
1720 | [1.0,1.0,1.0,1.0,0.5,0.5,0.5,1.0], | |
|
1721 | [0.5,0.5,0.5,0.5,0.5,0.0,0.0,0.0], | |
|
1722 | [0.5,0.5,1.0,0.5,0.0,0.0,0.0,0.0], | |
|
1723 | [0.5,0.5,0.5,1.0,0.0,0.0,0.0,0.0], | |
|
1724 | [0.5,0.5,0.5,0.5,0.0,0.0,0.0,0.0]]) | |
|
1725 | ||
|
1726 | gain_tx = numpy.array([[0,0,0,0,0,0,0,0], | |
|
1727 | [0,0,0,0,0,0,0,0], | |
|
1728 | [0,0,0,0,0,0,0,0], | |
|
1729 | [0,0,0,0,0,0,0,0], | |
|
1730 | [0,0,0,0,1,1,1,1], | |
|
1731 | [0,0,0,0,0,0,0,0], | |
|
1732 | [0,0,0,0,0,0,0,0], | |
|
1733 | [0,0,0,0,0,0,0,0]]) | |
|
1734 | ||
|
1735 | gain_rx = numpy.array([[0,0,0,0,0,0,0,0], | |
|
1736 | [0,0,1,0,0,0,0,0], | |
|
1737 | [0,0,1,0,0,0,0,0], | |
|
1738 | [0,0,0,0,0,0,0,0], | |
|
1739 | [0,0,0,0,0,0,0,0], | |
|
1740 | [0,0,0,0,0,0,0,0], | |
|
1741 | [0,0,0,0,0,0,0,0], | |
|
1742 | [0,0,0,0,0,0,0,0]]) | |
|
1743 | ||
|
1744 | jro = overJroShow() | |
|
1745 | ||
|
1746 | fig = jro.plotPattern2(datetime.datetime.today(), | |
|
1747 | phases=phases, | |
|
1748 | gain_tx=gain_tx, | |
|
1749 | gain_rx=gain_rx, | |
|
1750 | ues=numpy.array([0.0,0.0,0.0,0.0]), | |
|
1751 | just_rx=0) | |
|
1752 | ||
|
1753 | fig.savefig('./pat.png') | |
|
1754 |
@@ -1,482 +1,365 | |||
|
1 | 1 | from django.shortcuts import render_to_response |
|
2 | 2 | from django.template import RequestContext |
|
3 | 3 | from django.shortcuts import redirect, render, get_object_or_404 |
|
4 | 4 | from django.contrib import messages |
|
5 | 5 | from django.conf import settings |
|
6 | 6 | from django.http import HttpResponse |
|
7 | 7 | |
|
8 | 8 | from datetime import datetime |
|
9 | 9 | from time import sleep |
|
10 | 10 | import os |
|
11 | 11 | |
|
12 | 12 | from apps.main.models import Device, Configuration |
|
13 | 13 | from apps.main.views import sidebar |
|
14 | 14 | |
|
15 | 15 | from .models import ABSConfiguration, ABSBeam |
|
16 | 16 | from .forms import ABSConfigurationForm, ABSBeamEditForm, ABSBeamAddForm |
|
17 | 17 | |
|
18 | 18 | from .utils.overJroShow import overJroShow |
|
19 | 19 | from .utils.OverJRO import OverJRO |
|
20 | 20 | # Create your views here. |
|
21 | 21 | import json, ast |
|
22 | 22 | |
|
23 | 23 | |
|
24 | 24 | def get_values_from_form(form_data): |
|
25 | 25 | |
|
26 | 26 | sublistup = [] |
|
27 | 27 | sublistdown = [] |
|
28 | 28 | subtxlistup = [] |
|
29 | 29 | subtxlistdown = [] |
|
30 | 30 | subrxlistup = [] |
|
31 | 31 | subrxlistdown = [] |
|
32 | 32 | |
|
33 | 33 | up_values_list = [] |
|
34 | 34 | down_values_list = [] |
|
35 | 35 | up_txvalues_list = [] |
|
36 | 36 | down_txvalues_list = [] |
|
37 | 37 | up_rxvalues_list = [] |
|
38 | 38 | down_rxvalues_list = [] |
|
39 | 39 | |
|
40 | 40 | values_list = {} |
|
41 | 41 | cont = 1 |
|
42 | 42 | |
|
43 | 43 | for i in range(1,65): |
|
44 | 44 | x = float(form_data['abs_up'+str(i)]) |
|
45 | 45 | y = float(form_data['abs_down'+str(i)]) |
|
46 | 46 | sublistup.append(x) |
|
47 | 47 | sublistdown.append(y) |
|
48 | 48 | |
|
49 | 49 | if str(i) in form_data.getlist('uptx_checks'): |
|
50 | 50 | subtxlistup.append(1) |
|
51 | 51 | else: |
|
52 | 52 | subtxlistup.append(0) |
|
53 | 53 | if str(i) in form_data.getlist('downtx_checks'): |
|
54 | 54 | subtxlistdown.append(1) |
|
55 | 55 | else: |
|
56 | 56 | subtxlistdown.append(0) |
|
57 | 57 | |
|
58 | 58 | if str(i) in form_data.getlist('uprx_checks'): |
|
59 | 59 | subrxlistup.append(1) |
|
60 | 60 | else: |
|
61 | 61 | subrxlistup.append(0) |
|
62 | 62 | if str(i) in form_data.getlist('downrx_checks'): |
|
63 | 63 | subrxlistdown.append(1) |
|
64 | 64 | else: |
|
65 | 65 | subrxlistdown.append(0) |
|
66 | 66 | |
|
67 | 67 | cont = cont+1 |
|
68 | 68 | |
|
69 | 69 | if cont == 9: |
|
70 | 70 | up_values_list.append(sublistup) |
|
71 | 71 | down_values_list.append(sublistdown) |
|
72 | 72 | sublistup = [] |
|
73 | 73 | sublistdown = [] |
|
74 | 74 | |
|
75 | 75 | up_txvalues_list.append(subtxlistup) |
|
76 | 76 | down_txvalues_list.append(subtxlistdown) |
|
77 | 77 | subtxlistup = [] |
|
78 | 78 | subtxlistdown = [] |
|
79 | 79 | up_rxvalues_list.append(subrxlistup) |
|
80 | 80 | down_rxvalues_list.append(subrxlistdown) |
|
81 | 81 | subrxlistup = [] |
|
82 | 82 | subrxlistdown = [] |
|
83 | 83 | cont = 1 |
|
84 | 84 | |
|
85 | 85 | |
|
86 | 86 | list_uesup = [] |
|
87 | 87 | list_uesdown = [] |
|
88 | 88 | for i in range(1,5): |
|
89 | 89 | if form_data['ues_up'+str(i)] == '': |
|
90 | 90 | list_uesup.append(0.0) |
|
91 | 91 | else: |
|
92 | 92 | list_uesup.append(float(form_data['ues_up'+str(i)])) |
|
93 | 93 | |
|
94 | 94 | if form_data['ues_down'+str(i)] == '': |
|
95 | 95 | list_uesdown.append(0.0) |
|
96 | 96 | else: |
|
97 | 97 | list_uesdown.append(float(form_data['ues_down'+str(i)])) |
|
98 | 98 | |
|
99 | 99 | onlyrx_list = form_data.getlist('onlyrx') |
|
100 | 100 | only_rx = {} |
|
101 | 101 | if '1' in onlyrx_list: |
|
102 | 102 | only_rx['up'] = True |
|
103 | 103 | else: |
|
104 | 104 | only_rx['up'] = False |
|
105 | 105 | if '2' in onlyrx_list: |
|
106 | 106 | only_rx['down'] = True |
|
107 | 107 | else: |
|
108 | 108 | only_rx['down'] = False |
|
109 | 109 | |
|
110 | 110 | antenna = {'antenna_up': up_values_list, 'antenna_down': down_values_list} |
|
111 | 111 | tx = {'up': up_txvalues_list, 'down': down_txvalues_list} |
|
112 | 112 | rx = {'up': up_rxvalues_list, 'down': down_rxvalues_list} |
|
113 | 113 | ues = {'up': list_uesup, 'down': list_uesdown} |
|
114 | 114 | name = str(form_data['beam_name']) |
|
115 | 115 | |
|
116 | 116 | beam_data = {'name': name, 'antenna': antenna, 'tx': tx, 'rx': rx, 'ues': ues, 'only_rx': only_rx} |
|
117 | 117 | |
|
118 | 118 | return beam_data |
|
119 | 119 | |
|
120 | 120 | |
|
121 | 121 | |
|
122 | 122 | def abs_conf(request, id_conf): |
|
123 | 123 | |
|
124 | 124 | conf = get_object_or_404(ABSConfiguration, pk=id_conf) |
|
125 | 125 | |
|
126 | 126 | beams_dict = ast.literal_eval(conf.beams) |
|
127 | 127 | beams = [] |
|
128 | 128 | for beam_id in range(1,len(beams_dict)+1): |
|
129 | 129 | beam = ABSBeam.objects.get(pk=beams_dict['beam'+str(beam_id)]) |
|
130 | 130 | beams.append(beam) |
|
131 | 131 | |
|
132 | 132 | beams_id = ast.literal_eval(conf.beams) |
|
133 | 133 | |
|
134 | 134 | ip=conf.device.ip_address |
|
135 | 135 | port=conf.device.port_address |
|
136 | 136 | |
|
137 | 137 | kwargs = {} |
|
138 | 138 | kwargs['status'] = conf.device.get_status_display() |
|
139 | 139 | |
|
140 | 140 | |
|
141 | 141 | kwargs['dev_conf'] = conf |
|
142 | 142 | kwargs['dev_conf_keys'] = ['name',] |
|
143 | 143 | |
|
144 | 144 | kwargs['title'] = 'ABS Configuration' |
|
145 | 145 | kwargs['suptitle'] = 'Details' |
|
146 | 146 | kwargs['no_play'] = True |
|
147 | 147 | |
|
148 | 148 | kwargs['button'] = 'Edit Configuration' |
|
149 | 149 | |
|
150 | 150 | #kwargs['no_play'] = True |
|
151 | 151 | kwargs['beams_id'] = beams_id |
|
152 | 152 | kwargs['beams'] = beams |
|
153 | 153 | kwargs['beam_selector'] = 0 |
|
154 | 154 | #kwargs['my_data'] = simplejson.dumps(beams) |
|
155 | 155 | |
|
156 | 156 | kwargs['only_stop'] = True |
|
157 | 157 | |
|
158 | 158 | ###### SIDEBAR ###### |
|
159 | 159 | kwargs.update(sidebar(conf=conf)) |
|
160 | 160 | |
|
161 | 161 | return render(request, 'abs_conf.html', kwargs) |
|
162 | 162 | |
|
163 | 163 | def abs_conf_edit(request, id_conf): |
|
164 | 164 | |
|
165 | 165 | conf = get_object_or_404(ABSConfiguration, pk=id_conf) |
|
166 | 166 | beams_list = ast.literal_eval(conf.beams) |
|
167 | 167 | i = 1 |
|
168 | 168 | beams = [] |
|
169 | 169 | for b in beams_list: |
|
170 | 170 | beam = ABSBeam.objects.get(pk=beams_list['beam'+str(i)]) |
|
171 | 171 | beams.append(beam) |
|
172 | 172 | i=i+1 |
|
173 | 173 | |
|
174 | 174 | if request.method=='GET': |
|
175 | 175 | form = ABSConfigurationForm(instance=conf) |
|
176 | 176 | |
|
177 | 177 | if request.method=='POST': |
|
178 | 178 | form = ABSConfigurationForm(request.POST, instance=conf) |
|
179 | 179 | |
|
180 | 180 | if form.is_valid(): |
|
181 | 181 | conf = form.save(commit=False) |
|
182 | 182 | conf.save() |
|
183 | 183 | return redirect('url_abs_conf', id_conf=conf.id) |
|
184 | 184 | |
|
185 | 185 | ###### SIDEBAR ###### |
|
186 | 186 | kwargs = {} |
|
187 | 187 | |
|
188 | 188 | kwargs['dev_conf'] = conf |
|
189 | 189 | #kwargs['id_dev'] = conf.id |
|
190 | 190 | kwargs['id_conf'] = conf.id |
|
191 | 191 | kwargs['form'] = form |
|
192 | 192 | kwargs['abs_beams'] = beams |
|
193 | 193 | kwargs['title'] = 'Device Configuration' |
|
194 | 194 | kwargs['suptitle'] = 'Edit' |
|
195 | 195 | kwargs['button'] = 'Save' |
|
196 | 196 | |
|
197 | 197 | kwargs['edit'] = True |
|
198 | 198 | |
|
199 | 199 | return render(request, 'abs_conf_edit.html', kwargs) |
|
200 | 200 | |
|
201 | 201 | |
|
202 | 202 | |
|
203 | 203 | |
|
204 | 204 | def add_beam(request, id_conf): |
|
205 | 205 | |
|
206 | 206 | conf = get_object_or_404(ABSConfiguration, pk=id_conf) |
|
207 | 207 | confs = Configuration.objects.all() |
|
208 | 208 | |
|
209 | 209 | if request.method=='GET': |
|
210 | 210 | #form = ABSBeamEditForm() |
|
211 | 211 | form = ABSBeamAddForm() |
|
212 | 212 | |
|
213 | 213 | if request.method=='POST': |
|
214 | 214 | form = ABSBeamAddForm(request.POST) |
|
215 | 215 | |
|
216 | 216 | beam_data = get_values_from_form(request.POST) |
|
217 | 217 | |
|
218 | 218 | new_beam = ABSBeam( |
|
219 | 219 | name =beam_data['name'], |
|
220 | 220 | antenna =json.dumps(beam_data['antenna']), |
|
221 | 221 | abs_conf=conf, |
|
222 | 222 | tx =json.dumps(beam_data['tx']), |
|
223 | 223 | rx =json.dumps(beam_data['rx']), |
|
224 | 224 | ues =json.dumps(beam_data['ues']), |
|
225 | 225 | only_rx =json.dumps(beam_data['only_rx']) |
|
226 | 226 | ) |
|
227 | 227 | new_beam.save() |
|
228 | 228 | #---Update 6bits configuration and add beam to abs configuration beams list. |
|
229 | 229 | new_beam.modules_6bits() |
|
230 | 230 | new_beam.add_beam2list() |
|
231 | 231 | messages.success(request, 'Beam: "%s" has been added.' % new_beam.name) |
|
232 | 232 | |
|
233 | 233 | return redirect('url_edit_abs_conf', conf.id) |
|
234 | 234 | |
|
235 | 235 | ###### SIDEBAR ###### |
|
236 | 236 | kwargs = {} |
|
237 | 237 | |
|
238 | 238 | #kwargs['dev_conf'] = conf.device |
|
239 | 239 | #kwargs['id_dev'] = conf.device |
|
240 | 240 | kwargs['id_conf'] = conf.id |
|
241 | 241 | kwargs['form'] = form |
|
242 | 242 | kwargs['title'] = 'ABS Beams' |
|
243 | 243 | kwargs['suptitle'] = 'Add Beam' |
|
244 | 244 | kwargs['button'] = 'Add' |
|
245 | 245 | kwargs['no_sidebar'] = True |
|
246 | 246 | |
|
247 | 247 | #kwargs['previous'] = conf.get_absolute_url_edit() |
|
248 | 248 | kwargs['edit'] = True |
|
249 | 249 | |
|
250 | 250 | return render(request, 'abs_add_beam.html', kwargs) |
|
251 | 251 | |
|
252 | 252 | |
|
253 | 253 | def edit_beam(request, id_conf, id_beam): |
|
254 | 254 | |
|
255 | 255 | conf = get_object_or_404(ABSConfiguration, pk=id_conf) |
|
256 | 256 | beam = get_object_or_404(ABSBeam, pk=id_beam) |
|
257 | 257 | |
|
258 | 258 | if request.method=='GET': |
|
259 | 259 | form = ABSBeamEditForm(initial={'beam': beam}) |
|
260 | 260 | |
|
261 | 261 | if request.method=='POST': |
|
262 | 262 | form = ABSBeamEditForm(request.POST) |
|
263 | 263 | |
|
264 | 264 | beam_data = get_values_from_form(request.POST) |
|
265 | 265 | |
|
266 | 266 | beam.dict_to_parms(beam_data) |
|
267 | 267 | beam.save() |
|
268 | 268 | |
|
269 | 269 | messages.success(request, 'Beam: "%s" has been updated.' % beam.name) |
|
270 | 270 | |
|
271 | 271 | return redirect('url_edit_abs_conf', conf.id) |
|
272 | 272 | |
|
273 | 273 | ###### SIDEBAR ###### |
|
274 | 274 | kwargs = {} |
|
275 | 275 | |
|
276 | 276 | kwargs['id_conf'] = conf.id |
|
277 | 277 | kwargs['form'] = form |
|
278 | 278 | kwargs['title'] = 'ABS Beams' |
|
279 | 279 | kwargs['suptitle'] = 'Edit Beam' |
|
280 | 280 | kwargs['button'] = 'Save' |
|
281 | 281 | kwargs['no_sidebar'] = True |
|
282 | 282 | |
|
283 | 283 | #kwargs['previous'] = conf.get_absolute_url_edit() |
|
284 | 284 | kwargs['edit'] = True |
|
285 | 285 | |
|
286 | 286 | return render(request, 'abs_edit_beam.html', kwargs) |
|
287 | 287 | |
|
288 | 288 | |
|
289 | 289 | |
|
290 | 290 | def remove_beam(request, id_conf, id_beam): |
|
291 | 291 | |
|
292 | 292 | conf = get_object_or_404(ABSConfiguration, pk=id_conf) |
|
293 | 293 | beam = get_object_or_404(ABSBeam, pk=id_beam) |
|
294 | 294 | |
|
295 | 295 | if request.method=='POST': |
|
296 | 296 | if beam: |
|
297 | 297 | try: |
|
298 | 298 | beam.remove_beamfromlist() |
|
299 | 299 | beam.delete() |
|
300 | 300 | messages.success(request, 'Beam: "%s" has been deleted.' % beam) |
|
301 | 301 | except: |
|
302 | 302 | messages.error(request, 'Unable to delete beam: "%s".' % beam) |
|
303 | 303 | |
|
304 | 304 | return redirect('url_edit_abs_conf', conf.id) |
|
305 | 305 | |
|
306 | 306 | ###### SIDEBAR ###### |
|
307 | 307 | kwargs = {} |
|
308 | 308 | |
|
309 | 309 | kwargs['object'] = beam |
|
310 | 310 | kwargs['delete'] = True |
|
311 | 311 | kwargs['title'] = 'Delete' |
|
312 | 312 | kwargs['suptitle'] = 'Beam' |
|
313 | 313 | kwargs['previous'] = conf.get_absolute_url_edit() |
|
314 | 314 | return render(request, 'confirm.html', kwargs) |
|
315 | 315 | |
|
316 | 316 | |
|
317 | 317 | |
|
318 | def plot_patterns(request, id_conf): | |
|
318 | def plot_patterns(request, id_conf, id_beam=None): | |
|
319 | 319 | |
|
320 | conf = get_object_or_404(ABSConfiguration, pk=id_conf) | |
|
321 | beams_list = ast.literal_eval(conf.beams) | |
|
322 | i = 1 | |
|
323 | beams = [] | |
|
324 | for b in beams_list: | |
|
325 | beam = ABSBeam.objects.get(pk=beams_list['beam'+str(i)]) | |
|
326 | beams.append(beam) | |
|
327 | i=i+1 | |
|
328 | ||
|
329 | ###### SIDEBAR ###### | |
|
330 | 320 | kwargs = {} |
|
331 | ||
|
332 | kwargs['dev_conf'] = conf.device | |
|
333 | kwargs['id_dev'] = conf.device | |
|
334 | kwargs['id_conf'] = conf.id | |
|
335 | kwargs['abs_beams'] = beams | |
|
336 | kwargs['title'] = 'ABS Patterns' | |
|
337 | kwargs['suptitle'] = conf.name | |
|
338 | kwargs['no_sidebar'] = True | |
|
339 | ||
|
340 | return render(request, 'abs_patterns.html', kwargs) | |
|
341 | ||
|
342 | ||
|
343 | def plot_pattern(request, id_conf, id_beam): | |
|
344 | ||
|
345 | 321 |
conf |
|
322 | beams = ABSBeam.objects.filter(abs_conf=conf) | |
|
323 | ||
|
324 | if id_beam: | |
|
346 | 325 |
beam |
|
326 | kwargs['beam'] = beam | |
|
347 | 327 | |
|
348 | #Lista de Beams de la configuracion con su respectivo ID | |
|
349 | beams_list = ast.literal_eval(conf.beams) | |
|
350 | i = 1 | |
|
351 | #Lista de Objetos ABSBeams en el 0rden de su respectiva configuracion | |
|
352 | beams = [] | |
|
353 | for b in beams_list: | |
|
354 | beam = ABSBeam.objects.get(pk=beams_list['beam'+str(i)]) | |
|
355 | beams.append(beam) | |
|
356 | i=i+1 | |
|
357 | 328 | |
|
358 | 329 | ###### SIDEBAR ###### |
|
359 | beam = get_object_or_404(ABSBeam, pk=id_beam) | |
|
360 | kwargs = {} | |
|
361 | 330 | |
|
362 | 331 | kwargs['dev_conf'] = conf.device |
|
363 | 332 | kwargs['id_dev'] = conf.device |
|
364 | 333 | kwargs['id_conf'] = conf.id |
|
365 | 334 | kwargs['abs_beams'] = beams |
|
366 | kwargs['beam'] = beam | |
|
367 | 335 | kwargs['title'] = 'ABS Patterns' |
|
368 | 336 | kwargs['suptitle'] = conf.name |
|
369 | 337 | kwargs['no_sidebar'] = True |
|
370 | 338 | |
|
371 | 339 | return render(request, 'abs_patterns.html', kwargs) |
|
372 | 340 | |
|
373 | 341 | |
|
342 | def plot_pattern(request, id_conf, id_beam, antenna): | |
|
374 | 343 | |
|
375 | def plot_uppattern(request, id_conf, id_beam): | |
|
376 | ||
|
377 | from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas | |
|
344 | if antenna=='down': | |
|
345 | sleep(3) | |
|
378 | 346 | |
|
379 | 347 |
conf |
|
380 | 348 |
beam |
|
381 | 349 | |
|
382 |
|
|
|
383 | ||
|
384 | just_rx = 0 | |
|
385 | ||
|
386 | only_rx = json.loads(beam.only_rx) | |
|
387 | if only_rx['up'] == True: | |
|
388 | just_rx = 1 | |
|
350 | name = conf.experiment.name | |
|
389 | 351 | |
|
390 | antenna = ast.literal_eval(beam.antenna) | |
|
391 | objAntenna = json.dumps(antenna['antenna_up']) | |
|
392 | antenna_up = ''.join(str(i) for i in objAntenna) | |
|
393 | phase_tx = antenna_up.replace(' ','') | |
|
352 | just_rx = 1 if json.loads(beam.only_rx)[antenna] else 0 | |
|
353 | phases = json.loads(beam.antenna)['antenna_{}'.format(antenna)] | |
|
354 | gain_tx = json.loads(beam.tx)[antenna] | |
|
355 | gain_rx = json.loads(beam.rx)[antenna] | |
|
356 | ues = json.loads(beam.ues)[antenna] | |
|
394 | 357 | |
|
395 | tx = ast.literal_eval(beam.tx) | |
|
396 | tx = json.dumps(tx['up']) | |
|
397 | tx = ''.join(str(i) for i in tx) | |
|
398 | gain_tx = tx.replace(' ','') | |
|
358 | newOverJro = overJroShow(name) | |
|
359 | fig = newOverJro.plotPattern2(datetime.today(), phases, gain_tx, gain_rx, ues, just_rx) | |
|
399 | 360 | |
|
400 | rx = ast.literal_eval(beam.rx) | |
|
401 | rx = json.dumps(rx['up']) | |
|
402 | rx = ''.join(str(i) for i in rx) | |
|
403 | gain_rx = rx.replace(' ','') | |
|
404 | ||
|
405 | ues = json.dumps(beam.get_up_ues) | |
|
406 | ues = ''.join(str(i) for i in ues) | |
|
407 | ues_tx = ues.replace(' ','') | |
|
408 | ||
|
409 | #sleep(1) | |
|
410 | ||
|
411 | overjro = OverJRO() | |
|
412 | overjro.setParameters(settings.MEDIA_ROOT, exp_name, phase_tx, gain_tx, gain_rx, ues_tx, just_rx) | |
|
413 | contentFile = overjro.setTextContent() | |
|
414 | finalpath = overjro.saveFile(contentFile) | |
|
415 | ||
|
416 | currentdate = datetime.today() | |
|
417 | newOverJro = overJroShow() | |
|
418 | newOverJro.setInputParameters(settings.MEDIA_ROOT, currentdate, finalpath) | |
|
419 | newOverJro.setupParameters() | |
|
420 | newOverJro.execute() | |
|
421 | path = newOverJro.getPlot() | |
|
422 | path= "apps/abs/media/"+path | |
|
423 | ||
|
424 | ||
|
425 | canvas=FigureCanvas(newOverJro.figure) | |
|
426 | 361 | response=HttpResponse(content_type='image/png') |
|
427 | canvas.print_png(response) | |
|
428 | return response | |
|
429 | 362 | |
|
430 | def plot_downpattern(request, id_conf, id_beam): | |
|
363 | fig.canvas.print_png(response) | |
|
431 | 364 | |
|
432 | sleep(4) | |
|
433 | from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas | |
|
434 | ||
|
435 | conf = get_object_or_404(ABSConfiguration, pk=id_conf) | |
|
436 | beam = get_object_or_404(ABSBeam, pk=id_beam) | |
|
437 | ||
|
438 | exp_name = conf.experiment.name | |
|
439 | ||
|
440 | just_rx = 0 | |
|
441 | ||
|
442 | only_rx = json.loads(beam.only_rx) | |
|
443 | if only_rx['down'] == True: | |
|
444 | just_rx = 1 | |
|
445 | ||
|
446 | antenna = ast.literal_eval(beam.antenna) | |
|
447 | objAntenna = json.dumps(antenna['antenna_down']) | |
|
448 | antenna_down = ''.join(str(i) for i in objAntenna) | |
|
449 | phase_tx = antenna_down.replace(' ','') | |
|
450 | ||
|
451 | tx = ast.literal_eval(beam.tx) | |
|
452 | tx = json.dumps(tx['down']) | |
|
453 | tx = ''.join(str(i) for i in tx) | |
|
454 | gain_tx = tx.replace(' ','') | |
|
455 | ||
|
456 | rx = ast.literal_eval(beam.rx) | |
|
457 | rx = json.dumps(rx['down']) | |
|
458 | rx = ''.join(str(i) for i in rx) | |
|
459 | gain_rx = rx.replace(' ','') | |
|
460 | ||
|
461 | ues = json.dumps(beam.get_down_ues) | |
|
462 | ues = ''.join(str(i) for i in ues) | |
|
463 | ues_tx = ues.replace(' ','') | |
|
464 | ||
|
465 | overjro = OverJRO() | |
|
466 | overjro.setParameters(settings.MEDIA_ROOT, exp_name, phase_tx, gain_tx, gain_rx, ues_tx, just_rx) | |
|
467 | contentFile = overjro.setTextContent() | |
|
468 | finalpath = overjro.saveFile(contentFile) | |
|
469 | ||
|
470 | currentdate = datetime.today() | |
|
471 | newOverJro = overJroShow() | |
|
472 | newOverJro.setInputParameters(settings.MEDIA_ROOT, currentdate, finalpath) | |
|
473 | newOverJro.setupParameters() | |
|
474 | newOverJro.execute() | |
|
475 | path = newOverJro.getPlot() | |
|
476 | path= "apps/abs/media/"+path | |
|
477 | ||
|
478 | ||
|
479 | canvas=FigureCanvas(newOverJro.figure) | |
|
480 | response=HttpResponse(content_type='image/png') | |
|
481 | canvas.print_png(response) | |
|
482 | 365 | return response |
General Comments 0
You need to be logged in to leave comments.
Login now