Astro_Coords.py
1419 lines
| 54.1 KiB
| text/x-python
|
PythonLexer
|
r178 | """ | ||
The module ASTRO_COORDS.py gathers classes and functions for coordinates transformation. Additiona- | ||||
lly a class EquatorialCorrections and celestial bodies are defined. The first of these is to correct | ||||
any error in the location of the body and the second to know the location of certain celestial bo- | ||||
dies in the sky. | ||||
MODULES CALLED: | ||||
OS, NUMPY, NUMERIC, SCIPY, TIME_CONVERSIONS | ||||
MODIFICATION HISTORY: | ||||
Created by Ing. Freddy Galindo (frederickgalindo@gmail.com). ROJ Sep 20, 2009. | ||||
""" | ||||
import numpy | ||||
#import Numeric | ||||
import scipy.interpolate | ||||
import os | ||||
import sys | ||||
import TimeTools | ||||
import Misc_Routines | ||||
class EquatorialCorrections(): | ||||
def __init__(self): | ||||
""" | ||||
EquatorialCorrections class creates an object to call methods to correct the loca- | ||||
tion of the celestial bodies. | ||||
Modification History | ||||
-------------------- | ||||
Converted to Object-oriented Programming by Freddy Galindo, ROJ, 27 September 2009. | ||||
""" | ||||
pass | ||||
def co_nutate(self,jd,ra,dec): | ||||
""" | ||||
co_nutate calculates changes in RA and Dec due to nutation of the Earth's rotation | ||||
Additionally it returns the obliquity of the ecliptic (eps), nutation in the longi- | ||||
tude of the ecliptic (d_psi) and nutation in the pbliquity of the ecliptic (d_eps). | ||||
Parameters | ||||
---------- | ||||
jd = Julian Date (Scalar or array). | ||||
RA = A scalar o array giving the Right Ascention of interest. | ||||
Dec = A scalar o array giving the Right Ascention of interest. | ||||
Return | ||||
------ | ||||
d_ra = Correction to ra due to nutation. | ||||
d_dec = Correction to dec due to nutation. | ||||
Examples | ||||
-------- | ||||
>> Julian = 2462088.7 | ||||
>> Ra = 41.547213 | ||||
>> Dec = 49.348483 | ||||
>> [d_ra,d_dec,eps,d_psi,d_eps] = co_nutate(julian,Ra,Dec) | ||||
>> print d_ra, d_dec, eps, d_psi, d_eps | ||||
[ 15.84276651] [ 6.21641029] [ 0.4090404] [ 14.85990198] [ 2.70408658] | ||||
Modification history | ||||
-------------------- | ||||
Written by Chris O'Dell, 2002. | ||||
Converted to Python by Freddy R. Galindo, ROJ, 26 September 2009. | ||||
""" | ||||
jd = numpy.atleast_1d(jd) | ||||
ra = numpy.atleast_1d(ra) | ||||
dec = numpy.atleast_1d(dec) | ||||
# Useful transformation constants | ||||
d2as = numpy.pi/(180.*3600.) | ||||
# Julian centuries from J2000 of jd | ||||
T = (jd - 2451545.0)/36525.0 | ||||
# Must calculate obliquity of ecliptic | ||||
[d_psi, d_eps] = self.nutate(jd) | ||||
d_psi = numpy.atleast_1d(d_psi) | ||||
d_eps = numpy.atleast_1d(d_eps) | ||||
eps0 = (23.4392911*3600.) - (46.8150*T) - (0.00059*T**2) + (0.001813*T**3) | ||||
# True obliquity of the ecliptic in radians | ||||
eps = (eps0 + d_eps)/3600.*Misc_Routines.CoFactors.d2r | ||||
# Useful numbers | ||||
ce = numpy.cos(eps) | ||||
se = numpy.sin(eps) | ||||
# Convert Ra-Dec to equatorial rectangular coordinates | ||||
x = numpy.cos(ra*Misc_Routines.CoFactors.d2r)*numpy.cos(dec*Misc_Routines.CoFactors.d2r) | ||||
y = numpy.sin(ra*Misc_Routines.CoFactors.d2r)*numpy.cos(dec*Misc_Routines.CoFactors.d2r) | ||||
z = numpy.sin(dec*Misc_Routines.CoFactors.d2r) | ||||
# Apply corrections to each rectangular coordinate | ||||
x2 = x - (y*ce + z*se)*d_psi*Misc_Routines.CoFactors.s2r | ||||
y2 = y + (x*ce*d_psi - z*d_eps)*Misc_Routines.CoFactors.s2r | ||||
z2 = z + (x*se*d_psi + y*d_eps)*Misc_Routines.CoFactors.s2r | ||||
# Convert bask to equatorial spherical coordinates | ||||
r = numpy.sqrt(x2**2. + y2**2. + z2**2.) | ||||
xyproj =numpy.sqrt(x2**2. + y2**2.) | ||||
ra2 = x2*0.0 | ||||
dec2 = x2*0.0 | ||||
xyproj = numpy.atleast_1d(xyproj) | ||||
z = numpy.atleast_1d(z) | ||||
r = numpy.atleast_1d(r) | ||||
x2 = numpy.atleast_1d(x2) | ||||
y2 = numpy.atleast_1d(y2) | ||||
z2 = numpy.atleast_1d(z2) | ||||
ra2 = numpy.atleast_1d(ra2) | ||||
dec2 = numpy.atleast_1d(dec2) | ||||
w1 = numpy.where((xyproj==0) & (z!=0)) | ||||
w2 = numpy.where(xyproj!=0) | ||||
# Calculate Ra and Dec in radians (later convert to degrees) | ||||
if w1[0].size>0: | ||||
# Places where xyproj=0 (point at NCP or SCP) | ||||
dec2[w1] = numpy.arcsin(z2[w1]/r[w1]) | ||||
ra2[w1] = 0 | ||||
if w2[0].size>0: | ||||
# Places other than NCP or SCP | ||||
ra2[w2] = numpy.arctan2(y2[w2],x2[w2]) | ||||
dec2[w2] = numpy.arcsin(z2[w2]/r[w2]) | ||||
# Converting to degree | ||||
ra2 = ra2/Misc_Routines.CoFactors.d2r | ||||
dec2 = dec2/Misc_Routines.CoFactors.d2r | ||||
w = numpy.where(ra2<0.) | ||||
if w[0].size>0: | ||||
ra2[w] = ra2[w] + 360. | ||||
# Return changes in Ra and Dec in arcseconds | ||||
d_ra = (ra2 -ra)*3600. | ||||
d_dec = (dec2 - dec)*3600. | ||||
return d_ra, d_dec, eps, d_psi, d_eps | ||||
def nutate(self,jd): | ||||
""" | ||||
nutate returns the nutation in longitude and obliquity for a given Julian date. | ||||
Parameters | ||||
---------- | ||||
jd = Julian ephemeris date, scalar or vector. | ||||
Return | ||||
------ | ||||
nut_long = The nutation in longitude. | ||||
nut_obliq = The nutation in latitude. | ||||
Example | ||||
------- | ||||
>> julian = 2446895.5 | ||||
>> [nut_long,nut_obliq] = nutate(julian) | ||||
>> print nut_long, nut_obliq | ||||
-3.78793107711 9.44252069864 | ||||
>> julians = 2415020.5 + numpy.arange(50) | ||||
>> [nut_long,nut_obliq] = nutate(julians) | ||||
Modification History | ||||
-------------------- | ||||
Written by W.Landsman (Goddard/HSTX), June 1996. | ||||
Converted to Python by Freddy R. Galindo, ROJ, 26 September 2009. | ||||
""" | ||||
jd = numpy.atleast_1d(jd) | ||||
# Form time in Julian centuries from 1900 | ||||
t = (jd - 2451545.0)/36525.0 | ||||
# Mean elongation of the moon | ||||
coeff1 = numpy.array([1/189474.0,-0.0019142,445267.111480,297.85036]) | ||||
d = numpy.poly1d(coeff1) | ||||
d = d(t)*Misc_Routines.CoFactors.d2r | ||||
d = self.cirrange(d,rad=1) | ||||
# Sun's mean elongation | ||||
coeff2 = numpy.array([-1./3e5,-0.0001603,35999.050340,357.52772]) | ||||
m = numpy.poly1d(coeff2) | ||||
m = m(t)*Misc_Routines.CoFactors.d2r | ||||
m = self.cirrange(m,rad=1) | ||||
# Moon's mean elongation | ||||
coeff3 = numpy.array([1.0/5.625e4,0.0086972,477198.867398,134.96298]) | ||||
mprime = numpy.poly1d(coeff3) | ||||
mprime = mprime(t)*Misc_Routines.CoFactors.d2r | ||||
mprime = self.cirrange(mprime,rad=1) | ||||
# Moon's argument of latitude | ||||
coeff4 = numpy.array([-1.0/3.27270e5,-0.0036825,483202.017538,93.27191]) | ||||
f = numpy.poly1d(coeff4) | ||||
f = f(t)*Misc_Routines.CoFactors.d2r | ||||
f = self.cirrange(f,rad=1) | ||||
# Longitude fo the ascending node of the Moon's mean orbit on the ecliptic, measu- | ||||
# red from the mean equinox of the date. | ||||
coeff5 = numpy.array([1.0/4.5e5,0.0020708,-1934.136261,125.04452]) | ||||
omega = numpy.poly1d(coeff5) | ||||
omega = omega(t)*Misc_Routines.CoFactors.d2r | ||||
omega = self.cirrange(omega,rad=1) | ||||
d_lng = numpy.array([0,-2,0,0,0,0,-2,0,0,-2,-2,-2,0,2,0,2,0,0,-2,0,2,0,0,-2,0,-2,0,0,\ | ||||
2,-2,0,-2,0,0,2,2,0,-2,0,2,2,-2,-2,2,2,0,-2,-2,0,-2,-2,0,-1,-2,1,0,0,-1,0,\ | ||||
0,2,0,2]) | ||||
m_lng = numpy.array([0,0,0,0,1,0,1,0,0,-1]) | ||||
m_lng = numpy.append(m_lng,numpy.zeros(17)) | ||||
m_lng = numpy.append(m_lng,numpy.array([2,0,2,1,0,-1,0,0,0,1,1,-1,0,0,0,0,0,0,-1,-1,0,0,\ | ||||
0,1,0,0,1,0,0,0,-1,1,-1,-1,0,-1])) | ||||
mp_lng = numpy.array([0,0,0,0,0,1,0,0,1,0,1,0,-1,0,1,-1,-1,1,2,-2,0,2,2,1,0,0, -1, 0,\ | ||||
-1,0,0,1,0,2,-1,1,0,1,0,0,1,2,1,-2,0,1,0,0,2,2,0,1,1,0,0,1,-2,1,1,1,-1,3,0]) | ||||
f_lng = numpy.array([0,2,2,0,0,0,2,2,2,2,0,2,2,0,0,2,0,2,0,2,2,2,0,2,2,2,2,0,0,2,0,0,\ | ||||
0,-2,2,2,2,0,2,2,0,2,2,0,0,0,2,0,2,0,2,-2,0,0,0,2,2,0,0,2,2,2,2]) | ||||
om_lng = numpy.array([1,2,2,2,0,0,2,1,2,2,0,1,2,0,1,2,1,1,0,1,2,2,0,2,0,0,1,0,1,2,1, \ | ||||
1,1,0,1,2,2,0,2,1,0,2,1,1,1,0,1,1,1,1,1,0,0,0,0,0,2,0,0,2,2,2,2]) | ||||
sin_lng = numpy.array([-171996,-13187,-2274,2062,1426,712,-517,-386,-301, 217, -158, \ | ||||
129,123,63,63,-59,-58,-51,48,46,-38,-31,29,29,26,-22,21,17,16,-16,-15,-13,\ | ||||
-12,11,-10,-8,7,-7,-7,-7,6,6,6,-6,-6,5,-5,-5,-5,4,4,4,-4,-4,-4,3,-3,-3,-3,\ | ||||
-3,-3,-3,-3]) | ||||
sdelt = numpy.array([-174.2,-1.6,-0.2,0.2,-3.4,0.1,1.2,-0.4,0,-0.5,0, 0.1, 0, 0, 0.1,\ | ||||
0,-0.1]) | ||||
sdelt = numpy.append(sdelt,numpy.zeros(10)) | ||||
sdelt = numpy.append(sdelt,numpy.array([-0.1, 0, 0.1])) | ||||
sdelt = numpy.append(sdelt,numpy.zeros(33)) | ||||
cos_lng = numpy.array([92025,5736,977,-895,54,-7,224,200,129,-95,0,-70,-53,0,-33,26, \ | ||||
32,27,0,-24,16,13,0,-12,0,0,-10,0,-8,7,9,7,6,0,5,3,-3,0,3,3,0,-3,-3,3,3,0,\ | ||||
3,3,3]) | ||||
cos_lng = numpy.append(cos_lng,numpy.zeros(14)) | ||||
cdelt = numpy.array([8.9,-3.1,-0.5,0.5,-0.1,0.0,-0.6,0.0,-0.1,0.3]) | ||||
cdelt = numpy.append(cdelt,numpy.zeros(53)) | ||||
# Sum the periodic terms. | ||||
n = numpy.size(jd) | ||||
nut_long = numpy.zeros(n) | ||||
nut_obliq = numpy.zeros(n) | ||||
d_lng = d_lng.reshape(numpy.size(d_lng),1) | ||||
d = d.reshape(numpy.size(d),1) | ||||
matrix_d_lng = numpy.dot(d_lng,d.transpose()) | ||||
m_lng = m_lng.reshape(numpy.size(m_lng),1) | ||||
m = m.reshape(numpy.size(m),1) | ||||
matrix_m_lng = numpy.dot(m_lng,m.transpose()) | ||||
mp_lng = mp_lng.reshape(numpy.size(mp_lng),1) | ||||
mprime = mprime.reshape(numpy.size(mprime),1) | ||||
matrix_mp_lng = numpy.dot(mp_lng,mprime.transpose()) | ||||
f_lng = f_lng.reshape(numpy.size(f_lng),1) | ||||
f = f.reshape(numpy.size(f),1) | ||||
matrix_f_lng = numpy.dot(f_lng,f.transpose()) | ||||
om_lng = om_lng.reshape(numpy.size(om_lng),1) | ||||
omega = omega.reshape(numpy.size(omega),1) | ||||
matrix_om_lng = numpy.dot(om_lng,omega.transpose()) | ||||
arg = matrix_d_lng + matrix_m_lng + matrix_mp_lng + matrix_f_lng + matrix_om_lng | ||||
sarg = numpy.sin(arg) | ||||
carg = numpy.cos(arg) | ||||
for ii in numpy.arange(n): | ||||
nut_long[ii] = 0.0001*numpy.sum((sdelt*t[ii] + sin_lng)*sarg[:,ii]) | ||||
nut_obliq[ii] = 0.0001*numpy.sum((cdelt*t[ii] + cos_lng)*carg[:,ii]) | ||||
if numpy.size(jd)==1: | ||||
nut_long = nut_long[0] | ||||
nut_obliq = nut_obliq[0] | ||||
return nut_long, nut_obliq | ||||
def co_aberration(self,jd,ra,dec): | ||||
""" | ||||
co_aberration calculates changes to Ra and Dec due to "the effect of aberration". | ||||
Parameters | ||||
---------- | ||||
jd = Julian Date (Scalar or vector). | ||||
ra = A scalar o vector giving the Right Ascention of interest. | ||||
dec = A scalar o vector giving the Declination of interest. | ||||
Return | ||||
------ | ||||
d_ra = The correction to right ascension due to aberration (must be added to ra to | ||||
get the correct value). | ||||
d_dec = The correction to declination due to aberration (must be added to the dec | ||||
to get the correct value). | ||||
eps = True obliquity of the ecliptic (in radians). | ||||
Examples | ||||
-------- | ||||
>> Julian = 2462088.7 | ||||
>> Ra = 41.547213 | ||||
>> Dec = 49.348483 | ||||
>> [d_ra,d_dec,eps] = co_aberration(julian,Ra,Dec) | ||||
>> print d_ra, d_dec, eps | ||||
[ 30.04441796] [ 6.69837858] [ 0.40904059] | ||||
Modification history | ||||
-------------------- | ||||
Written by Chris O'Dell , Univ. of Wisconsin, June 2002. | ||||
Converted to Python by Freddy R. Galindo, ROJ, 27 September 2009. | ||||
""" | ||||
# Julian centuries from J2000 of jd. | ||||
T = (jd - 2451545.0)/36525.0 | ||||
# Getting obliquity of ecliptic | ||||
njd = numpy.size(jd) | ||||
jd = numpy.atleast_1d(jd) | ||||
ra = numpy.atleast_1d(ra) | ||||
dec = numpy.atleast_1d(dec) | ||||
d_psi = numpy.zeros(njd) | ||||
d_epsilon = d_psi | ||||
for ii in numpy.arange(njd): | ||||
[dp,de] = self.nutate(jd[ii]) | ||||
d_psi[ii] = dp | ||||
d_epsilon[ii] = de | ||||
coeff = 23 + 26/60. + 21.488/3600. | ||||
eps0 = coeff*3600. - 46.8150*T - 0.00059*T**2. + 0.001813*T**3. | ||||
# True obliquity of the ecliptic in radians | ||||
eps = (eps0 + d_epsilon)/3600*Misc_Routines.CoFactors.d2r | ||||
celestialbodies = CelestialBodies() | ||||
[sunra,sundec,sunlon,sunobliq] = celestialbodies.sunpos(jd) | ||||
# Earth's orbital eccentricity | ||||
e = 0.016708634 - 0.000042037*T - 0.0000001267*T**2. | ||||
# longitude of perihelion, in degrees | ||||
pi = 102.93735 + 1.71946*T + 0.00046*T**2 | ||||
# Constant of aberration, in arcseconds | ||||
k = 20.49552 | ||||
cd = numpy.cos(dec*Misc_Routines.CoFactors.d2r) ; sd = numpy.sin(dec*Misc_Routines.CoFactors.d2r) | ||||
ce = numpy.cos(eps) ; te = numpy.tan(eps) | ||||
cp = numpy.cos(pi*Misc_Routines.CoFactors.d2r) ; sp = numpy.sin(pi*Misc_Routines.CoFactors.d2r) | ||||
cs = numpy.cos(sunlon*Misc_Routines.CoFactors.d2r) ; ss = numpy.sin(sunlon*Misc_Routines.CoFactors.d2r) | ||||
ca = numpy.cos(ra*Misc_Routines.CoFactors.d2r) ; sa = numpy.sin(ra*Misc_Routines.CoFactors.d2r) | ||||
term1 = (ca*cs*ce + sa*ss)/cd | ||||
term2 = (ca*cp*ce + sa*sp)/cd | ||||
term3 = (cs*ce*(te*cd - sa*sd) + ca*sd*ss) | ||||
term4 = (cp*ce*(te*cd - sa*sd) + ca*sd*sp) | ||||
d_ra = -k*term1 + e*k*term2 | ||||
d_dec = -k*term3 + e*k*term4 | ||||
return d_ra, d_dec, eps | ||||
def precess(self,ra,dec,equinox1=None,equinox2=None,FK4=0,rad=0): | ||||
""" | ||||
precess coordinates from EQUINOX1 to EQUINOX2 | ||||
Parameters | ||||
----------- | ||||
ra = A scalar o vector giving the Right Ascention of interest. | ||||
dec = A scalar o vector giving the Declination of interest. | ||||
equinox1 = Original equinox of coordinates, numeric scalar. If omitted, the __Pre- | ||||
cess will query for equinox1 and equinox2. | ||||
equinox2 = Original equinox of coordinates. | ||||
FK4 = If this keyword is set and non-zero, the FK4 (B1950) system will be used | ||||
otherwise FK5 (J2000) will be used instead. | ||||
rad = If this keyword is set and non-zero, then the input and output RAD and DEC | ||||
vectors are in radian rather than degree. | ||||
Return | ||||
------ | ||||
ra = Right ascension after precession (scalar or vector) in degrees, unless the rad | ||||
keyword is set. | ||||
dec = Declination after precession (scalar or vector) in degrees, unless the rad | ||||
keyword is set. | ||||
Examples | ||||
-------- | ||||
>> Ra = 329.88772 | ||||
>> Dec = -56.992515 | ||||
>> [p_ra,p_dec] = precess(Ra,Dec,1950,1975,FK4=1) | ||||
>> print p_ra, p_dec | ||||
[ 330.31442971] [-56.87186154] | ||||
Modification history | ||||
-------------------- | ||||
Written by Wayne Landsman, STI Corporation, August 1986. | ||||
Converted to Python by Freddy R. Galindo, ROJ, 27 September 2009. | ||||
""" | ||||
npts = numpy.size(ra) | ||||
ra = numpy.atleast_1d(ra) | ||||
dec = numpy.atleast_1d(dec) | ||||
if rad==0: | ||||
ra_rad = ra*Misc_Routines.CoFactors.d2r | ||||
dec_rad = dec*Misc_Routines.CoFactors.d2r | ||||
else: | ||||
ra_rad = ra | ||||
dec_rad = dec | ||||
x = numpy.zeros((npts,3)) | ||||
x[:,0] = numpy.cos(dec_rad)*numpy.cos(ra_rad) | ||||
x[:,1] = numpy.cos(dec_rad)*numpy.sin(ra_rad) | ||||
x[:,2] = numpy.sin(dec_rad) | ||||
# Use premat function to get precession matrix from equinox1 to equinox2 | ||||
r = self.premat(equinox1,equinox2,FK4) | ||||
x2 = numpy.dot(r,x.transpose()) | ||||
ra_rad = numpy.arctan2(x2[1,:],x2[0,:]) | ||||
dec_rad = numpy.arcsin(x2[2,:]) | ||||
if rad==0: | ||||
ra = ra_rad/Misc_Routines.CoFactors.d2r | ||||
ra = ra + (ra<0)*360. | ||||
dec = dec_rad/Misc_Routines.CoFactors.d2r | ||||
else: | ||||
ra = ra_rad | ||||
ra = ra + (ra<0)*numpy.pi*2. | ||||
dec = dec_rad | ||||
return ra, dec | ||||
def premat(self,equinox1,equinox2,FK4=0): | ||||
""" | ||||
premat returns the precession matrix needed to go from EQUINOX1 to EQUINOX2. | ||||
Parameters | ||||
---------- | ||||
equinox1 = Original equinox of coordinates, numeric scalar. | ||||
equinox2 = Equinox of precessed coordinates. | ||||
FK4 = If this keyword is set and non-zero, the FK4 (B1950) system precession angles | ||||
are used to compute the precession matrix. The default is to use FK5 (J2000) pre- | ||||
cession angles. | ||||
Return | ||||
------ | ||||
r = Precession matrix, used to precess equatorial rectangular coordinates. | ||||
Examples | ||||
-------- | ||||
>> matrix = premat(1950.0,1975.0,FK4=1) | ||||
>> print matrix | ||||
[[ 9.99981438e-01 -5.58774959e-03 -2.42908517e-03] | ||||
[ 5.58774959e-03 9.99984388e-01 -6.78691471e-06] | ||||
[ 2.42908517e-03 -6.78633095e-06 9.99997050e-01]] | ||||
Modification history | ||||
-------------------- | ||||
Written by Wayne Landsman, HSTX Corporation, June 1994. | ||||
Converted to Python by Freddy R. Galindo, ROJ, 27 September 2009. | ||||
""" | ||||
t = 0.001*(equinox2 - equinox1) | ||||
if FK4==0: | ||||
st=0.001*(equinox1 - 2000.) | ||||
# Computing 3 rotation angles. | ||||
A=Misc_Routines.CoFactors.s2r*t*(23062.181+st*(139.656+0.0139*st)+t*(30.188-0.344*st+17.998*t)) | ||||
B=Misc_Routines.CoFactors.s2r*t*t*(79.280+0.410*st+0.205*t)+A | ||||
C=Misc_Routines.CoFactors.s2r*t*(20043.109-st*(85.33+0.217*st)+ t*(-42.665-0.217*st-41.833*t)) | ||||
else: | ||||
st=0.001*(equinox1 - 1900) | ||||
# Computing 3 rotation angles | ||||
A=Misc_Routines.CoFactors.s2r*t*(23042.53+st*(139.75+0.06*st)+t*(30.23-0.27*st+18.0*t)) | ||||
B=Misc_Routines.CoFactors.s2r*t*t*(79.27+0.66*st+0.32*t)+A | ||||
C=Misc_Routines.CoFactors.s2r*t*(20046.85-st*(85.33+0.37*st)+t*(-42.67-0.37*st-41.8*t)) | ||||
sina = numpy.sin(A); sinb = numpy.sin(B); sinc = numpy.sin(C) | ||||
cosa = numpy.cos(A); cosb = numpy.cos(B); cosc = numpy.cos(C) | ||||
r = numpy.zeros((3,3)) | ||||
r[:,0] = numpy.array([cosa*cosb*cosc-sina*sinb,sina*cosb+cosa*sinb*cosc,cosa*sinc]) | ||||
r[:,1] = numpy.array([-cosa*sinb-sina*cosb*cosc,cosa*cosb-sina*sinb*cosc,-sina*sinc]) | ||||
r[:,2] = numpy.array([-cosb*sinc,-sinb*sinc,cosc]) | ||||
return r | ||||
def cirrange(self,angle,rad=0): | ||||
""" | ||||
cirrange forces an angle into the range 0<= angle < 360. | ||||
Parameters | ||||
---------- | ||||
angle = The angle to modify, in degrees. Can be scalar or vector. | ||||
rad = Set to 1 if the angle is specified in radians rather than degrees. It is for- | ||||
ced into the range 0 <= angle < 2 PI | ||||
Return | ||||
------ | ||||
angle = The angle after the modification. | ||||
Example | ||||
------- | ||||
>> angle = cirrange(numpy.array([420,400,361])) | ||||
>> print angle | ||||
>> [60, 40, 1] | ||||
Modification History | ||||
-------------------- | ||||
Written by Michael R. Greason, Hughes STX, 10 February 1994. | ||||
Converted to Python by Freddy R. Galindo, ROJ, 26 September 2009. | ||||
""" | ||||
angle = numpy.atleast_1d(angle) | ||||
if rad==1: | ||||
cnst = numpy.pi*2. | ||||
elif rad==0: | ||||
cnst = 360. | ||||
# Deal with the lower limit. | ||||
angle = angle % cnst | ||||
# Deal with negative values, if way | ||||
neg = numpy.where(angle<0.0) | ||||
if neg[0].size>0: angle[neg] = angle[neg] + cnst | ||||
return angle | ||||
class CelestialBodies(EquatorialCorrections): | ||||
def __init__(self): | ||||
""" | ||||
CelestialBodies class creates a object to call methods of celestial bodies location. | ||||
Modification History | ||||
-------------------- | ||||
Converted to Object-oriented Programming by Freddy Galindo, ROJ, 27 September 2009. | ||||
""" | ||||
EquatorialCorrections.__init__(self) | ||||
def sunpos(self,jd,rad=0): | ||||
""" | ||||
sunpos method computes the RA and Dec of the Sun at a given date. | ||||
Parameters | ||||
---------- | ||||
jd = The julian date of the day (and time), scalar or vector. | ||||
rad = If this keyword is set and non-zero, then the input and output RAD and DEC | ||||
vectors are in radian rather than degree. | ||||
Return | ||||
------ | ||||
ra = The right ascension of the sun at that date in degrees. | ||||
dec = The declination of the sun at that date in degrees. | ||||
elong = Ecliptic longitude of the sun at that date in degrees. | ||||
obliquity = The declination of the sun at that date in degrees. | ||||
Examples | ||||
-------- | ||||
>> jd = 2466880 | ||||
>> [ra,dec,elong,obliquity] = sunpos(jd) | ||||
>> print ra, dec, elong, obliquity | ||||
[ 275.53499556] [-23.33840558] [ 275.08917968] [ 23.43596165] | ||||
>> [ra,dec,elong,obliquity] = sunpos(jd,rad=1) | ||||
>> print ra, dec, elong, obliquity | ||||
[ 4.80899288] [-0.40733202] [ 4.80121192] [ 0.40903469] | ||||
>> jd = 2450449.5 + numpy.arange(365) | ||||
>> [ra,dec,elong,obliquity] = sunpos(jd) | ||||
Modification history | ||||
-------------------- | ||||
Written by Micheal R. Greason, STX Corporation, 28 October 1988. | ||||
Converted to Python by Freddy R. Galindo, ROJ, 27 September 2009. | ||||
""" | ||||
jd = numpy.atleast_1d(jd) | ||||
# Form time in Julian centuries from 1900. | ||||
t = (jd -2415020.0)/36525.0 | ||||
# Form sun's mean longitude | ||||
l = (279.696678+((36000.768925*t) % 360.0))*3600.0 | ||||
# Allow for ellipticity of the orbit (equation of centre) using the Earth's mean | ||||
# anomoly ME | ||||
me = 358.475844 + ((35999.049750*t) % 360.0) | ||||
ellcor = (6910.1 - 17.2*t)*numpy.sin(me*Misc_Routines.CoFactors.d2r) + 72.3*numpy.sin(2.0*me*Misc_Routines.CoFactors.d2r) | ||||
l = l + ellcor | ||||
# Allow for the Venus perturbations using the mean anomaly of Venus MV | ||||
mv = 212.603219 + ((58517.803875*t) % 360.0) | ||||
vencorr = 4.8*numpy.cos((299.1017 + mv - me)*Misc_Routines.CoFactors.d2r) + \ | ||||
5.5*numpy.cos((148.3133 + 2.0*mv - 2.0*me )*Misc_Routines.CoFactors.d2r) + \ | ||||
2.5*numpy.cos((315.9433 + 2.0*mv - 3.0*me )*Misc_Routines.CoFactors.d2r) + \ | ||||
1.6*numpy.cos((345.2533 + 3.0*mv - 4.0*me )*Misc_Routines.CoFactors.d2r) + \ | ||||
1.0*numpy.cos((318.15 + 3.0*mv - 5.0*me )*Misc_Routines.CoFactors.d2r) | ||||
l = l + vencorr | ||||
# Allow for the Mars perturbations using the mean anomaly of Mars MM | ||||
mm = 319.529425 + ((19139.858500*t) % 360.0) | ||||
marscorr = 2.0*numpy.cos((343.8883 - 2.0*mm + 2.0*me)*Misc_Routines.CoFactors.d2r ) + \ | ||||
1.8*numpy.cos((200.4017 - 2.0*mm + me)*Misc_Routines.CoFactors.d2r) | ||||
l = l + marscorr | ||||
# Allow for the Jupiter perturbations using the mean anomaly of Jupiter MJ | ||||
mj = 225.328328 + ((3034.6920239*t) % 360.0) | ||||
jupcorr = 7.2*numpy.cos((179.5317 - mj + me )*Misc_Routines.CoFactors.d2r) + \ | ||||
2.6*numpy.cos((263.2167 - mj)*Misc_Routines.CoFactors.d2r) + \ | ||||
2.7*numpy.cos((87.1450 - 2.0*mj + 2.0*me)*Misc_Routines.CoFactors.d2r) + \ | ||||
1.6*numpy.cos((109.4933 - 2.0*mj + me)*Misc_Routines.CoFactors.d2r) | ||||
l = l + jupcorr | ||||
# Allow for Moons perturbations using mean elongation of the Moon from the Sun D | ||||
d = 350.7376814 + ((445267.11422*t) % 360.0) | ||||
mooncorr = 6.5*numpy.sin(d*Misc_Routines.CoFactors.d2r) | ||||
l = l + mooncorr | ||||
# Allow for long period terms | ||||
longterm = + 6.4*numpy.sin((231.19 + 20.20*t)*Misc_Routines.CoFactors.d2r) | ||||
l = l + longterm | ||||
l = (l + 2592000.0) % 1296000.0 | ||||
longmed = l/3600.0 | ||||
# Allow for Aberration | ||||
l = l - 20.5 | ||||
# Allow for Nutation using the longitude of the Moons mean node OMEGA | ||||
omega = 259.183275 - ((1934.142008*t) % 360.0) | ||||
l = l - 17.2*numpy.sin(omega*Misc_Routines.CoFactors.d2r) | ||||
# Form the True Obliquity | ||||
oblt = 23.452294 - 0.0130125*t + (9.2*numpy.cos(omega*Misc_Routines.CoFactors.d2r))/3600.0 | ||||
# Form Right Ascension and Declination | ||||
l = l/3600.0 | ||||
ra = numpy.arctan2((numpy.sin(l*Misc_Routines.CoFactors.d2r)*numpy.cos(oblt*Misc_Routines.CoFactors.d2r)),numpy.cos(l*Misc_Routines.CoFactors.d2r)) | ||||
neg = numpy.where(ra < 0.0) | ||||
if neg[0].size > 0: ra[neg] = ra[neg] + 2.0*numpy.pi | ||||
dec = numpy.arcsin(numpy.sin(l*Misc_Routines.CoFactors.d2r)*numpy.sin(oblt*Misc_Routines.CoFactors.d2r)) | ||||
if rad==1: | ||||
oblt = oblt*Misc_Routines.CoFactors.d2r | ||||
longmed = longmed*Misc_Routines.CoFactors.d2r | ||||
else: | ||||
ra = ra/Misc_Routines.CoFactors.d2r | ||||
dec = dec/Misc_Routines.CoFactors.d2r | ||||
return ra, dec, longmed, oblt | ||||
def moonpos(self,jd,rad=0): | ||||
""" | ||||
moonpos method computes the RA and Dec of the Moon at specified Julian date(s). | ||||
Parameters | ||||
---------- | ||||
jd = The julian date of the day (and time), scalar or vector. | ||||
rad = If this keyword is set and non-zero, then the input and output RAD and DEC | ||||
vectors are in radian rather than degree. | ||||
Return | ||||
------ | ||||
ra = The right ascension of the sun at that date in degrees. | ||||
dec = The declination of the sun at that date in degrees. | ||||
dist = The Earth-moon distance in kilometers (between the center of the Earth and | ||||
the center of the moon). | ||||
geolon = Apparent longitude of the moon in degrees, referred to the ecliptic of the | ||||
specified date(s). | ||||
geolat = Apparent latitude the moon in degrees, referred to the ecliptic of the | ||||
specified date(s). | ||||
Examples | ||||
-------- | ||||
>> jd = 2448724.5 | ||||
>> [ra,dec,dist,geolon,geolat] = sunpos(jd) | ||||
>> print ra, dec, dist, geolon, geolat | ||||
[ 134.68846855] [ 13.76836663] [ 368409.68481613] [ 133.16726428] [-3.22912642] | ||||
>> [ra,dec,dist,geolon, geolat] = sunpos(jd,rad=1) | ||||
>> print ra, dec, dist, geolon, geolat | ||||
[ 2.35075724] [ 0.24030333] [ 368409.68481613] [ 2.32420722] [-0.05635889] | ||||
>> jd = 2450449.5 + numpy.arange(365) | ||||
>> [ra,dec,dist,geolon, geolat] = sunpos(jd) | ||||
Modification history | ||||
-------------------- | ||||
Written by Micheal R. Greason, STX Corporation, 31 October 1988. | ||||
Converted to Python by Freddy R. Galindo, ROJ, 06 October 2009. | ||||
""" | ||||
jd = numpy.atleast_1d(jd) | ||||
# Form time in Julian centuries from 1900. | ||||
t = (jd - 2451545.0)/36525.0 | ||||
d_lng = numpy.array([0,2,2,0,0,0,2,2,2,2,0,1,0,2,0,0,4,0,4,2,2,1,1,2,2,4,2,0,2,2,1,2,\ | ||||
0,0,2,2,2,4,0,3,2,4,0,2,2,2,4,0,4,1,2,0,1,3,4,2,0,1,2,2]) | ||||
m_lng = numpy.array([0,0,0,0,1,0,0,-1,0,-1,1,0,1,0,0,0,0,0,0,1,1,0,1,-1,0,0,0,1,0,-1,\ | ||||
0,-2,1,2,-2,0,0,-1,0,0,1,-1,2,2,1,-1,0,0,-1,0,1,0,1,0,0,-1,2,1,0,0]) | ||||
mp_lng = numpy.array([1,-1,0,2,0,0,-2,-1,1,0,-1,0,1,0,1,1,-1,3,-2,-1,0,-1,0,1,2,0,-3,\ | ||||
-2,-1,-2,1,0,2,0,-1,1,0,-1,2,-1,1,-2,-1,-1,-2,0,1,4,0,-2,0,2,1,-2,-3,2,1,-1,3,-1]) | ||||
f_lng = numpy.array([0,0,0,0,0,2,0,0,0,0,0,0,0,-2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,\ | ||||
0,0,0,0,-2,2,0,2,0,0,0,0,0,0,-2,0,0,0,0,-2,-2,0,0,0,0,0,0,0,-2]) | ||||
sin_lng = numpy.array([6288774,1274027,658314,213618,-185116,-114332,58793,57066,\ | ||||
53322,45758,-40923,-34720,-30383,15327,-12528,10980,10675,10034,8548,-7888,\ | ||||
-6766,-5163,4987,4036,3994,3861,3665,-2689,-2602,2390,-2348,2236,-2120,-2069,\ | ||||
2048,-1773,-1595,1215,-1110,-892,-810,759,-713,-700,691,596,549,537,520,-487,\ | ||||
-399,-381,351,-340,330,327,-323,299,294,0.0]) | ||||
cos_lng = numpy.array([-20905355,-3699111,-2955968,-569925,48888,-3149,246158,-152138,\ | ||||
-170733,-204586,-129620,108743,104755,10321,0,79661,-34782,-23210,-21636,24208,\ | ||||
30824,-8379,-16675,-12831,-10445,-11650,14403,-7003,0,10056,6322, -9884,5751,0,\ | ||||
-4950,4130,0,-3958,0,3258,2616,-1897,-2117,2354,0,0,-1423,-1117,-1571,-1739,0, \ | ||||
-4421,0,0,0,0,1165,0,0,8752.0]) | ||||
d_lat = numpy.array([0,0,0,2,2,2,2,0,2,0,2,2,2,2,2,2,2,0,4,0,0,0,1,0,0,0,1,0,4,4,0,4,\ | ||||
2,2,2,2,0,2,2,2,2,4,2,2,0,2,1,1,0,2,1,2,0,4,4,1,4,1,4,2]) | ||||
m_lat = numpy.array([0,0,0,0,0,0,0,0,0,0,-1,0,0,1,-1,-1,-1,1,0,1,0,1,0,1,1,1,0,0,0,0,\ | ||||
0,0,0,0,-1,0,0,0,0,1,1,0,-1,-2,0,1,1,1,1,1,0,-1,1,0,-1,0,0,0,-1,-2]) | ||||
mp_lat = numpy.array([0,1,1,0,-1,-1,0,2,1,2,0,-2,1,0,-1,0,-1,-1,-1,0,0,-1,0,1,1,0,0,\ | ||||
3,0,-1,1,-2,0,2,1,-2,3,2,-3,-1,0,0,1,0,1,1,0,0,-2,-1,1,-2,2,-2,-1,1,1,-1,0,0]) | ||||
f_lat = numpy.array([1,1,-1,-1,1,-1,1,1,-1,-1,-1,-1,1,-1,1,1,-1,-1,-1,1,3,1,1,1,-1,\ | ||||
-1,-1,1,-1,1,-3,1,-3,-1,-1,1,-1,1,-1,1,1,1,1,-1,3,-1,-1,1,-1,-1,1,-1,1,-1,-1, \ | ||||
-1,-1,-1,-1,1]) | ||||
sin_lat = numpy.array([5128122,280602,277693,173237,55413,46271, 32573, 17198, 9266, \ | ||||
8822,8216,4324,4200,-3359,2463,2211,2065,-1870,1828,-1794, -1749, -1565, -1491, \ | ||||
-1475,-1410,-1344,-1335,1107,1021,833,777,671,607,596,491,-451,439,422,421,-366,\ | ||||
-351,331,315,302,-283,-229,223,223,-220,-220,-185,181,-177,176, 166, -164, 132, \ | ||||
-119,115,107.0]) | ||||
# Mean longitude of the moon refered to mean equinox of the date. | ||||
coeff0 = numpy.array([-1./6.5194e7,1./538841.,-0.0015786,481267.88123421,218.3164477]) | ||||
lprimed = numpy.poly1d(coeff0) | ||||
lprimed = lprimed(t) | ||||
lprimed = self.cirrange(lprimed,rad=0) | ||||
lprime = lprimed*Misc_Routines.CoFactors.d2r | ||||
# Mean elongation of the moon | ||||
coeff1 = numpy.array([-1./1.13065e8,1./545868.,-0.0018819,445267.1114034,297.8501921]) | ||||
d = numpy.poly1d(coeff1) | ||||
d = d(t)*Misc_Routines.CoFactors.d2r | ||||
d = self.cirrange(d,rad=1) | ||||
# Sun's mean anomaly | ||||
coeff2 = numpy.array([1.0/2.449e7,-0.0001536,35999.0502909,357.5291092]) | ||||
M = numpy.poly1d(coeff2) | ||||
M = M(t)*Misc_Routines.CoFactors.d2r | ||||
M = self.cirrange(M,rad=1) | ||||
# Moon's mean anomaly | ||||
coeff3 = numpy.array([-1.0/1.4712e7,1.0/6.9699e4,0.0087414,477198.8675055,134.9633964]) | ||||
Mprime = numpy.poly1d(coeff3) | ||||
Mprime = Mprime(t)*Misc_Routines.CoFactors.d2r | ||||
Mprime = self.cirrange(Mprime,rad=1) | ||||
# Moon's argument of latitude | ||||
coeff4 = numpy.array([1.0/8.6331e8,-1.0/3.526e7,-0.0036539,483202.0175233,93.2720950]) | ||||
F = numpy.poly1d(coeff4) | ||||
F = F(t)*Misc_Routines.CoFactors.d2r | ||||
F = self.cirrange(F,rad=1) | ||||
# Eccentricity of Earth's orbit around the sun | ||||
e = 1 - 0.002516*t - 7.4e-6*(t**2.) | ||||
e2 = e**2. | ||||
ecorr1 = numpy.where((numpy.abs(m_lng))==1) | ||||
ecorr2 = numpy.where((numpy.abs(m_lat))==1) | ||||
ecorr3 = numpy.where((numpy.abs(m_lng))==2) | ||||
ecorr4 = numpy.where((numpy.abs(m_lat))==2) | ||||
# Additional arguments. | ||||
A1 = (119.75 + 131.849*t)*Misc_Routines.CoFactors.d2r | ||||
A2 = (53.09 + 479264.290*t)*Misc_Routines.CoFactors.d2r | ||||
A3 = (313.45 + 481266.484*t)*Misc_Routines.CoFactors.d2r | ||||
suml_add = 3958.*numpy.sin(A1) + 1962.*numpy.sin(lprime - F) + 318*numpy.sin(A2) | ||||
sumb_add = -2235.*numpy.sin(lprime) + 382.*numpy.sin(A3) + 175.*numpy.sin(A1-F) + \ | ||||
175.*numpy.sin(A1 + F) + 127.*numpy.sin(lprime - Mprime) - 115.*numpy.sin(lprime + Mprime) | ||||
# Sum the periodic terms | ||||
geolon = numpy.zeros(jd.size) | ||||
geolat = numpy.zeros(jd.size) | ||||
dist = numpy.zeros(jd.size) | ||||
for i in numpy.arange(jd.size): | ||||
sinlng = sin_lng | ||||
coslng = cos_lng | ||||
sinlat = sin_lat | ||||
sinlng[ecorr1] = e[i]*sinlng[ecorr1] | ||||
coslng[ecorr1] = e[i]*coslng[ecorr1] | ||||
sinlat[ecorr2] = e[i]*sinlat[ecorr2] | ||||
sinlng[ecorr3] = e2[i]*sinlng[ecorr3] | ||||
coslng[ecorr3] = e2[i]*coslng[ecorr3] | ||||
sinlat[ecorr4] = e2[i]*sinlat[ecorr4] | ||||
arg = d_lng*d[i] + m_lng*M[i] + mp_lng*Mprime[i] + f_lng*F[i] | ||||
geolon[i] = lprimed[i] + (numpy.sum(sinlng*numpy.sin(arg)) + suml_add[i] )/1.e6 | ||||
dist[i] = 385000.56 + numpy.sum(coslng*numpy.cos(arg))/1.e3 | ||||
arg = d_lat*d[i] + m_lat*M[i] + mp_lat*Mprime[i] + f_lat*F[i] | ||||
geolat[i] = (numpy.sum(sinlat*numpy.sin(arg)) + sumb_add[i])/1.e6 | ||||
[nlon, elon] = self.nutate(jd) | ||||
geolon = geolon + nlon/3.6e3 | ||||
geolon = self.cirrange(geolon,rad=0) | ||||
lamb = geolon*Misc_Routines.CoFactors.d2r | ||||
beta = geolat*Misc_Routines.CoFactors.d2r | ||||
# Find mean obliquity and convert lamb, beta to RA, Dec | ||||
c = numpy.array([2.45,5.79,27.87,7.12,-39.05,-249.67,-51.38,1999.25,-1.55,-4680.93, \ | ||||
21.448]) | ||||
junk = numpy.poly1d(c); | ||||
epsilon = 23. + (26./60.) + (junk(t/1.e2)/3600.) | ||||
# True obliquity in radians | ||||
eps = (epsilon + elon/3600. )*Misc_Routines.CoFactors.d2r | ||||
ra = numpy.arctan2(numpy.sin(lamb)*numpy.cos(eps)-numpy.tan(beta)*numpy.sin(eps),numpy.cos(lamb)) | ||||
ra = self.cirrange(ra,rad=1) | ||||
dec = numpy.arcsin(numpy.sin(beta)*numpy.cos(eps) + numpy.cos(beta)*numpy.sin(eps)*numpy.sin(lamb)) | ||||
if rad==1: | ||||
geolon = lamb | ||||
geolat = beta | ||||
else: | ||||
ra = ra/Misc_Routines.CoFactors.d2r | ||||
dec = dec/Misc_Routines.CoFactors.d2r | ||||
return ra, dec, dist, geolon, geolat | ||||
def hydrapos(self): | ||||
""" | ||||
hydrapos method returns RA and Dec provided by Bill Coles (Oct 2003). | ||||
Parameters | ||||
---------- | ||||
None | ||||
Return | ||||
------ | ||||
ra = The right ascension of the sun at that date in degrees. | ||||
dec = The declination of the sun at that date in degrees. | ||||
Examples | ||||
-------- | ||||
>> [ra,dec] = hydrapos() | ||||
>> print ra, dec | ||||
139.45 -12.0833333333 | ||||
Modification history | ||||
-------------------- | ||||
Converted to Python by Freddy R. Galindo, ROJ, 06 October 2009. | ||||
""" | ||||
ra = (9. + 17.8/60.)*15. | ||||
dec = -(12. + 5./60.) | ||||
return ra, dec | ||||
def skynoise_jro(self,dec_cut=-11.95,filename='skynoise_jro.dat',filepath=None): | ||||
""" | ||||
hydrapos returns RA and Dec provided by Bill Coles (Oct 2003). | ||||
Parameters | ||||
---------- | ||||
dec_cut = A scalar giving the declination to get a cut of the skynoise over Jica- | ||||
marca. The default value is -11.95. | ||||
filename = A string to specify name the skynoise file. The default value is skynoi- | ||||
se_jro.dat | ||||
Return | ||||
------ | ||||
maxra = The maximum right ascension to the declination used to get a cut. | ||||
ra = The right ascension. | ||||
Examples | ||||
-------- | ||||
>> [maxra,ra] = skynoise_jro() | ||||
>> print maxra, ra | ||||
139.45 -12.0833333333 | ||||
Modification history | ||||
-------------------- | ||||
Converted to Python by Freddy R. Galindo, ROJ, 06 October 2009. | ||||
""" | ||||
if filepath==None:filepath = './resource' | ||||
f = open(os.path.join(filepath,filename),'rb') | ||||
# Reading SkyNoise Power (lineal scale) | ||||
ha_sky = numpy.fromfile(f,numpy.dtype([('var','<f4')]),480*20) | ||||
ha_sky = ha_sky['var'].reshape(20,480).transpose() | ||||
dec_sky = numpy.fromfile(f,numpy.dtype([('var','<f4')]),480*20) | ||||
dec_sky = dec_sky['var'].reshape((20,480)).transpose() | ||||
tmp_sky = numpy.fromfile(f,numpy.dtype([('var','<f4')]),480*20) | ||||
tmp_sky = tmp_sky['var'].reshape((20,480)).transpose() | ||||
f.close() | ||||
nha = 480 | ||||
tmp_cut = numpy.zeros(nha) | ||||
for iha in numpy.arange(nha): | ||||
tck = scipy.interpolate.splrep(dec_sky[iha,:],tmp_sky[iha,:],s=0) | ||||
tmp_cut[iha] = scipy.interpolate.splev(dec_cut,tck,der=0) | ||||
ptr = numpy.nanargmax(tmp_cut) | ||||
maxra = ha_sky[ptr,0] | ||||
ra = ha_sky[:,0] | ||||
return maxra, ra | ||||
def skyNoise(self,jd,ut=-5.0,longitude=-76.87,filename='galaxy.txt',filepath=None): | ||||
""" | ||||
hydrapos returns RA and Dec provided by Bill Coles (Oct 2003). | ||||
Parameters | ||||
---------- | ||||
jd = The julian date of the day (and time), scalar or vector. | ||||
dec_cut = A scalar giving the declination to get a cut of the skynoise over Jica- | ||||
marca. The default value is -11.95. | ||||
filename = A string to specify name the skynoise file. The default value is skynoi- | ||||
se_jro.dat | ||||
Return | ||||
------ | ||||
maxra = The maximum right ascension to the declination used to get a cut. | ||||
ra = The right ascension. | ||||
Examples | ||||
-------- | ||||
>> [maxra,ra] = skynoise_jro() | ||||
>> print maxra, ra | ||||
139.45 -12.0833333333 | ||||
Modification history | ||||
-------------------- | ||||
Converted to Python by Freddy R. Galindo, ROJ, 06 October 2009. | ||||
""" | ||||
# Defining date to compute SkyNoise. | ||||
[year, month, dom, hour, mis, secs] = TimeTools.Julian(jd).change2time() | ||||
is_dom = (month==9) & (dom==21) | ||||
if is_dom: | ||||
tmp = jd | ||||
jd = TimeTools.Time(year,9,22).change2julian() | ||||
dom = 22 | ||||
# Reading SkyNoise | ||||
if filepath==None:filepath='./resource' | ||||
f = open(os.path.join(filepath,filename)) | ||||
lines = f.read() | ||||
f.close() | ||||
nlines = 99 | ||||
lines = lines.split('\n') | ||||
data = numpy.zeros((2,nlines))*numpy.float32(0.) | ||||
for ii in numpy.arange(nlines): | ||||
line = numpy.array([lines[ii][0:6],lines[ii][6:]]) | ||||
data[:,ii] = numpy.float32(line) | ||||
# Getting SkyNoise to the date desired. | ||||
otime = data[0,:]*60.0 | ||||
opowr = data[1,:] | ||||
hour = numpy.array([0,23]); | ||||
mins = numpy.array([0,59]); | ||||
secs = numpy.array([0,59]); | ||||
LTrange = TimeTools.Time(year,month,dom,hour,mins,secs).change2julday() | ||||
LTtime = LTrange[0] + numpy.arange(1440)*((LTrange[1] - LTrange[0])/(1440.-1)) | ||||
lst = TimeTools.Julian(LTtime + (-3600.*ut/86400.)).change2lst() | ||||
ipowr = lst*0.0 | ||||
# Interpolating using scipy (inside max and min "x") | ||||
otime = otime/3600. | ||||
val = numpy.where((lst>numpy.min(otime)) & (lst<numpy.max(otime))); val = val[0] | ||||
tck = scipy.interpolate.interp1d(otime,opowr) | ||||
ipowr[val] = tck(lst[val]) | ||||
# Extrapolating above maximum time data (23.75). | ||||
uval = numpy.where(lst>numpy.max(otime)) | ||||
if uval[0].size>0: | ||||
ii = numpy.min(uval[0]) | ||||
m = (ipowr[ii-1] - ipowr[ii-2])/(lst[ii-1] - lst[ii-2]) | ||||
b = ipowr[ii-1] - m*lst[ii-1] | ||||
ipowr[uval] = m*lst[uval] + b | ||||
if is_dom: | ||||
lst = numpy.roll(lst,4) | ||||
ipowr = numpy.roll(ipowr,4) | ||||
new_lst = numpy.int32(lst*3600.) | ||||
new_pow = ipowr | ||||
return ipowr, LTtime, lst | ||||
class AltAz(EquatorialCorrections): | ||||
def __init__(self,alt,az,jd,lat=-11.95,lon=-76.8667,WS=0,altitude=500,nutate_=0,precess_=0,\ | ||||
aberration_=0,B1950=0): | ||||
""" | ||||
The AltAz class creates an object which represents the target position in horizontal | ||||
coordinates (alt-az) and allows to convert (using the methods) from this coordinate | ||||
system to others (e.g. Equatorial). | ||||
Parameters | ||||
---------- | ||||
alt = Altitude in degrees. Scalar or vector. | ||||
az = Azimuth angle in degrees (measured EAST from NORTH, but see keyword WS). Sca- | ||||
lar or vector. | ||||
jd = Julian date. Scalar or vector. | ||||
lat = North geodetic latitude of location in degrees. The default value is -11.95. | ||||
lon = East longitude of location in degrees. The default value is -76.8667. | ||||
WS = Set this to 1 to get the azimuth measured westward from south. | ||||
altitude = The altitude of the observing location, in meters. The default 500. | ||||
nutate_ = Set this to 1 to force nutation, 0 for no nutation. | ||||
precess_ = Set this to 1 to force precession, 0 for no precession. | ||||
aberration_ = Set this to 1 to force aberration correction, 0 for no correction. | ||||
B1950 = Set this if your RA and DEC are specified in B1950, FK4 coordinates (ins- | ||||
tead of J2000, FK5) | ||||
Modification History | ||||
-------------------- | ||||
Converted to Object-oriented Programming by Freddy Galindo, ROJ, 26 September 2009. | ||||
""" | ||||
EquatorialCorrections.__init__(self) | ||||
self.alt = numpy.atleast_1d(alt) | ||||
self.az = numpy.atleast_1d(az) | ||||
self.jd = numpy.atleast_1d(jd) | ||||
self.lat = lat | ||||
self.lon = lon | ||||
self.WS = WS | ||||
self.altitude = altitude | ||||
self.nutate_ = nutate_ | ||||
self.aberration_ = aberration_ | ||||
self.precess_ = precess_ | ||||
self.B1950 = B1950 | ||||
def change2equatorial(self): | ||||
""" | ||||
change2equatorial method converts horizon (Alt-Az) coordinates to equatorial coordi- | ||||
nates (ra-dec). | ||||
Return | ||||
------ | ||||
ra = Right ascension of object (J2000) in degrees (FK5). Scalar or vector. | ||||
dec = Declination of object (J2000), in degrees (FK5). Scalar or vector. | ||||
ha = Hour angle in degrees. | ||||
Example | ||||
------- | ||||
>> alt = 88.5401 | ||||
>> az = -128.990 | ||||
>> jd = 2452640.5 | ||||
>> ObjAltAz = AltAz(alt,az,jd) | ||||
>> [ra, dec, ha] = ObjAltAz.change2equatorial() | ||||
>> print ra, dec, ha | ||||
[ 22.20280632] [-12.86610025] [ 1.1638927] | ||||
Modification History | ||||
-------------------- | ||||
Written Chris O'Dell Univ. of Wisconsin-Madison, May 2002. | ||||
Converted to Python by Freddy R. Galindo, ROJ, 26 September 2009. | ||||
""" | ||||
az = self.az | ||||
alt = self.alt | ||||
if self.WS>0:az = az -180. | ||||
ra_tmp = numpy.zeros(numpy.size(self.jd)) + 45. | ||||
dec_tmp = numpy.zeros(numpy.size(self.jd)) + 45. | ||||
[dra1,ddec1,eps,d_psi,d_eps] = self.co_nutate(self.jd,ra_tmp, dec_tmp) | ||||
# Getting local mean sidereal time (lmst) | ||||
lmst = TimeTools.Julian(self.jd[0]).change2lst() | ||||
lmst = lmst*Misc_Routines.CoFactors.h2d | ||||
# Getting local apparent sidereal time (last) | ||||
last = lmst + d_psi*numpy.cos(eps)/3600. | ||||
# Now do the spherical trig to get APPARENT hour angle and declination (Degrees). | ||||
[ha, dec] = self.change2HaDec() | ||||
# Finding Right Ascension (in degrees, from 0 to 360.) | ||||
ra = (last - ha + 360.) % 360. | ||||
# Calculate NUTATION and ABERRATION Correction to Ra-Dec | ||||
[dra1, ddec1,eps,d_psi,d_eps] = self.co_nutate(self.jd,ra,dec) | ||||
[dra2,ddec2,eps] = self.co_aberration(self.jd,ra,dec) | ||||
# Make Nutation and Aberration correction (if wanted) | ||||
ra = ra - (dra1*self.nutate_ + dra2*self.aberration_)/3600. | ||||
dec = dec - (ddec1*self.nutate_ + ddec2*self.aberration_)/3600. | ||||
# Computing current equinox | ||||
j_now = (self.jd - 2451545.)/365.25 + 2000 | ||||
# Precess coordinates to current date | ||||
if self.precess_==1: | ||||
njd = numpy.size(self.jd) | ||||
for ii in numpy.arange(njd): | ||||
ra_i = ra[ii] | ||||
dec_i = dec[ii] | ||||
now = j_now[ii] | ||||
if self.B1950==1: | ||||
[ra_i,dec_i] = self.precess(ra_i,dec_i,now,1950.,FK4=1) | ||||
elif self.B1950==0: | ||||
[ra_i,dec_i] = self.precess(ra_i,dec_i,now,2000.,FK4=0) | ||||
ra[ii] = ra_i | ||||
dec[ii] = dec_i | ||||
return ra, dec, ha | ||||
def change2HaDec(self): | ||||
""" | ||||
change2HaDec method converts from horizon (Alt-Az) coordinates to hour angle and de- | ||||
clination. | ||||
Return | ||||
------ | ||||
ha = The local apparent hour angle, in degrees. The hour angle is the time that ri- | ||||
ght ascension of 0 hours crosses the local meridian. It is unambiguisoly defined. | ||||
dec = The local apparent declination, in degrees. | ||||
Example | ||||
------- | ||||
>> alt = 88.5401 | ||||
>> az = -128.990 | ||||
>> jd = 2452640.5 | ||||
>> ObjAltAz = AltAz(alt,az,jd) | ||||
>> [ha, dec] = ObjAltAz.change2HaDec() | ||||
>> print ha, dec | ||||
[ 1.1638927] [-12.86610025] | ||||
Modification History | ||||
-------------------- | ||||
Written Chris O'Dell Univ. of Wisconsin-Madison, May 2002. | ||||
Converted to Python by Freddy R. Galindo, ROJ, 26 September 2009. | ||||
""" | ||||
alt_r = numpy.atleast_1d(self.alt*Misc_Routines.CoFactors.d2r) | ||||
az_r = numpy.atleast_1d(self.az*Misc_Routines.CoFactors.d2r) | ||||
lat_r = numpy.atleast_1d(self.lat*Misc_Routines.CoFactors.d2r) | ||||
# Find local hour angle (in degrees, from 0 to 360.) | ||||
y_ha = -1*numpy.sin(az_r)*numpy.cos(alt_r) | ||||
x_ha = -1*numpy.cos(az_r)*numpy.sin(lat_r)*numpy.cos(alt_r) + numpy.sin(alt_r)*numpy.cos(lat_r) | ||||
ha = numpy.arctan2(y_ha,x_ha) | ||||
ha = ha/Misc_Routines.CoFactors.d2r | ||||
w = numpy.where(ha<0.) | ||||
if w[0].size>0:ha[w] = ha[w] + 360. | ||||
ha = ha % 360. | ||||
# Find declination (positive if north of celestial equatorial, negative if south) | ||||
sindec = numpy.sin(lat_r)*numpy.sin(alt_r) + numpy.cos(lat_r)*numpy.cos(alt_r)*numpy.cos(az_r) | ||||
dec = numpy.arcsin(sindec)/Misc_Routines.CoFactors.d2r | ||||
return ha, dec | ||||
class Equatorial(EquatorialCorrections): | ||||
def __init__(self,ra,dec,jd,lat=-11.95,lon=-76.8667,WS=0,altitude=500,nutate_=0,precess_=0,\ | ||||
aberration_=0,B1950=0): | ||||
""" | ||||
The Equatorial class creates an object which represents the target position in equa- | ||||
torial coordinates (ha-dec) and allows to convert (using the class methods) from | ||||
this coordinate system to others (e.g. AltAz). | ||||
Parameters | ||||
---------- | ||||
ra = Right ascension of object (J2000) in degrees (FK5). Scalar or vector. | ||||
dec = Declination of object (J2000), in degrees (FK5). Scalar or vector. | ||||
jd = Julian date. Scalar or vector. | ||||
lat = North geodetic latitude of location in degrees. The default value is -11.95. | ||||
lon = East longitude of location in degrees. The default value is -76.8667. | ||||
WS = Set this to 1 to get the azimuth measured westward from south. | ||||
altitude = The altitude of the observing location, in meters. The default 500. | ||||
nutate = Set this to 1 to force nutation, 0 for no nutation. | ||||
precess = Set this to 1 to force precession, 0 for no precession. | ||||
aberration = Set this to 1 to force aberration correction, 0 for no correction. | ||||
B1950 = Set this if your RA and DEC are specified in B1950, FK4 coordinates (ins- | ||||
tead of J2000, FK5) | ||||
Modification History | ||||
-------------------- | ||||
Converted to Object-oriented Programming by Freddy Galindo, ROJ, 29 September 2009. | ||||
""" | ||||
EquatorialCorrections.__init__(self) | ||||
self.ra = numpy.atleast_1d(ra) | ||||
self.dec = numpy.atleast_1d(dec) | ||||
self.jd = numpy.atleast_1d(jd) | ||||
self.lat = lat | ||||
self.lon = lon | ||||
self.WS = WS | ||||
self.altitude = altitude | ||||
self.nutate_ = nutate_ | ||||
self.aberration_ = aberration_ | ||||
self.precess_ = precess_ | ||||
self.B1950 = B1950 | ||||
def change2AltAz(self): | ||||
""" | ||||
change2AltAz method converts from equatorial coordinates (ha-dec) to horizon coordi- | ||||
nates (alt-az). | ||||
Return | ||||
------ | ||||
alt = Altitude in degrees. Scalar or vector. | ||||
az = Azimuth angle in degrees (measured EAST from NORTH, but see keyword WS). Sca- | ||||
lar or vector. | ||||
ha = Hour angle in degrees. | ||||
Example | ||||
------- | ||||
>> ra = 43.370609 | ||||
>> dec = -28.0000 | ||||
>> jd = 2452640.5 | ||||
>> ObjEq = Equatorial(ra,dec,jd) | ||||
>> [alt, az, ha] = ObjEq.change2AltAz() | ||||
>> print alt, az, ha | ||||
[ 65.3546497] [ 133.58753124] [ 339.99609002] | ||||
Modification History | ||||
-------------------- | ||||
Written Chris O'Dell Univ. of Wisconsin-Madison. May 2002 | ||||
Converted to Python by Freddy R. Galindo, ROJ, 29 September 2009. | ||||
""" | ||||
ra = self.ra | ||||
dec = self.dec | ||||
# Computing current equinox | ||||
j_now = (self.jd - 2451545.)/365.25 + 2000 | ||||
# Precess coordinates to current date | ||||
if self.precess_==1: | ||||
njd = numpy.size(self.jd) | ||||
for ii in numpy.arange(njd): | ||||
ra_i = ra[ii] | ||||
dec_i = dec[ii] | ||||
now = j_now[ii] | ||||
if self.B1950==1: | ||||
[ra_i,dec_i] = self.precess(ra_i,dec_i,now,1950.,FK4=1) | ||||
elif self.B1950==0: | ||||
[ra_i,dec_i] = self.precess(ra_i,dec_i,now,2000.,FK4=0) | ||||
ra[ii] = ra_i | ||||
dec[ii] = dec_i | ||||
# Calculate NUTATION and ABERRATION Correction to Ra-Dec | ||||
[dra1, ddec1,eps,d_psi,d_eps] = self.co_nutate(self.jd,ra,dec) | ||||
[dra2,ddec2,eps] = self.co_aberration(self.jd,ra,dec) | ||||
# Make Nutation and Aberration correction (if wanted) | ||||
ra = ra + (dra1*self.nutate_ + dra2*self.aberration_)/3600. | ||||
dec = dec + (ddec1*self.nutate_ + ddec2*self.aberration_)/3600. | ||||
# Getting local mean sidereal time (lmst) | ||||
lmst = TimeTools.Julian(self.jd).change2lst() | ||||
lmst = lmst*Misc_Routines.CoFactors.h2d | ||||
# Getting local apparent sidereal time (last) | ||||
last = lmst + d_psi*numpy.cos(eps)/3600. | ||||
# Finding Hour Angle (in degrees, from 0 to 360.) | ||||
ha = last - ra | ||||
w = numpy.where(ha<0.) | ||||
if w[0].size>0:ha[w] = ha[w] + 360. | ||||
ha = ha % 360. | ||||
# Now do the spherical trig to get APPARENT hour angle and declination (Degrees). | ||||
[alt, az] = self.HaDec2AltAz(ha,dec) | ||||
return alt, az, ha | ||||
def HaDec2AltAz(self,ha,dec): | ||||
""" | ||||
HaDec2AltAz convert hour angle and declination (ha-dec) to horizon coords (alt-az). | ||||
Parameters | ||||
---------- | ||||
ha = The local apparent hour angle, in DEGREES, scalar or vector. | ||||
dec = The local apparent declination, in DEGREES, scalar or vector. | ||||
Return | ||||
------ | ||||
alt = Altitude in degrees. Scalar or vector. | ||||
az = Azimuth angle in degrees (measured EAST from NORTH, but see keyword WS). Sca- | ||||
lar or vector. | ||||
Modification History | ||||
-------------------- | ||||
Written Chris O'Dell Univ. of Wisconsin-Madison, May 2002. | ||||
Converted to Python by Freddy R. Galindo, ROJ, 26 September 2009. | ||||
""" | ||||
sh = numpy.sin(ha*Misc_Routines.CoFactors.d2r) ; ch = numpy.cos(ha*Misc_Routines.CoFactors.d2r) | ||||
sd = numpy.sin(dec*Misc_Routines.CoFactors.d2r) ; cd = numpy.cos(dec*Misc_Routines.CoFactors.d2r) | ||||
sl = numpy.sin(self.lat*Misc_Routines.CoFactors.d2r) ; cl = numpy.cos(self.lat*Misc_Routines.CoFactors.d2r) | ||||
x = -1*ch*cd*sl + sd*cl | ||||
y = -1*sh*cd | ||||
z = ch*cd*cl + sd*sl | ||||
r = numpy.sqrt(x**2. + y**2.) | ||||
az = numpy.arctan2(y,x)/Misc_Routines.CoFactors.d2r | ||||
alt = numpy.arctan2(z,r)/Misc_Routines.CoFactors.d2r | ||||
# correct for negative az. | ||||
w = numpy.where(az<0.) | ||||
if w[0].size>0:az[w] = az[w] + 360. | ||||
# Convert az to West from South, if desired | ||||
if self.WS==1: az = (az + 180.) % 360. | ||||
return alt, az | ||||
class Geodetic(): | ||||
def __init__(self,lat=-11.95,alt=0): | ||||
""" | ||||
The Geodetic class creates an object which represents the real position on earth of | ||||
a target (Geodetic Coordinates: lat-alt) and allows to convert (using the class me- | ||||
thods) from this coordinate system to others (e.g. geocentric). | ||||
Parameters | ||||
---------- | ||||
lat = Geodetic latitude of location in degrees. The default value is -11.95. | ||||
alt = Geodetic altitude (km). The default value is 0. | ||||
Modification History | ||||
-------------------- | ||||
Converted to Object-oriented Programming by Freddy R. Galindo, ROJ, 02 October 2009. | ||||
""" | ||||
self.lat = numpy.atleast_1d(lat) | ||||
self.alt = numpy.atleast_1d(alt) | ||||
self.a = 6378.16 | ||||
self.ab2 = 1.0067397 | ||||
self.ep2 = 0.0067397 | ||||
def change2geocentric(self): | ||||
""" | ||||
change2geocentric method converts from Geodetic to Geocentric coordinates. The re- | ||||
ference geoid is that adopted by the IAU in 1964. | ||||
Return | ||||
------ | ||||
gclat = Geocentric latitude (in degrees), scalar or vector. | ||||
gcalt = Geocentric radial distance (km), scalar or vector. | ||||
Example | ||||
------- | ||||
>> ObjGeoid = Geodetic(lat=-11.95,alt=0) | ||||
>> [gclat, gcalt] = ObjGeoid.change2geocentric() | ||||
>> print gclat, gcalt | ||||
[-11.87227742] [ 6377.25048195] | ||||
Modification History | ||||
-------------------- | ||||
Converted to Python by Freddy R. Galindo, ROJ, 02 October 2009. | ||||
""" | ||||
gdl = self.lat*Misc_Routines.CoFactors.d2r | ||||
slat = numpy.sin(gdl) | ||||
clat = numpy.cos(gdl) | ||||
slat2 = slat**2. | ||||
clat2 = (self.ab2*clat)**2. | ||||
sbet = slat/numpy.sqrt(slat2 + clat2) | ||||
sbet2 = (sbet**2.) # < 1 | ||||
noval = numpy.where(sbet2>1) | ||||
if noval[0].size>0:sbet2[noval] = 1 | ||||
cbet = numpy.sqrt(1. - sbet2) | ||||
rgeoid = self.a/numpy.sqrt(1. + self.ep2*sbet2) | ||||
x = rgeoid*cbet + self.alt*clat | ||||
y = rgeoid*sbet + self.alt*slat | ||||
gcalt = numpy.sqrt(x**2. + y**2.) | ||||
gclat = numpy.arctan2(y,x)/Misc_Routines.CoFactors.d2r | ||||
return gclat, gcalt | ||||