This diff has been collapsed as it changes many lines, (515 lines changed) Show them Hide them | |||||
@@ -1,471 +1,526 | |||||
1 | #!/usr/bin/env python |
|
1 | #!/usr/bin/env python | |
2 |
|
2 | |||
3 | #---------------------------------------------------------- |
|
3 | #---------------------------------------------------------- | |
4 | # Original MATLAB code developed by Brian Harding |
|
4 | # Original MATLAB code developed by Brian Harding | |
5 |
# Rewritten in |
|
5 | # Rewritten in Python by Yolian Amaro | |
6 | # Python version 2.7 |
|
6 | # Python version 2.7 | |
7 | # May 15, 2014 |
|
7 | # May 15, 2014 | |
8 | # Jicamarca Radio Observatory |
|
8 | # Jicamarca Radio Observatory | |
9 | #---------------------------------------------------------- |
|
9 | #---------------------------------------------------------- | |
10 |
|
10 | |||
11 |
import |
|
11 | import time | |
12 | import numpy as np |
|
|||
13 | import matplotlib.pyplot as plt |
|
12 | import matplotlib.pyplot as plt | |
14 |
from scipy import |
|
13 | from scipy.optimize import root | |
15 | import time |
|
14 | ||
16 | from y_hysell96 import* |
|
15 | from y_hysell96 import* | |
17 | from deb4_basis import * |
|
16 | from deb4_basis import * | |
18 | from modelf import * |
|
17 | from modelf import * | |
|
18 | from irls_dn2 import * | |||
19 | #from scipy.optimize import fsolve |
|
19 | #from scipy.optimize import fsolve | |
20 | from scipy.optimize import root |
|
20 | ||
21 | import pywt |
|
21 | ||
22 | from irls_dn2 import * |
|
22 | #------------------------------------------------------------------------------------------------- | |
23 |
|
23 | # Set parameters | ||
|
24 | #------------------------------------------------------------------------------------------------- | |||
24 |
|
25 | |||
25 | ## Calculate Forward Model |
|
26 | ## Calculate Forward Model | |
26 | lambda1 = 6.0 |
|
27 | lambda1 = 6.0 | |
27 |
k = 2* |
|
28 | k = 2*np.pi/lambda1 | |
28 |
|
29 | |||
29 |
## |
|
30 | ## Magnetic Declination | |
30 |
|
||||
31 | # [~,~,dec] = igrf11magm(350e3, -11-56/60, -76-52/60, 2012); check this |
|
|||
32 |
|
||||
33 | # or calculate it with the above function |
|
|||
34 | dec = -1.24 |
|
31 | dec = -1.24 | |
35 |
|
32 | |||
36 | # loads rx, ry (Jicamarca antenna positions) #this can be done with numpy.loadtxt() |
|
33 | ## Loads Jicamarca antenna positions | |
|
34 | antpos = np.loadtxt("antpos.txt", comments="#", delimiter=";", unpack=False) | |||
|
35 | ||||
|
36 | ## rx and ry -- for plotting purposes | |||
37 | rx = np.array( [[127.5000], [91.5000], [127.5000], [19.5000], [91.5000], [-127.5000], [-55.5000], [-220.8240]] ) |
|
37 | rx = np.array( [[127.5000], [91.5000], [127.5000], [19.5000], [91.5000], [-127.5000], [-55.5000], [-220.8240]] ) | |
38 | ry = np.array( [[127.5000], [91.5000], [91.5000], [55.5000], [-19.5000], [-127.5000], [-127.5000], [-322.2940]] ) |
|
38 | ry = np.array( [[127.5000], [91.5000], [91.5000], [55.5000], [-19.5000], [-127.5000], [-127.5000], [-322.2940]] ) | |
39 |
|
39 | |||
40 | antpos = np.array( [[127.5000, 91.5000, 127.5000, 19.5000, 91.5000, -127.5000, -55.5000, -220.8240], |
|
40 | ## Plot of antenna positions | |
41 | [127.5000, 91.5000, 91.5000, 55.5000, -19.5000, -127.5000, -127.5000, -322.2940]] ) |
|
|||
42 |
|
||||
43 | plt.figure(1) |
|
41 | plt.figure(1) | |
44 | plt.plot(rx, ry, 'ro') |
|
42 | plt.plot(rx, ry, 'ro') | |
45 | plt.draw() |
|
43 | plt.draw() | |
46 |
|
44 | |||
47 | # Jicamarca is nominally at a 45 degree angle |
|
45 | ## Jicamarca is nominally at a 45 degree angle | |
48 | theta = 45 - dec; |
|
46 | theta = 45 - dec; | |
49 |
|
47 | |||
|
48 | ## Rotation matrix from antenna coord to magnetic coord (East North) | |||
|
49 | theta_rad = np.radians(theta) # trig functions take radians as argument | |||
|
50 | val1 = float( np.cos(theta_rad) ) | |||
|
51 | val2 = float( np.sin(theta_rad) ) | |||
|
52 | val3 = float( -1*np.sin(theta_rad)) | |||
|
53 | val4 = float( np.cos(theta_rad) ) | |||
|
54 | ||||
50 | # Rotation matrix from antenna coord to magnetic coord (East North) |
|
55 | # Rotation matrix from antenna coord to magnetic coord (East North) | |
51 | theta_rad = math.radians(theta) # trig functions take radians as argument |
|
56 | R = np.array( [[val1, val3], [val2, val4]] ) | |
52 | val1 = float( math.cos(theta_rad) ) |
|
|||
53 | val2 = float( math.sin(theta_rad) ) |
|
|||
54 | val3 = float( -1*math.sin(theta_rad)) |
|
|||
55 | val4 = float( math.cos(theta_rad) ) |
|
|||
56 |
|
||||
57 | # Rotation matrix from antenna coord to magnetic coord (East North) |
|
|||
58 | R = np.array( [[val1, val3], [val2, val4]] ); |
|
|||
59 |
|
57 | |||
60 | # Rotate antenna positions to magnetic coord. |
|
58 | # Rotate antenna positions to magnetic coord. | |
61 |
AR = np.dot(R.T, antpos) |
|
59 | AR = np.dot(R.T, antpos) | |
62 |
|
60 | |||
63 | # Only take the East component |
|
61 | # Only take the East component | |
64 | r = AR[0,:] |
|
62 | r = AR[0,:] | |
65 | r.sort() # ROW VECTOR? |
|
63 | r.sort() | |
66 |
|
64 | |||
67 | # Truth model (high and low resolution) |
|
65 | # Truth model (high and low resolution) | |
68 |
Nt = (1024.0)*(16.0) |
|
66 | Nt = (1024.0)*(16.0) # number of pixels in truth image: high resolution | |
69 |
thbound = 9.0/180* |
|
67 | thbound = 9.0/180*np.pi # the width of the domain in angle space | |
70 | thetat = np.linspace(-thbound, thbound,Nt) # image domain |
|
68 | thetat = np.linspace(-thbound, thbound,Nt) # image domain | |
71 | thetat = np.transpose(thetat) # transpose # FUNCIONA?????????????????????????????? |
|
69 | thetat = thetat.T # transpose | |
72 |
Nr = (256.0) |
|
70 | Nr = (256.0) # number of pixels in reconstructed image: low res | |
73 | thetar = np.linspace(-thbound, thbound,Nr) # reconstruction domain |
|
71 | thetar = np.linspace(-thbound, thbound,Nr) # reconstruction domain | |
74 | thetar = np.transpose(thetar) #transpose # FUNCIONA????????????????????????????? |
|
72 | thetar = thetar.T # transpose | |
75 |
|
73 | |||
76 | # Model for f: Gaussian(s) with amplitudes a, centers mu, widths sig, and |
|
74 | ||
77 | # background constant b. |
|
75 | #------------------------------------------------------------------------------------------------- | |
|
76 | # Model for f: Gaussian(s) with amplitudes a, centers mu, widths sig, and background constant b. | |||
|
77 | #------------------------------------------------------------------------------------------------- | |||
78 |
|
78 | |||
79 | # Triple Gaussian |
|
79 | # Triple Gaussian | |
80 | # a = np.array([3, 5, 2]); |
|
80 | # a = np.array([3, 5, 2]); | |
81 |
# mu = np.array([-5.0/180* |
|
81 | # mu = np.array([-5.0/180*np.pi, 2.0/180*np.pi, 7.0/180*np.pi]); | |
82 |
# sig = np.array([2.0/180* |
|
82 | # sig = np.array([2.0/180*np.pi, 1.5/180*np.pi, 0.3/180*np.pi]); | |
83 | # b = 0; # background |
|
83 | # b = 0; # background | |
84 |
|
84 | |||
85 | # Double Gaussian |
|
85 | # Double Gaussian | |
86 | # a = np.array([3, 5]); |
|
86 | # a = np.array([3, 5]); | |
87 |
# mu = np.array([-5.0/180* |
|
87 | # mu = np.array([-5.0/180*np.pi, 2.0/180*np.pi]); | |
88 |
# sig = np.array([2.0/180* |
|
88 | # sig = np.array([2.0/180*np.pi, 1.5/180*np.pi]); | |
89 | # b = 0; # background |
|
89 | # b = 0; # background | |
90 |
|
90 | |||
91 | # Single Gaussian |
|
91 | # Single Gaussian | |
92 |
a = np.array( [3] ) |
|
92 | a = np.array( [3] ) | |
93 |
mu = np.array( [-3.0/180* |
|
93 | mu = np.array( [-3.0/180*np.pi] ) | |
94 |
sig = np.array( [2.0/180* |
|
94 | sig = np.array( [2.0/180*np.pi] ) | |
95 |
b = 0 |
|
95 | b = 0 | |
96 |
|
96 | |||
97 | fact = np.zeros(shape=(Nt,1)); |
|
97 | # Empty matrices for factors | |
98 |
fact |
|
98 | fact = np.zeros(shape=(Nt,1)) | |
99 |
|
99 | factr = np.zeros(shape=(Nr,1)) | ||
|
100 | ||||
|
101 | # DFT Kernels | |||
100 | for i in range(0, a.size): |
|
102 | for i in range(0, a.size): | |
101 | temp = (-(thetat-mu[i])**2/(sig[i]**2)) |
|
103 | temp = (-(thetat-mu[i])**2/(sig[i]**2)) | |
102 | tempr = (-(thetar-mu[i])**2/(sig[i]**2)) |
|
104 | tempr = (-(thetar-mu[i])**2/(sig[i]**2)) | |
103 | for j in range(0, temp.size): |
|
105 | for j in range(0, temp.size): | |
104 |
fact[j] = fact[j] + a[i]* |
|
106 | fact[j] = fact[j] + a[i]*np.exp(temp[j]); | |
105 | for m in range(0, tempr.size): |
|
107 | for m in range(0, tempr.size): | |
106 |
factr[m] = factr[m] + a[i]* |
|
108 | factr[m] = factr[m] + a[i]*np.exp(tempr[m]); | |
|
109 | ||||
107 | fact = fact + b; |
|
110 | fact = fact + b; | |
108 | factr = factr + b; |
|
111 | factr = factr + b; | |
109 |
|
112 | |||
110 | # # model for f: Square pulse |
|
113 | # #------------------------------------------------------------------------------------------------- | |
|
114 | # # Model for f: Square pulse | |||
|
115 | # #------------------------------------------------------------------------------------------------- | |||
111 | # for j in range(0, fact.size): |
|
116 | # for j in range(0, fact.size): | |
112 |
# if (theta > -5.0/180* |
|
117 | # if (theta > -5.0/180*np.pi and theta < 2.0/180*np.pi): | |
113 | # fact[j] = 0 |
|
118 | # fact[j] = 0 | |
114 | # else: |
|
119 | # else: | |
115 | # fact[j] = 1 |
|
120 | # fact[j] = 1 | |
116 | # for k in range(0, factr.size): |
|
121 | # for k in range(0, factr.size): | |
117 |
# if (thetar[k] > -5.0/180* |
|
122 | # if (thetar[k] > -5.0/180*np.pi and thetar[k] < 2/180*np.pi): | |
118 | # fact[k] = 0 |
|
123 | # factr[k] = 0 | |
119 | # else: |
|
124 | # else: | |
120 | # fact[k] = 1 |
|
125 | # factr[k] = 1 | |
121 |
|
|
126 | ||
122 | # |
|
127 | # #------------------------------------------------------------------------------------------------- | |
123 |
# # |
|
128 | # # Model for f: Triangle pulse | |
124 | # mu = -1.0/180*math.pi; |
|
129 | # #------------------------------------------------------------------------------------------------- | |
125 |
# |
|
130 | # mu = -1.0/180*np.pi; | |
|
131 | # sig = 5.0/180*np.pi; | |||
126 | # wind1 = theta > mu-sig and theta < mu; |
|
132 | # wind1 = theta > mu-sig and theta < mu; | |
127 | # wind2 = theta < mu+sig and theta > mu; |
|
133 | # wind2 = theta < mu+sig and theta > mu; | |
128 | # fact = wind1 * (theta - (mu - sig)); |
|
134 | # fact = wind1 * (theta - (mu - sig)); | |
129 | # factr = wind1 * (thetar - (mu - sig)); |
|
135 | # factr = wind1 * (thetar - (mu - sig)); | |
130 | # fact = fact + wind2 * (-(theta-(mu+sig))); |
|
136 | # fact = fact + wind2 * (-(theta-(mu+sig))); | |
131 | # factr = factr + wind2 * (-(thetar-(mu+sig))); |
|
137 | # factr = factr + wind2 * (-(thetar-(mu+sig))); | |
132 |
|
138 | |||
133 |
|
139 | |||
134 |
# |
|
140 | # fact = fact/(sum(fact)[0]*2*thbound/Nt); # normalize to integral(f)==1 | |
|
141 | ||||
135 | I = sum(fact)[0]; |
|
142 | I = sum(fact)[0]; | |
136 | fact = fact/I; # normalize to sum(f)==1 |
|
143 | fact = fact/I; # normalize to sum(f)==1 | |
137 | factr = factr/I; # normalize to sum(f)==1 |
|
144 | factr = factr/I; # normalize to sum(f)==1 | |
138 | #plt.figure() |
|
145 | ||
139 | #plt.plot(thetat,fact,'r'); |
|
146 | # Plot Gaussian pulse(s) | |
140 | #plt.plot(thetar,factr,'k.'); |
|
|||
141 | #xlim([min(thetat) max(thetat)]); |
|
|||
142 |
|
||||
143 | #x = np.linspace(thetat.min(), thetat.max) ???? |
|
|||
144 | #for i in range(0, thetat.size): |
|
|||
145 | plt.figure(2) |
|
147 | plt.figure(2) | |
146 | plt.plot(thetat, fact, 'r--') |
|
148 | plt.plot(thetat, fact, 'r--') | |
147 | plt.plot(thetar, factr, 'ro') |
|
149 | plt.plot(thetar, factr, 'ro') | |
148 | plt.draw() |
|
150 | plt.draw() | |
149 | # xlim([min(thetat) max(thetat)]); FALTA ARREGLAR ESTO |
|
151 | ||
150 |
|
152 | |||
151 |
|
153 | #------------------------------------------------------------------------------------------------- | ||
152 | ## |
|
|||
153 | # Control the type and number of inversions with: |
|
154 | # Control the type and number of inversions with: | |
154 | # SNRdBvec: the SNRs that will be used. |
|
155 | # SNRdBvec: the SNRs that will be used. | |
155 | # NN: the number of trials for each SNR |
|
156 | # NN: the number of trials for each SNR | |
|
157 | #------------------------------------------------------------------------------------------------- | |||
156 |
|
158 | |||
157 | #SNRdBvec = np.linspace(5,20,10); |
|
159 | #SNRdBvec = np.linspace(5,20,10); | |
158 | SNRdBvec = np.array([15]); |
|
160 | SNRdBvec = np.array([15]); # 15 dB | |
159 | NN = 1; # number of trial at each SNR |
|
161 | NN = 1; # number of trials at each SNR | |
160 |
|
162 | |||
161 | # if using vector arguments should be: (4,SNRdBvec.size,NN) |
|
163 | # Statistics simulation (correlation, root mean square) | |
162 | corr = np.zeros(shape=(4,SNRdBvec.size,NN)); # (method, SNR, trial) |
|
164 | corr = np.zeros(shape=(4,SNRdBvec.size,NN)); # (method, SNR, trial) | |
163 | corrc = np.zeros(shape=(4,SNRdBvec.size,NN)); # (method, SNR, trial) |
|
165 | corrc = np.zeros(shape=(4,SNRdBvec.size,NN)); # (method, SNR, trial) | |
164 | rmse = np.zeros(shape=(4,SNRdBvec.size,NN)); # (method, SNR, trial) |
|
166 | rmse = np.zeros(shape=(4,SNRdBvec.size,NN)); # (method, SNR, trial) | |
165 |
|
167 | |||
166 | for snri in range(0, SNRdBvec.size): # change 1 for SNRdBvec.size when using SNRdBvec as vector |
|
168 | # For each SNR and trial | |
|
169 | for snri in range(0, SNRdBvec.size): | |||
|
170 | SNRdB = SNRdBvec[snri]; | |||
|
171 | SNR = 10**(SNRdB/10.0); | |||
|
172 | ||||
167 | for Ni in range(0, NN): |
|
173 | for Ni in range(0, NN): | |
168 | SNRdB = SNRdBvec[snri]; |
|
|||
169 | SNR = 10**(SNRdB/10.0); |
|
|||
170 |
|
||||
171 | # Calculate cross-correlation matrix (Fourier components of image) |
|
174 | # Calculate cross-correlation matrix (Fourier components of image) | |
172 | # This is an inefficient way to do this. |
|
175 | # This is an inefficient way to do this. | |
|
176 | ||||
173 | R = np.zeros(shape=(r.size, r.size), dtype=object); |
|
177 | R = np.zeros(shape=(r.size, r.size), dtype=object); | |
174 |
|
178 | |||
175 | for i1 in range(0, r.size): |
|
179 | for i1 in range(0, r.size): | |
176 | for i2 in range(0,r.size): |
|
180 | for i2 in range(0,r.size): | |
177 | R[i1,i2] = np.dot(fact.T, np.exp(1j*k*np.dot((r[i1]-r[i2]),np.sin(thetat)))) |
|
181 | R[i1,i2] = np.dot(fact.T, np.exp(1j*k*np.dot((r[i1]-r[i2]),np.sin(thetat)))) | |
178 | R[i1,i2] = sum(R[i1,i2]) |
|
182 | R[i1,i2] = sum(R[i1,i2]) | |
179 |
|
183 | |||
180 | # Add uncertainty |
|
184 | # Add uncertainty | |
181 | # This is an ad-hoc way of adding "noise". It models some combination of |
|
185 | # This is an ad-hoc way of adding "noise". It models some combination of | |
182 | # receiver noise and finite integration times. We could use a more |
|
186 | # receiver noise and finite integration times. We could use a more | |
183 | # advanced model (like in Yu et al 2000) in the future. |
|
187 | # advanced model (like in Yu et al 2000) in the future. | |
184 |
|
188 | |||
185 | # This is a way of adding noise while maintaining the |
|
189 | # This is a way of adding noise while maintaining the | |
186 | # positive-semi-definiteness of the matrix. |
|
190 | # positive-semi-definiteness of the matrix. | |
187 |
|
191 | |||
188 | U = linalg.cholesky(R.astype(complex), lower=False); # U'*U = R |
|
192 | U = linalg.cholesky(R.astype(complex), lower=False); # U'*U = R | |
189 |
|
193 | |||
190 | sigma_noise = (np.linalg.norm(U,'fro')/SNR); |
|
194 | sigma_noise = (np.linalg.norm(U,'fro')/SNR); | |
191 |
|
195 | |||
192 |
temp1 = (- |
|
196 | # temp1 = (-2*np.random.rand(U.shape[0], U.shape[1]) + 2) | |
193 |
temp2 = 1j*(- |
|
197 | # temp2 = 1j*(-2*np.random.rand(U.shape[0], U.shape[1]) + 2) | |
194 | temp3 = ((abs(U) > 0).astype(float)) # upper triangle of 1's |
|
198 | # temp3 = ((abs(U) > 0).astype(float)) # upper triangle of 1's | |
195 | temp4 = (sigma_noise * (temp1 + temp2))/np.sqrt(2.0) |
|
199 | # temp4 = (sigma_noise * (temp1 + temp2))/np.sqrt(2.0) | |
|
200 | # | |||
|
201 | # nz = np.multiply(temp4,temp3) | |||
|
202 | ||||
|
203 | nz = np.multiply( sigma_noise * (np.random.randn(U.shape[0]) + 1j*np.random.randn(U.shape[0]))/np.sqrt(2) , (abs(U) > 0).astype(float)); | |||
196 |
|
204 | |||
197 | nz = np.multiply(temp4, temp3) |
|
|||
198 |
|
||||
199 | #---------------------- Eliminar esto:------------------------------------------ |
|
|||
200 | #nz = ((abs(np.multiply(temp4, temp3)) > 0).astype(int)) |
|
|||
201 | #nz = ((abs(np.dot(temp4, temp3)) > 0).astype(int)) |
|
|||
202 | #nz = np.dot(np.dot(sigma_noise, (temp1 + temp2)/math.sqrt(2), temp3 )); |
|
|||
203 | #nz = np.dot(sigma_noise, (np.dot((np.random.rand(8,8) + j*np.random.rand(8,8))/math.sqrt(2.0) , (abs(U) > 0).astype(int)))); |
|
|||
204 | #-------------------------------------------------------------------------------- |
|
|||
205 |
|
||||
206 | Unz = U + nz; |
|
205 | Unz = U + nz; | |
207 | Rnz = np.dot(Unz.T.conj(),Unz); # the noisy version of R |
|
206 | Rnz = np.dot(Unz.T.conj(),Unz); # the noisy version of R | |
208 | plt.figure(3); |
|
207 | plt.figure(3); | |
209 | plt.pcolor(abs(Rnz)); |
|
208 | plt.pcolor(abs(Rnz)); | |
210 | plt.colorbar(); |
|
209 | plt.colorbar(); | |
211 |
|
|
210 | ||
212 | # Fourier Inversion ################### |
|
211 | #------------------------------------------------------------------------------------------------- | |
|
212 | # Fourier Inversion | |||
|
213 | #------------------------------------------------------------------------------------------------- | |||
213 | f_fourier = np.zeros(shape=(Nr,1), dtype=complex); |
|
214 | f_fourier = np.zeros(shape=(Nr,1), dtype=complex); | |
214 |
|
215 | |||
215 | for i in range(0, thetar.size): |
|
216 | for i in range(0, thetar.size): | |
216 | th = thetar[i]; |
|
217 | th = thetar[i]; | |
217 | w = np.exp(1j*k*np.dot(r,np.sin(th))); |
|
218 | w = np.exp(1j*k*np.dot(r,np.sin(th))); | |
218 |
|
||||
219 | temp = np.dot(w.T.conj(),U) |
|
219 | temp = np.dot(w.T.conj(),U) | |
220 |
|
||||
221 | f_fourier[i] = np.dot(temp, w); |
|
220 | f_fourier[i] = np.dot(temp, w); | |
222 |
|
221 | |||
223 | f_fourier = f_fourier.real; # get rid of numerical imaginary noise |
|
222 | f_fourier = f_fourier.real; # get rid of numerical imaginary noise | |
224 |
|
223 | |||
225 | #print f_fourier |
|
224 | ||
226 |
|
225 | #------------------------------------------------------------------------------------------------- | ||
227 |
|
226 | # Capon Inversion | ||
228 | # Capon Inversion ###################### |
|
227 | #------------------------------------------------------------------------------------------------- | |
229 |
|
||||
230 | f_capon = np.zeros(shape=(Nr,1)); |
|
228 | f_capon = np.zeros(shape=(Nr,1)); | |
231 |
|
229 | |||
232 | tic_capon = time.time(); |
|
230 | tic_capon = time.time(); | |
233 |
|
231 | |||
234 | for i in range(0, thetar.size): |
|
232 | for i in range(0, thetar.size): | |
235 | th = thetar[i]; |
|
233 | th = thetar[i]; | |
236 | w = np.exp(1j*k*np.dot(r,np.sin(th))); |
|
234 | w = np.exp(1j*k*np.dot(r,np.sin(th))); | |
237 | f_capon[i] = np.divide(1, ( np.dot( w.T.conj(), (linalg.solve(Rnz,w)) ) ).real) |
|
235 | f_capon[i] = np.divide(1, ( np.dot( w.T.conj(), (linalg.solve(Rnz,w)) ) ).real) | |
238 |
|
236 | |||
239 |
|
||||
240 | toc_capon = time.time() |
|
237 | toc_capon = time.time() | |
241 |
|
238 | |||
242 | elapsed_time_capon = toc_capon - tic_capon; |
|
239 | elapsed_time_capon = toc_capon - tic_capon; | |
243 |
|
240 | |||
244 | f_capon = f_capon.real; # get rid of numerical imaginary noise |
|
241 | f_capon = f_capon.real; # get rid of numerical imaginary noise | |
245 |
|
242 | |||
246 | # MaxEnt Inversion ##################### |
|
243 | ||
247 |
|
244 | #------------------------------------------------------------------------------------------------- | ||
248 | # create the appropriate sensing matrix (split into real and imaginary # parts) |
|
245 | # MaxEnt Inversion | |
|
246 | #------------------------------------------------------------------------------------------------- | |||
|
247 | ||||
|
248 | # Create the appropriate sensing matrix (split into real and imaginary # parts) | |||
249 | M = (r.size-1)*(r.size); |
|
249 | M = (r.size-1)*(r.size); | |
250 | Ht = np.zeros(shape=(M,Nt)); # "true" sensing matrix |
|
250 | Ht = np.zeros(shape=(M,Nt)); # "true" sensing matrix | |
251 | Hr = np.zeros(shape=(M,Nr)); # approximate sensing matrix for reconstruction |
|
251 | Hr = np.zeros(shape=(M,Nr)); # approximate sensing matrix for reconstruction | |
252 |
|
252 | |||
253 |
# |
|
253 | # Need to re-index our measurements from matrix R into vector g | |
254 | g = np.zeros(shape=(M,1)); |
|
254 | g = np.zeros(shape=(M,1)); | |
255 | gnz = np.zeros(shape=(M,1)); # noisy version of g |
|
255 | gnz = np.zeros(shape=(M,1)); # noisy version of g | |
256 |
|
256 | |||
257 |
# |
|
257 | # Triangular indexing to perform this re-indexing | |
258 | T = np.ones(shape=(r.size,r.size)); |
|
258 | T = np.ones(shape=(r.size,r.size)); | |
259 | [i1v,i2v] = np.where(np.triu(T,1) > 0); # converts linear to triangular indexing |
|
259 | [i1v,i2v] = np.where(np.triu(T,1) > 0); # converts linear to triangular indexing | |
260 |
|
260 | |||
261 |
# |
|
261 | # Build H | |
262 | for i1 in range(0, r.size): |
|
262 | for i1 in range(0, r.size): | |
263 | for i2 in range(i1+1, r.size): |
|
263 | for i2 in range(i1+1, r.size): | |
264 | idx = np.where(np.logical_and((i1==i1v), (i2==i2v)))[0]; # kind of awkward |
|
264 | idx = np.where(np.logical_and((i1==i1v), (i2==i2v)))[0]; # kind of awkward | |
265 |
idx1 = 2*idx; |
|
265 | idx1 = 2*idx; | |
266 | idx2 = 2*idx+1; |
|
266 | idx2 = 2*idx+1; | |
267 | Hr[idx1,:] = np.cos(k*(r[i1]-r[i2])*np.sin(thetar)).T; |
|
267 | Hr[idx1,:] = np.cos(k*(r[i1]-r[i2])*np.sin(thetar)).T.conj(); | |
268 | Hr[idx2,:] = np.sin(k*(r[i1]-r[i2])*np.sin(thetar)).T; |
|
268 | Hr[idx2,:] = np.sin(k*(r[i1]-r[i2])*np.sin(thetar)).T.conj(); | |
269 | Ht[idx1,:] = np.cos(k*(r[i1]-r[i2])*np.sin(thetat)).T*Nr/Nt; |
|
269 | Ht[idx1,:] = np.cos(k*(r[i1]-r[i2])*np.sin(thetat)).T.conj()*Nr/Nt; | |
270 | Ht[idx2,:] = np.sin(k*(r[i1]-r[i2])*np.sin(thetat)).T*Nr/Nt; |
|
270 | Ht[idx2,:] = np.sin(k*(r[i1]-r[i2])*np.sin(thetat)).T.conj()*Nr/Nt; | |
271 |
g[idx1] = (R[i1,i2]).real*Nr/Nt; |
|
271 | g[idx1] = (R[i1,i2]).real*Nr/Nt; | |
272 |
g[idx2] = (R[i1,i2]).imag*Nr/Nt; |
|
272 | g[idx2] = (R[i1,i2]).imag*Nr/Nt; | |
273 | gnz[idx1] = (Rnz[i1,i2]).real*Nr/Nt; |
|
273 | gnz[idx1] = (Rnz[i1,i2]).real*Nr/Nt; | |
274 | gnz[idx2] = (Rnz[i1,i2]).imag*Nr/Nt; |
|
274 | gnz[idx2] = (Rnz[i1,i2]).imag*Nr/Nt; | |
275 |
|
275 | |||
276 |
# |
|
276 | # Inversion | |
277 | F = Nr/Nt; # normalization |
|
277 | F = Nr/Nt; # normalization | |
278 | sigma = 1; # set to 1 because the difference is accounted for in G |
|
278 | sigma = 1; # set to 1 because the difference is accounted for in G | |
279 |
|
279 | |||
280 | ##### ADD *10 for consistency with old model, NEED TO VERIFY THIS!!!!? line below |
|
280 | G = np.linalg.norm(g-gnz)**2 ; # pretend we know in advance the actual value of chi^2 | |
281 | G = np.linalg.norm(g-gnz)**2 ; # pretend we know in advance the actual value of chi^2 |
|
281 | lambda0 = 1e-5*np.ones(shape=(M,1)); # initial condition (can be set to anything) | |
282 |
|
||||
283 | tic_maxent = time.time(); |
|
|||
284 |
|
||||
285 | lambda0 = 1e-5*np.ones(shape=(M,1)); # initial condition (can be set to anything) |
|
|||
286 |
|
282 | |||
287 | toc_maxent = time.time() |
|
|||
288 | elapsed_time_maxent = toc_maxent - tic_maxent; |
|
|||
289 |
|
283 | |||
290 | # Whitened solution |
|
284 | # Whitened solution | |
291 | def myfun(lambda1): |
|
285 | def myfun(lambda1): | |
292 | return y_hysell96(lambda1,gnz,sigma,F,G,Hr); |
|
286 | return y_hysell96(lambda1,gnz,sigma,F,G,Hr); | |
293 |
|
287 | |||
294 | tic_maxEnt = time.time(); |
|
288 | ||
|
289 | tic_maxEnt = time.time(); # start time maxEnt | |||
295 |
|
290 | |||
296 | #sol1 = fsolve(myfun,lambda0.ravel(), args=(), xtol=1e-14, maxfev=100000); |
|
|||
297 | lambda1 = root(myfun,lambda0, method='krylov', tol=1e-14); |
|
291 | lambda1 = root(myfun,lambda0, method='krylov', tol=1e-14); | |
298 |
|
292 | |||
299 | #print lambda1 |
|
293 | toc_maxEnt = time.time() | |
300 | #print lambda1.x |
|
294 | elapsed_time_maxent = toc_maxEnt - tic_maxEnt; | |
301 |
|
295 | |||
|
296 | # Solution | |||
302 | lambda1 = lambda1.x; |
|
297 | lambda1 = lambda1.x; | |
303 |
|
298 | |||
304 | toc_maxEnt = time.time(); |
|
|||
305 | f_maxent = modelf(lambda1, Hr, F); |
|
299 | f_maxent = modelf(lambda1, Hr, F); | |
306 | ystar = myfun(lambda1); |
|
300 | ystar = myfun(lambda1); | |
307 |
Lambda = np.sqrt(sum(lambda1**2 |
|
301 | Lambda = np.sqrt(sum(lambda1**2*sigma**2)/(4*G)); | |
308 | ep = np.multiply(-lambda1,sigma**2)/ (2*Lambda); |
|
302 | ep = np.multiply(-lambda1,sigma**2)/ (2*Lambda); | |
309 | es = np.dot(Hr, f_maxent) - gnz; # should be same as ep |
|
303 | es = np.dot(Hr, f_maxent) - gnz; # should be same as ep | |
310 | chi2 = np.sum((es/sigma)**2); |
|
304 | chi2 = np.sum((es/sigma)**2); | |
311 |
|
305 | |||
312 |
|
|
306 | ||
313 | # --------- CS inversion using Iteratively Reweighted Least Squares (IRLS) ------------- |
|
307 | #------------------------------------------------------------------------------------------------- | |
314 |
|
308 | # CS inversion using Iteratively Reweighted Least Squares (IRLS) | ||
|
309 | #------------------------------------------------------------------------------------------------- | |||
315 | # (Use Nr, thetar, gnz, and Hr from MaxEnt above) |
|
310 | # (Use Nr, thetar, gnz, and Hr from MaxEnt above) | |
316 |
|
311 | |||
317 | Psi = deb4_basis(Nr); |
|
312 | Psi = deb4_basis(Nr); | |
318 |
|
|
313 | ||
319 |
# |
|
314 | # ------------Remove this------------------------------------------- | |
320 | #wavelet1 = pywt.Wavelet('db4') |
|
315 | # wavelet1 = pywt.Wavelet('db4') | |
321 | #Phi, Psi, x = wavelet1.wavefun(level=3) |
|
316 | # Phi, Psi, x = wavelet1.wavefun(level=3) | |
322 |
# |
|
317 | #------------------------------------------------------------------- | |
323 |
|
|
318 | ||
324 | # add "sum to 1" constraint |
|
319 | # add "sum to 1" constraint | |
325 | H2 = np.concatenate( (Hr, np.ones(shape=(1,Nr))), axis=0 ); |
|
320 | H2 = np.concatenate( (Hr, np.ones(shape=(1,Nr))), axis=0 ); | |
326 |
|
|
321 | g2 = np.concatenate( (gnz, np.array([[Nr/Nt]])), axis=0 ); | |
327 | g2 = np.concatenate( (gnz, N_temp), axis=0 ); |
|
322 | ||
328 |
|
323 | tic_cs = time.time(); | ||
329 | #H2 = H2.T.conj(); |
|
324 | ||
330 |
|
325 | |||
331 | #Psi = Psi.T.conj(); # to align matrices |
|
326 | # plt.figure(4) | |
332 |
|
327 | # plt.imshow(Psi)#, interpolation='nearest') | ||
333 | ####print 'H2 shape', H2.shape |
|
328 | # #plt.xticks([]); plt.yticks([]) | |
334 | #####print 'Psi shape', Psi.shape |
|
329 | # plt.show() | |
335 |
|
330 | |||
336 | A = np.dot(H2,Psi); |
|
331 | # Inversion | |
337 |
|
||||
338 | s = irls_dn2(np.dot(H2,Psi),g2,0.5,G); |
|
332 | s = irls_dn2(np.dot(H2,Psi),g2,0.5,G); | |
339 | # f_cs = Psi*s; |
|
333 | ||
340 |
# |
|
334 | #print s | |
341 | # # plot |
|
335 | ||
342 | # plot(thetar,f_cs,'r.-'); |
|
336 | # Brightness function | |
343 | # hold on; |
|
337 | f_cs = np.dot(Psi,s); | |
344 | # plot(thetat,fact,'k-'); |
|
338 | ||
345 | # hold off; |
|
339 | toc_cs = time.time() | |
346 |
|
340 | elapsed_time_cs = toc_cs - tic_cs; | ||
347 |
|
341 | |||
348 | # # # Scaling and shifting |
|
342 | # Plot | |
349 | # # # Only necessary for capon solution |
|
343 | plt.figure(4) | |
|
344 | plt.plot(thetar,f_cs,'r.-'); | |||
|
345 | plt.plot(thetat,fact,'k-'); | |||
|
346 | ||||
|
347 | ||||
|
348 | #------------------------------------------------------------------------------------------------- | |||
|
349 | # Scaling and shifting | |||
|
350 | # (Only necessary for Capon solution) | |||
|
351 | #------------------------------------------------------------------------------------------------- | |||
350 | f_capon = f_capon/np.max(f_capon)*np.max(fact); |
|
352 | f_capon = f_capon/np.max(f_capon)*np.max(fact); | |
351 |
|
353 | |||
352 |
|
354 | |||
353 | ### analyze stuff ###################### |
|
355 | #------------------------------------------------------------------------------------------------- | |
354 |
# |
|
356 | # Analyze stuff | |
|
357 | #------------------------------------------------------------------------------------------------- | |||
|
358 | ||||
|
359 | # Calculate MSE | |||
355 | rmse_fourier = np.sqrt(np.mean((f_fourier - factr)**2)); |
|
360 | rmse_fourier = np.sqrt(np.mean((f_fourier - factr)**2)); | |
356 | rmse_capon = np.sqrt(np.mean((f_capon - factr)**2)); |
|
361 | rmse_capon = np.sqrt(np.mean((f_capon - factr)**2)); | |
357 | rmse_maxent = np.sqrt(np.mean((f_maxent - factr)**2)); |
|
362 | rmse_maxent = np.sqrt(np.mean((f_maxent - factr)**2)); | |
358 |
|
|
363 | rmse_cs = np.sqrt(np.mean((f_cs - factr)**2)); | |
359 |
|
364 | |||
360 |
|
365 | |||
361 | relrmse_fourier = rmse_fourier / np.linalg.norm(fact); |
|
366 | relrmse_fourier = rmse_fourier / np.linalg.norm(fact); | |
362 | relrmse_capon = rmse_capon / np.linalg.norm(fact); |
|
367 | relrmse_capon = rmse_capon / np.linalg.norm(fact); | |
363 | relrmse_maxent = rmse_maxent / np.linalg.norm(fact); |
|
368 | relrmse_maxent = rmse_maxent / np.linalg.norm(fact); | |
364 |
|
|
369 | relrmse_cs = rmse_cs / np.linalg.norm(fact); | |
365 |
|
370 | |||
366 | # To be able to perform dot product (align matrices) done below within the dot calculations |
|
371 | ||
367 |
|
372 | # Calculate correlation | ||
368 |
|
||||
369 | #f_fourier = f_fourier.T.conj() |
|
|||
370 | #f_capon = f_capon.T.conj() |
|
|||
371 | #f_maxent = f_maxent.T.conj() |
|
|||
372 |
|
||||
373 | #factr = factr.T.conj() |
|
|||
374 |
|
||||
375 | # calculate correlation |
|
|||
376 |
|
||||
377 | corr_fourier = np.dot(f_fourier.T.conj(),factr) / (np.linalg.norm(f_fourier)*np.linalg.norm(factr)); |
|
373 | corr_fourier = np.dot(f_fourier.T.conj(),factr) / (np.linalg.norm(f_fourier)*np.linalg.norm(factr)); | |
378 | corr_capon = np.dot(f_capon.T.conj(),factr) / (np.linalg.norm(f_capon)*np.linalg.norm(factr)); |
|
374 | corr_capon = np.dot(f_capon.T.conj(),factr) / (np.linalg.norm(f_capon)*np.linalg.norm(factr)); | |
379 | corr_maxent = np.dot(f_maxent.T.conj(),factr) / (np.linalg.norm(f_maxent)*np.linalg.norm(factr)); |
|
375 | corr_maxent = np.dot(f_maxent.T.conj(),factr) / (np.linalg.norm(f_maxent)*np.linalg.norm(factr)); | |
380 |
|
|
376 | corr_cs = np.dot(f_cs.T.conj(),factr) / (np.linalg.norm(f_cs)*np.linalg.norm(factr)); | |
381 |
|
377 | |||
382 |
|
378 | |||
383 |
# |
|
379 | # Calculate centered correlation | |
384 | f0 = factr - np.mean(factr); |
|
380 | f0 = factr - np.mean(factr); | |
385 | f1 = f_fourier - np.mean(f_fourier); |
|
381 | f1 = f_fourier - np.mean(f_fourier); | |
386 |
|
382 | |||
387 | corrc_fourier = np.dot(f0.T.conj(),f1) / (np.linalg.norm(f0)*np.linalg.norm(f1)); |
|
383 | corrc_fourier = np.dot(f0.T.conj(),f1) / (np.linalg.norm(f0)*np.linalg.norm(f1)); | |
388 | f1 = f_capon - np.mean(f_capon); |
|
384 | f1 = f_capon - np.mean(f_capon); | |
389 | corrc_capon = np.dot(f0.T.conj(),f1) / (np.linalg.norm(f0)*np.linalg.norm(f1)); |
|
385 | corrc_capon = np.dot(f0.T.conj(),f1) / (np.linalg.norm(f0)*np.linalg.norm(f1)); | |
390 | f1 = f_maxent - np.mean(f_maxent); |
|
386 | f1 = f_maxent - np.mean(f_maxent); | |
391 | corrc_maxent = np.dot(f0.T.conj(),f1) / (np.linalg.norm(f0)*np.linalg.norm(f1)); |
|
387 | corrc_maxent = np.dot(f0.T.conj(),f1) / (np.linalg.norm(f0)*np.linalg.norm(f1)); | |
392 |
|
|
388 | f1 = f_cs - np.mean(f_cs); | |
393 |
|
|
389 | corrc_cs = np.dot(f0.T.conj(),f1) / (np.linalg.norm(f0)*np.linalg.norm(f1)); | |
394 |
|
390 | |||
395 |
|
391 | |||
396 |
|
392 | #------------------------------------------------------------------------------------------------- | ||
397 | # # # plot stuff ######################### |
|
393 | # Plot stuff | |
398 |
|
394 | #------------------------------------------------------------------------------------------------- | ||
|
395 | ||||
399 | #---- Capon---- |
|
396 | #---- Capon---- | |
400 |
plt.figure( |
|
397 | plt.figure(5) | |
401 |
plt.subplot( |
|
398 | plt.subplot(3, 1, 1) | |
402 |
plt.plot(180/ |
|
399 | plt.plot(180/np.pi*thetar, f_capon, 'r', label='Capon') | |
403 |
plt.plot(180/ |
|
400 | plt.plot(180/np.pi*thetat,fact, 'k--', label='Truth') | |
404 | plt.ylabel('Power (arbitrary units)') |
|
401 | plt.ylabel('Power (arbitrary units)') | |
405 | plt.legend(loc='upper right') |
|
402 | plt.legend(loc='upper right') | |
406 |
|
403 | |||
407 | # formatting y-axis |
|
404 | # formatting y-axis | |
408 | locs,labels = plt.yticks() |
|
405 | locs,labels = plt.yticks() | |
409 | plt.yticks(locs, map(lambda x: "%.1f" % x, locs*1e4)) |
|
406 | plt.yticks(locs, map(lambda x: "%.1f" % x, locs*1e4)) | |
410 | plt.text(0.0, 1.01, '1e-4', fontsize=10, transform = plt.gca().transAxes) |
|
407 | plt.text(0.0, 1.01, '1e-4', fontsize=10, transform = plt.gca().transAxes) | |
411 |
|
408 | |||
412 |
|
409 | |||
413 | #---- MaxEnt---- |
|
410 | #---- MaxEnt---- | |
414 |
plt.subplot( |
|
411 | plt.subplot(3, 1, 2) | |
415 |
plt.plot(180/ |
|
412 | plt.plot(180/np.pi*thetar, f_maxent, 'r', label='MaxEnt') | |
416 |
plt.plot(180/ |
|
413 | plt.plot(180/np.pi*thetat,fact, 'k--', label='Truth') | |
417 | plt.ylabel('Power (arbitrary units)') |
|
414 | plt.ylabel('Power (arbitrary units)') | |
418 | plt.legend(loc='upper right') |
|
415 | plt.legend(loc='upper right') | |
419 |
|
416 | |||
420 | # formatting y-axis |
|
417 | # formatting y-axis | |
421 | locs,labels = plt.yticks() |
|
418 | locs,labels = plt.yticks() | |
422 | plt.yticks(locs, map(lambda x: "%.1f" % x, locs*1e4)) |
|
419 | plt.yticks(locs, map(lambda x: "%.1f" % x, locs*1e4)) | |
423 | plt.text(0.0, 1.01, '1e-4', fontsize=10, transform = plt.gca().transAxes) |
|
420 | plt.text(0.0, 1.01, '1e-4', fontsize=10, transform = plt.gca().transAxes) | |
424 |
|
421 | |||
425 |
|
|
422 | ||
|
423 | #---- Compressed Sensing---- | |||
|
424 | plt.subplot(3, 1, 3) | |||
|
425 | plt.plot(180/np.pi*thetar, f_cs, 'r', label='CS') | |||
|
426 | plt.plot(180/np.pi*thetat,fact, 'k--', label='Truth') | |||
|
427 | plt.ylabel('Power (arbitrary units)') | |||
|
428 | plt.legend(loc='upper right') | |||
|
429 | ||||
|
430 | # formatting y-axis | |||
|
431 | locs,labels = plt.yticks() | |||
|
432 | plt.yticks(locs, map(lambda x: "%.1f" % x, locs*1e4)) | |||
|
433 | plt.text(0.0, 1.01, '1e-4', fontsize=10, transform = plt.gca().transAxes) | |||
426 |
|
434 | |||
427 |
|
435 | |||
428 | # # PLOT PARA COMPRESSED SENSING |
|
436 | # # PLOT PARA COMPRESSED SENSING | |
429 | # # |
|
437 | # # | |
430 | # # subplot(3,1,3); |
|
438 | # # subplot(3,1,3); | |
431 | # # plot(180/pi*thetar,f_cs,'r-'); |
|
439 | # # plot(180/pi*thetar,f_cs,'r-'); | |
432 | # # hold on; |
|
440 | # # hold on; | |
433 | # # plot(180/pi*thetat,fact,'k--'); |
|
441 | # # plot(180/pi*thetat,fact,'k--'); | |
434 | # # hold off; |
|
442 | # # hold off; | |
435 | # # ylim([min(f_cs) 1.1*max(fact)]); |
|
443 | # # ylim([min(f_cs) 1.1*max(fact)]); | |
436 | # # # title(sprintf('rel. RMSE: #.2e\tCorr: #.3f Corrc: #.3f', relrmse_cs, corr_cs, corrc_cs)); |
|
444 | # # # title(sprintf('rel. RMSE: #.2e\tCorr: #.3f Corrc: #.3f', relrmse_cs, corr_cs, corrc_cs)); | |
437 | # # # title 'Compressed Sensing - Debauchies Wavelets' |
|
445 | # # # title 'Compressed Sensing - Debauchies Wavelets' | |
438 | # # xlabel 'Degrees' |
|
446 | # # xlabel 'Degrees' | |
439 | # # ylabel({'Power';'(arbitrary units)'}) |
|
447 | # # ylabel({'Power';'(arbitrary units)'}) | |
440 | # # legend('Comp. Sens.','Truth'); |
|
448 | # # legend('Comp. Sens.','Truth'); | |
441 | # # |
|
449 | # # | |
442 | # # # set(gcf,'Position',[749 143 528 881]); # CSL |
|
450 | # # # set(gcf,'Position',[749 143 528 881]); # CSL | |
443 | # # # set(gcf,'Position',[885 -21 528 673]); # macbook |
|
451 | # # # set(gcf,'Position',[885 -21 528 673]); # macbook | |
444 | # # pause(0.01); |
|
452 | # # pause(0.01); | |
445 |
|
453 | |||
446 |
|
454 | |||
447 | # # Store Results |
|
455 | # # Store Results | |
448 | corr[0, snri, Ni] = corr_fourier; |
|
456 | corr[0, snri, Ni] = corr_fourier; | |
449 | corr[1, snri, Ni] = corr_capon; |
|
457 | corr[1, snri, Ni] = corr_capon; | |
450 | corr[2, snri, Ni] = corr_maxent; |
|
458 | corr[2, snri, Ni] = corr_maxent; | |
451 |
|
|
459 | corr[3, snri, Ni] = corr_cs; | |
452 |
|
460 | |||
453 | rmse[0,snri,Ni] = relrmse_fourier; |
|
461 | rmse[0,snri,Ni] = relrmse_fourier; | |
454 | rmse[1,snri,Ni] = relrmse_capon; |
|
462 | rmse[1,snri,Ni] = relrmse_capon; | |
455 | rmse[2,snri,Ni] = relrmse_maxent; |
|
463 | rmse[2,snri,Ni] = relrmse_maxent; | |
456 |
|
|
464 | rmse[3,snri,Ni] = relrmse_cs; | |
457 |
|
465 | |||
458 | corrc[0,snri,Ni] = corrc_fourier; |
|
466 | corrc[0,snri,Ni] = corrc_fourier; | |
459 | corrc[1,snri,Ni] = corrc_capon; |
|
467 | corrc[1,snri,Ni] = corrc_capon; | |
460 | corrc[2,snri,Ni] = corrc_maxent; |
|
468 | corrc[2,snri,Ni] = corrc_maxent; | |
461 |
|
|
469 | corrc[3,snri,Ni] = corrc_cs; | |
462 |
|
470 | |||
463 |
|
471 | |||
464 | print 'Capon:\t', elapsed_time_capon, 'sec'; |
|
472 | print 'Capon:\t', elapsed_time_capon, 'sec'; | |
465 | print 'Maxent:\t',elapsed_time_maxent, 'sec'; |
|
473 | print 'Maxent:\t',elapsed_time_maxent, 'sec'; | |
466 |
|
|
474 | print 'CS:\t',elapsed_time_cs, 'sec'; | |
467 |
|
475 | |||
468 | print (NN*(snri+1) + Ni), '/', (SNRdBvec.size*NN); |
|
476 | print (NN*(snri+1) + Ni), '/', (SNRdBvec.size*NN); | |
469 |
|
477 | |||
470 | print corr |
|
478 | print corr | |
471 | No newline at end of file |
|
479 | ||
|
480 | print corr.shape | |||
|
481 | ||||
|
482 | ||||
|
483 | ## Analyze and plot statistics | |||
|
484 | ||||
|
485 | metric = corr; # set this to rmse, corr, or corrc | |||
|
486 | ||||
|
487 | # Remove outliers (this part was experimental and wasn't used in the paper) | |||
|
488 | # nsig = 3; | |||
|
489 | # for i = 1:4 | |||
|
490 | # for snri = 1:length(SNRdBvec) | |||
|
491 | # av = mean(met(i,snri,:)); | |||
|
492 | # s = std(met(i,snri,:)); | |||
|
493 | # idx = abs(met(i,snri,:) - av) > nsig*s; | |||
|
494 | # met(i,snri,idx) = nan; | |||
|
495 | # if sum(idx)>0 | |||
|
496 | # fprintf('i=%i, snr=%i, %i/%i pts removed\n',... | |||
|
497 | # i,round(SNRdBvec(snri)),sum(idx),length(idx)); | |||
|
498 | # end | |||
|
499 | # end | |||
|
500 | # end | |||
|
501 | ||||
|
502 | # Avg ignoring NaNs | |||
|
503 | def nanmean(data, **args): | |||
|
504 | return numpy.ma.filled(numpy.ma.masked_array(data,numpy.isnan(data)).mean(**args), fill_value=numpy.nan) | |||
|
505 | ||||
|
506 | # ave = np.zeros(shape=(4)) | |||
|
507 | # | |||
|
508 | # ave[0] = nanmean(metric, axis=0); | |||
|
509 | # ave[1] = nanmean(metric, axis=1); | |||
|
510 | # ave[2] = nanmean(metric, axis=2); | |||
|
511 | # ave[3] = nanmean(metric, axis=3); | |||
|
512 | ||||
|
513 | #print ave | |||
|
514 | plt.figure(6); | |||
|
515 | f = plt.scatter(SNRdBvec, corr[0], marker='+', color='b', s=60); # Fourier | |||
|
516 | c = plt.scatter(SNRdBvec, corr[1], marker='o', color= 'c', s=60); # Capon | |||
|
517 | me= plt.scatter(SNRdBvec, corr[2], marker='s', color= 'y', s=60); # MaxEnt | |||
|
518 | cs= plt.scatter(SNRdBvec, corr[3], marker='*', color='r', s=60); # Compressed Sensing | |||
|
519 | ||||
|
520 | ||||
|
521 | plt.legend((f,c,me,cs),('Fourier','Capon', 'MaxEnt', 'Comp. Sens.'),scatterpoints=1, loc='upper right') | |||
|
522 | plt.xlabel('SNR') | |||
|
523 | plt.ylabel('Correlation with Truth') | |||
|
524 | ||||
|
525 | plt.show() | |||
|
526 |
@@ -1,72 +1,76 | |||||
1 | ''' |
|
1 | ''' | |
2 | Created on May 29, 2014 |
|
2 | Created on May 29, 2014 | |
3 |
|
3 | |||
4 | @author: Yolian Amaro |
|
4 | @author: Yolian Amaro | |
5 | ''' |
|
5 | ''' | |
6 |
|
6 | |||
7 | #from sp import multirate |
|
7 | #from sp import multirate | |
8 | from cshift import * |
|
8 | from cshift import * | |
9 | from multirate import upfirdn |
|
9 | from multirate import upfirdn | |
10 |
|
10 | |||
11 | def afb(x, af): |
|
11 | def afb(x, af): | |
12 |
|
12 | |||
13 | # Analysis filter bank |
|
13 | # Analysis filter bank | |
14 | # |
|
14 | # | |
15 | # USAGE: |
|
15 | # USAGE: | |
16 | # [lo, hi] = afb(x, af) |
|
16 | # [lo, hi] = afb(x, af) | |
17 | # INPUT: |
|
17 | # INPUT: | |
18 | # x - N-point vector, where |
|
18 | # x - N-point vector, where | |
19 | # 1) N is even |
|
19 | # 1) N is even | |
20 | # 2) N >= length(af) |
|
20 | # 2) N >= length(af) | |
21 | # af - analysis filters |
|
21 | # af - analysis filters | |
22 | # af(:, 1) - lowpass filter (even length) |
|
22 | # af(:, 1) - lowpass filter (even length) | |
23 | # af(:, 2) - highpass filter (even length) |
|
23 | # af(:, 2) - highpass filter (even length) | |
24 | # OUTPUT: |
|
24 | # OUTPUT: | |
25 | # lo - Low frequecy output |
|
25 | # lo - Low frequecy output | |
26 | # hi - High frequency output |
|
26 | # hi - High frequency output | |
27 | # EXAMPLE: |
|
27 | # EXAMPLE: | |
28 | # [af, sf] = farras; |
|
28 | # [af, sf] = farras; | |
29 | # x = rand(1,64); |
|
29 | # x = rand(1,64); | |
30 | # [lo, hi] = afb(x, af); |
|
30 | # [lo, hi] = afb(x, af); | |
31 | # y = sfb(lo, hi, sf); |
|
31 | # y = sfb(lo, hi, sf); | |
32 | # err = x - y; |
|
32 | # err = x - y; | |
33 | # max(abs(err)) |
|
33 | # max(abs(err)) | |
34 | # |
|
34 | # | |
35 | # WAVELET SOFTWARE AT POLYTECHNIC UNIVERSITY, BROOKLYN, NY |
|
35 | # WAVELET SOFTWARE AT POLYTECHNIC UNIVERSITY, BROOKLYN, NY | |
36 | # http://taco.poly.edu/WaveletSoftware/ |
|
36 | # http://taco.poly.edu/WaveletSoftware/ | |
37 |
|
37 | |||
38 | N = x.size; |
|
38 | N = x.size; | |
39 | L = (af).size/4; #L should be = 5 |
|
39 | L = (af).size/4; #L should be = 5 | |
40 | #print af |
|
40 | #print af | |
41 | #print 'L', L |
|
41 | #print 'L', L | |
42 | x = cshift(x,-(L-1)); |
|
42 | x = cshift(x,-(L-1)); | |
43 |
|
43 | |||
44 | # print 'afb x', x.shape |
|
44 | # print 'afb x', x.shape | |
45 | # print 'af[:,0]',af[:,0].shape |
|
45 | # print 'af[:,0]',af[:,0].shape | |
46 | # print 'af[:,1]',af[:,1].shape |
|
46 | # print 'af[:,1]',af[:,1].shape | |
47 | # print '-----------------------' |
|
47 | # print '-----------------------' | |
48 |
|
48 | |||
49 | # lowpass filter |
|
49 | # lowpass filter | |
50 | lo = upfirdn(x, af[:,0], 1, 2); |
|
50 | lo = upfirdn(x, af[:,0], 1, 2); | |
51 |
|
51 | |||
52 |
|
52 | |||
53 | # VERIFY THIS!!!!!!!!!!!! |
|
53 | # # VERIFY THIS!!!!!!!!!!!! | |
54 | for i in range(0, L): |
|
54 | # for i in range(0, L): | |
55 | lo[i] = lo[N/2+i] + lo[i]; |
|
55 | # lo[i] = lo[N/2+i] + lo[i]; | |
|
56 | ||||
|
57 | lo[0:L-1] = lo[N/2+np.arange(0,L-1)] + lo[0:L-1] | |||
56 |
|
58 | |||
57 | lo = lo[0:N/2]; |
|
59 | lo = lo[0:N/2]; | |
58 |
|
60 | |||
59 |
|
61 | |||
60 | # highpass filter |
|
62 | # highpass filter | |
61 | hi = upfirdn(x, af[:,1], 1, 2); |
|
63 | hi = upfirdn(x, af[:,1], 1, 2); | |
62 |
|
64 | |||
63 | for j in range(0, L): |
|
65 | # for j in range(0, L): | |
64 | hi[j] = hi[N/2+j] + hi[j]; |
|
66 | # hi[j] = hi[N/2+j] + hi[j]; | |
|
67 | ||||
|
68 | hi[0:L-1] = hi[N/2+np.arange(0,L-1)] + hi[0:L-1] | |||
65 |
|
69 | |||
66 | hi = hi[0:N/2]; |
|
70 | hi = hi[0:N/2]; | |
67 |
|
71 | |||
68 | # Reshape from 1D to 2D |
|
72 | # Reshape from 1D to 2D | |
69 | lo = lo.reshape(1, lo.size) |
|
73 | lo = lo.reshape(1, lo.size) | |
70 | hi = hi.reshape(1, hi.size) |
|
74 | hi = hi.reshape(1, hi.size) | |
71 |
|
75 | |||
72 | return lo, hi |
|
76 | return lo, hi |
@@ -1,39 +1,41 | |||||
1 | ''' |
|
1 | ''' | |
2 | Created on May 26, 2014 |
|
2 | Created on May 26, 2014 | |
3 |
|
3 | |||
4 | @author: Yolian Amaro |
|
4 | @author: Yolian Amaro | |
5 | ''' |
|
5 | ''' | |
6 |
|
6 | |||
7 | import numpy as np |
|
7 | import numpy as np | |
8 | from FSfarras import * |
|
8 | from FSfarras import * | |
9 | from dualfilt1 import * |
|
9 | from dualfilt1 import * | |
10 | from dualtree import * |
|
10 | from dualtree import * | |
11 | from idualtree import * |
|
11 | from idualtree import * | |
12 |
|
12 | |||
|
13 | # Debauchie 4 Wavelet | |||
13 | def deb4_basis(N): |
|
14 | def deb4_basis(N): | |
14 |
|
15 | |||
15 | Psi = np.zeros(shape=(N,2*N+1)); |
|
16 | Psi = np.zeros(shape=(N,2*N+1)); | |
16 | idx = 0; |
|
17 | idx = 0; | |
17 | J = 4; |
|
18 | J = 4; | |
18 | [Faf, Fsf] = FSfarras(); |
|
19 | [Faf, Fsf] = FSfarras(); | |
19 | [af, sf] = dualfilt1(); |
|
20 | [af, sf] = dualfilt1(); | |
20 |
|
21 | |||
21 | # compute transform of zero vector |
|
22 | # compute transform of zero vector | |
22 | x = np.zeros(shape=(1,N)); |
|
23 | x = np.zeros(shape=(1,N)); | |
23 |
w = dualtree(x, J, Faf, af); |
|
24 | w = dualtree(x, J, Faf, af); | |
|
25 | ||||
24 |
|
26 | |||
25 | # Uses both real and imaginary wavelets |
|
27 | # Uses both real and imaginary wavelets | |
26 | for i in range (0, J): |
|
28 | for i in range (0, J+1): | |
27 |
for j in range (0, |
|
29 | for j in range (0, 2): | |
28 | for k in range (0, (w[i][j]).size): |
|
30 | for k in range (0, (w[i][j]).size): | |
29 | w[i][j][0,k] = 1; |
|
31 | w[i][j][0,k] = 1; | |
30 | y = idualtree(w, J, Fsf, sf); |
|
32 | y = idualtree(w, J, Fsf, sf); | |
31 | w[i][j][0,k] = 0; |
|
33 | w[i][j][0,k] = 0; | |
32 | # store it |
|
34 | # store it | |
33 | Psi[:,idx] = y.T.conj(); |
|
35 | Psi[:,idx] = y.T.conj(); | |
34 | idx = idx + 1; |
|
36 | idx = idx + 1; | |
35 |
|
37 | |||
36 | # Add uniform vector (seems to be useful if there's a background |
|
38 | # Add uniform vector (seems to be useful if there's a background | |
37 | Psi[:,2*N] = 1/np.sqrt(N); |
|
39 | Psi[:,2*N] = 1/np.sqrt(N); | |
38 |
|
40 | |||
39 | return Psi No newline at end of file |
|
41 | return Psi |
@@ -1,76 +1,76 | |||||
1 | ''' |
|
1 | ''' | |
2 | Created on May 29, 2014 |
|
2 | Created on May 29, 2014 | |
3 |
|
3 | |||
4 | @author: Yolian Amaro |
|
4 | @author: Yolian Amaro | |
5 | ''' |
|
5 | ''' | |
6 |
|
6 | |||
7 | import numpy as np |
|
7 | import numpy as np | |
8 | from afb import * |
|
8 | from afb import * | |
9 |
|
9 | |||
10 | def dualtree(x, J, Faf, af): |
|
10 | def dualtree(x, J, Faf, af): | |
11 |
|
11 | |||
12 | # Dual-tree Complex Discrete Wavelet Transform |
|
12 | # Dual-tree Complex Discrete Wavelet Transform | |
13 | # |
|
13 | # | |
14 | # USAGE: |
|
14 | # USAGE: | |
15 | # w = dualtree(x, J, Faf, af) |
|
15 | # w = dualtree(x, J, Faf, af) | |
16 | # INPUT: |
|
16 | # INPUT: | |
17 | # x - N-point vector |
|
17 | # x - N-point vector | |
18 | # 1) N is divisible by 2^J |
|
18 | # 1) N is divisible by 2^J | |
19 | # 2) N >= 2^(J-1)*length(af) |
|
19 | # 2) N >= 2^(J-1)*length(af) | |
20 | # J - number of stages |
|
20 | # J - number of stages | |
21 | # Faf - filters for the first stage |
|
21 | # Faf - filters for the first stage | |
22 | # af - filters for the remaining stages |
|
22 | # af - filters for the remaining stages | |
23 | # OUTPUT: |
|
23 | # OUTPUT: | |
24 | # w - DWT coefficients |
|
24 | # w - DWT coefficients | |
25 | # w{j}{1}, j = 1..J - real part |
|
25 | # w{j}{1}, j = 1..J - real part | |
26 | # w{j}{2}, j = 1..J - imaginary part |
|
26 | # w{j}{2}, j = 1..J - imaginary part | |
27 | # w{J+1}{d} - lowpass coefficients, d = 1,2 |
|
27 | # w{J+1}{d} - lowpass coefficients, d = 1,2 | |
28 | # EXAMPLE: |
|
28 | # EXAMPLE: | |
29 | # x = rand(1, 512); |
|
29 | # x = rand(1, 512); | |
30 | # J = 4; |
|
30 | # J = 4; | |
31 | # [Faf, Fsf] = FSfarras; |
|
31 | # [Faf, Fsf] = FSfarras; | |
32 | # [af, sf] = dualfilt1; |
|
32 | # [af, sf] = dualfilt1; | |
33 | # w = dualtree(x, J, Faf, af); |
|
33 | # w = dualtree(x, J, Faf, af); | |
34 | # y = idualtree(w, J, Fsf, sf); |
|
34 | # y = idualtree(w, J, Fsf, sf); | |
35 | # err = x - y; |
|
35 | # err = x - y; | |
36 | # max(abs(err)) |
|
36 | # max(abs(err)) | |
37 | # |
|
37 | # | |
38 | # WAVELET SOFTWARE AT POLYTECHNIC UNIVERSITY, BROOKLYN, NY |
|
38 | # WAVELET SOFTWARE AT POLYTECHNIC UNIVERSITY, BROOKLYN, NY | |
39 | # http://taco.poly.edu/WaveletSoftware/ |
|
39 | # http://taco.poly.edu/WaveletSoftware/ | |
40 |
|
40 | |||
41 | # ---------Trees Structure---------------# |
|
41 | # ---------Trees Structure---------------# | |
42 | # w [ 0 1 2 .... J ] # |
|
42 | # w [ 0 1 2 .... J ] # | |
43 | # | | | | # |
|
43 | # | | | | # | |
44 | # [0 1] [0 1] [0 1] [0 1] # |
|
44 | # [0 1] [0 1] [0 1] [0 1] # | |
45 | #----------------------------------------# |
|
45 | #----------------------------------------# | |
46 |
|
46 | |||
47 | # normalization |
|
47 | # normalization | |
48 | x = x/np.sqrt(2); |
|
48 | x = x/np.sqrt(2.0); | |
49 |
|
49 | |||
50 |
|
50 | |||
51 | w = np.zeros(shape=(J+1), dtype=object) |
|
51 | w = np.zeros(shape=(J+1), dtype=object) | |
52 |
|
52 | |||
53 | for j in range (0, w.size): |
|
53 | for j in range (0, w.size): | |
54 | w[j] = np.zeros(shape=(J+1), dtype=object) |
|
54 | w[j] = np.zeros(shape=(J+1), dtype=object) | |
55 |
|
55 | |||
56 | # Tree 1 |
|
56 | # Tree 1 | |
57 | [x1, w[0][0]] = afb(x, Faf[0,0]); # w{1}{1} |
|
57 | [x1, w[0][0]] = afb(x, Faf[0,0]); # w{1}{1} | |
58 |
|
58 | |||
59 |
|
59 | |||
60 | for j in range (1,J): |
|
60 | for j in range (1,J): | |
61 | [x1,w[j][0]] = afb(x1, af[0,0]); ### or 0,1???? |
|
61 | [x1,w[j][0]] = afb(x1, af[0,0]); ### or 0,1???? | |
62 |
|
62 | |||
63 |
|
63 | |||
64 |
|
64 | |||
65 | w[J][0] = x1; |
|
65 | w[J][0] = x1; | |
66 |
|
66 | |||
67 | # Tree 2 |
|
67 | # Tree 2 | |
68 | [x2,w[0][1]] = afb(x, Faf[0,1]); |
|
68 | [x2,w[0][1]] = afb(x, Faf[0,1]); | |
69 |
|
69 | |||
70 | for j in range (1,J): |
|
70 | for j in range (1,J): | |
71 | [x2,w[j][1]] = afb(x2, af[0,1]); |
|
71 | [x2,w[j][1]] = afb(x2, af[0,1]); | |
72 |
|
72 | |||
73 | w[J][1] = x2; |
|
73 | w[J][1] = x2; | |
74 |
|
74 | |||
75 | return w |
|
75 | return w | |
76 |
|
76 |
@@ -1,46 +1,46 | |||||
1 | ''' |
|
1 | ''' | |
2 | Created on Jun 5, 2014 |
|
2 | Created on Jun 5, 2014 | |
3 |
|
3 | |||
4 | @author: Yolian Amaro |
|
4 | @author: Yolian Amaro | |
5 | ''' |
|
5 | ''' | |
6 |
|
6 | |||
7 | from sfb import * |
|
7 | from sfb import * | |
8 |
|
8 | |||
9 | def idualtree(w, J, Fsf, sf): |
|
9 | def idualtree(w, J, Fsf, sf): | |
10 |
|
10 | |||
11 | # Inverse Dual-tree Complex DWT |
|
11 | # Inverse Dual-tree Complex DWT | |
12 | # |
|
12 | # | |
13 | # USAGE: |
|
13 | # USAGE: | |
14 | # y = idualtree(w, J, Fsf, sf) |
|
14 | # y = idualtree(w, J, Fsf, sf) | |
15 | # INPUT: |
|
15 | # INPUT: | |
16 | # w - DWT coefficients |
|
16 | # w - DWT coefficients | |
17 | # J - number of stages |
|
17 | # J - number of stages | |
18 | # Fsf - synthesis filters for the last stage |
|
18 | # Fsf - synthesis filters for the last stage | |
19 | # sf - synthesis filters for preceeding stages |
|
19 | # sf - synthesis filters for preceeding stages | |
20 | # OUTUT: |
|
20 | # OUTUT: | |
21 | # y - output signal |
|
21 | # y - output signal | |
22 | # See dualtree |
|
22 | # See dualtree | |
23 | # |
|
23 | # | |
24 | # WAVELET SOFTWARE AT POLYTECHNIC UNIVERSITY, BROOKLYN, NY |
|
24 | # WAVELET SOFTWARE AT POLYTECHNIC UNIVERSITY, BROOKLYN, NY | |
25 | # http://taco.poly.edu/WaveletSoftware/ |
|
25 | # http://taco.poly.edu/WaveletSoftware/ | |
26 |
|
26 | |||
27 | # Tree 1 |
|
27 | # Tree 1 | |
28 | y1 = w[J][0]; |
|
28 | y1 = w[J][0]; | |
29 |
|
29 | |||
30 | for j in range (J-1, 0, -1): |
|
30 | for j in range (J-1, 0, -1): | |
31 | y1 = sfb(y1, w[j][0], sf[0,0]); |
|
31 | y1 = sfb(y1, w[j][0], sf[0,0]); | |
32 |
|
32 | |||
33 | y1 = sfb(y1, w[0][0], Fsf[0,0]); |
|
33 | y1 = sfb(y1, w[0][0], Fsf[0,0]); | |
34 |
|
34 | |||
35 | # Tree 2 |
|
35 | # Tree 2 | |
36 | y2 = w[J][1]; |
|
36 | y2 = w[J][1]; | |
37 |
|
37 | |||
38 | for j in range (J-1, 0, -1): |
|
38 | for j in range (J-1, 0, -1): | |
39 | y2 = sfb(y2, w[j][1], sf[0,1]); |
|
39 | y2 = sfb(y2, w[j][1], sf[0,1]); | |
40 |
|
40 | |||
41 | y2 = sfb(y2, w[0][1], Fsf[0,1]); |
|
41 | y2 = sfb(y2, w[0][1], Fsf[0,1]); | |
42 |
|
42 | |||
43 | # normalization |
|
43 | # normalization | |
44 | y = (y1 + y2)/np.sqrt(2); |
|
44 | y = (y1 + y2)/np.sqrt(2.0); | |
45 |
|
45 | |||
46 | return y |
|
46 | return y |
@@ -1,85 +1,94 | |||||
1 | ''' |
|
1 | ''' | |
2 | Created on May 27, 2014 |
|
2 | Created on May 27, 2014 | |
3 |
|
3 | |||
4 | @author: Yolian Amaro |
|
4 | @author: Yolian Amaro | |
5 | ''' |
|
5 | ''' | |
6 |
|
6 | |||
7 | #from scipy.sparse import eye |
|
7 | #from scipy.sparse import eye | |
8 | from scipy import linalg |
|
8 | from scipy import linalg | |
9 | import scipy.sparse as sps |
|
9 | import scipy.sparse as sps | |
10 | import numpy as np |
|
10 | import numpy as np | |
|
11 | from numpy.linalg import norm | |||
11 |
|
12 | |||
12 | def irls_dn(A,b,p,lambda1): |
|
13 | def irls_dn(A,b,p,lambda1): | |
13 |
|
14 | |||
14 |
|
15 | |||
15 | # Minimize lambda*||u||_p + ||A*u-b||_2, 0 < p <= 1 |
|
16 | # Minimize lambda*||u||_p + ||A*u-b||_2, 0 < p <= 1 | |
16 | # using Iterative Reweighted Least Squares |
|
17 | # using Iterative Reweighted Least Squares | |
17 | # (see http://math.lanl.gov/Research/Publications/Docs/chartrand-2008-iteratively.pdf |
|
18 | # (see http://math.lanl.gov/Research/Publications/Docs/chartrand-2008-iteratively.pdf | |
18 | # and http://web.eecs.umich.edu/~aey/sparse/sparse11.pdf) |
|
19 | # and http://web.eecs.umich.edu/~aey/sparse/sparse11.pdf) | |
19 |
|
20 | |||
20 | # Note to self: I found that "warm-starting" didn't really help too much. |
|
21 | # Note to self: I found that "warm-starting" didn't really help too much. | |
21 |
|
22 | |||
22 | [M,N] = A.shape; |
|
23 | [M,N] = A.shape; | |
23 | # Initialize and precompute: |
|
24 | # Initialize and precompute: | |
24 | eps = 1e-2; # damping parameter |
|
25 | eps = 1e-2; # damping parameter | |
25 |
|
26 | |||
26 | [Q,R] = linalg.qr(A.T.conj(), mode='economic'); |
|
27 | [Q,R] = linalg.qr(A.T.conj(), mode='economic'); | |
27 |
|
28 | |||
28 |
|
29 | |||
29 | c = linalg.solve(R.T.conj(),b); # will be used later also |
|
30 | c = linalg.solve(R.T.conj(),b); # will be used later also | |
30 | u = np.dot(Q,c); # minimum 2-norm solution |
|
31 | u = np.dot(Q,c); # minimum 2-norm solution | |
31 | I = sps.eye(M); |
|
32 | I = sps.eye(M); | |
32 |
|
33 | |||
|
34 | # Temporary N x N matrix | |||
|
35 | temp = np.zeros(shape=(N,N)) | |||
|
36 | ||||
33 | #---------- not needed, defined above-------------- |
|
37 | #---------- not needed, defined above-------------- | |
34 | # Spacing of floating point numbers |
|
38 | # Spacing of floating point numbers | |
35 | #eps = np.spacing(1) |
|
39 | #eps = np.spacing(1) | |
36 | #-------------------------------------------------- |
|
40 | #-------------------------------------------------- | |
37 |
|
41 | |||
38 | # Loop until damping parameter is small enough |
|
42 | # Loop until damping parameter is small enough | |
39 | while (eps > 1e-7): |
|
43 | while (eps > 1e-7): | |
40 | epschange = 0; |
|
44 | epschange = 0; | |
41 | # Loop until it's time to change eps |
|
45 | # Loop until it's time to change eps | |
42 |
while ( |
|
46 | while (not(epschange)): | |
43 | # main loop |
|
47 | # main loop | |
44 | # u_n = W*A'*(A*W*A'+ lambda*I)^-1 * b |
|
48 | # u_n = W*A'*(A*W*A'+ lambda*I)^-1 * b | |
45 | # where W = diag(1/w) |
|
49 | # where W = diag(1/w) | |
46 | # where w = (u.^2 + eps).^(p/2-1) |
|
50 | # where w = (u.^2 + eps).^(p/2-1) | |
47 |
|
51 | |||
48 | # Update |
|
52 | # Update | |
49 | w = (u**2 + eps)**(1-p/2); |
|
53 | w = (u**2 + eps)**(1-p/2.0); | |
|
54 | ||||
|
55 | # #---- Very inefficient- REMOVE THIS PART------ | |||
|
56 | # k = 0 | |||
|
57 | # # Sparse matrix | |||
|
58 | # for i in range (0, N): | |||
|
59 | # for j in range (0,N): | |||
|
60 | # if(i==j): | |||
|
61 | # temp[i,j] = w[k] | |||
|
62 | # k = k+1 | |||
|
63 | #-------------------------------------------------- | |||
50 |
|
64 | |||
51 | # Empty temporary N x N matrix |
|
65 | np.fill_diagonal(temp, w) | |
52 | temp = np.zeros(shape=(N,N)) |
|
66 | #----------------------------------------------- | |
53 |
|
||||
54 | k = 0 |
|
|||
55 | # Sparse matrix |
|
|||
56 | for i in range (0, N): |
|
|||
57 | for j in range (0,N): |
|
|||
58 | if(i==j): |
|
|||
59 | temp[i,j] = w[k] |
|
|||
60 | k = k+1 |
|
|||
61 |
|
67 | |||
62 | # Compressed Sparse Matrix |
|
68 | # Compressed Sparse Matrix | |
63 | W = sps.csr_matrix(temp); #Compressed Sparse Row matrix |
|
69 | W = sps.csr_matrix(temp); #Compressed Sparse Row matrix | |
64 |
|
70 | |||
65 |
|
71 | |||
66 | WAT = W*A.T.conj(); |
|
72 | WAT = W*A.T.conj(); | |
67 |
|
|
73 | ||
68 | u_new = np.dot(WAT , linalg.solve(np.dot(A,WAT) + np.dot(lambda1,I), b)); |
|
74 | #print "WAT", WAT.shape | |
|
75 | #print "np.dot(A,WAT)", np.dot(A,WAT).shape | |||
|
76 | #print "np.dot(lambda1,I)", np.dot(lambda1,I).shape | |||
|
77 | #print "linalg.solve((np.dot(A,WAT) + np.dot(lambda1,I)), b)", linalg.solve((np.dot(A,WAT) + np.dot(lambda1,I)), b).shape | |||
|
78 | ||||
|
79 | u_new = np.dot(WAT , linalg.solve((np.dot(A,WAT) + np.dot(lambda1,I)), b)); | |||
69 |
|
80 | |||
70 | # See if this subproblem is converging |
|
81 | # See if this subproblem is converging | |
71 |
delu = |
|
82 | delu = norm(u_new-u)/norm(u); | |
72 | epschange = delu < (np.sqrt(eps)/100.0); |
|
83 | epschange = delu < (np.sqrt(eps)/100.0); | |
73 |
|
84 | |||
74 | # Make update |
|
85 | # Make update | |
75 | u = u_new; |
|
86 | u = u_new; | |
76 |
|
87 | |||
77 |
|
88 | |||
78 | eps = eps/10.0; # decrease eps |
|
89 | eps = eps/10.0; # decrease eps | |
79 | # Print info |
|
|||
80 | #print 'eps =',eps; |
|
|||
81 |
|
90 | |||
82 | return u |
|
91 | return u | |
83 |
|
92 | |||
84 |
|
93 | |||
85 |
|
94 |
@@ -1,76 +1,74 | |||||
1 | ''' |
|
1 | ''' | |
2 | Created on May 30, 2014 |
|
2 | Created on May 30, 2014 | |
3 |
|
3 | |||
4 | @author: Yolian Amaro |
|
4 | @author: Yolian Amaro | |
5 | ''' |
|
5 | ''' | |
6 |
|
6 | |||
7 | from irls_dn import * |
|
7 | from irls_dn import * | |
8 | from scipy.optimize import fsolve |
|
8 | from scipy.optimize import fsolve | |
9 | import numpy as np |
|
9 | import numpy as np | |
10 |
from scipy.optimize import |
|
10 | from scipy.optimize import * | |
|
11 | from dogleg import * | |||
|
12 | from numpy.linalg import norm | |||
|
13 | ||||
|
14 | import matplotlib.pyplot as plt | |||
11 |
|
15 | |||
12 | def irls_dn2(A,b,p,G): |
|
16 | def irls_dn2(A,b,p,G): | |
13 |
|
17 | |||
14 | # Minimize ||u||_p subject to ||A*u-b||_2^2 <= G (0 < p <= 1) |
|
18 | # Minimize ||u||_p subject to ||A*u-b||_2^2 <= G (0 < p <= 1) | |
15 |
|
19 | |||
16 | # What this function actually does is finds the lambda1 so that the solution |
|
20 | # What this function actually does is finds the lambda1 so that the solution | |
17 | # to the following problem satisfies ||A*u-b||_2^2 <= G: |
|
21 | # to the following problem satisfies ||A*u-b||_2^2 <= G: | |
18 | # Minimize lambda1*||u||_p + ||A*u-b||_2 |
|
22 | # Minimize lambda1*||u||_p + ||A*u-b||_2 | |
19 |
|
23 | |||
20 | # Start with a large lambda1, and do a line search until fidelity <= G. |
|
24 | # Start with a large lambda1, and do a line search until fidelity <= G. | |
21 | # (Inversions with large lambda1 are really fast anyway). |
|
25 | # (Inversions with large lambda1 are really fast anyway). | |
22 |
|
26 | |||
23 | # Then spin up fsolve to localize the root even better |
|
27 | # Then spin up fsolve to localize the root even better | |
24 |
|
28 | |||
25 | # Line Search |
|
29 | # Line Search | |
26 |
|
30 | |||
27 | alpha = 2.0; # Line search parameter |
|
31 | alpha = 2.0; # Line search parameter | |
28 | lambda1 = 1e5; # What's a reasonable but safe initial guess? |
|
32 | lambda1 = 1e5; # What's a reasonable but safe initial guess? | |
29 | u = irls_dn(A,b,p,lambda1); |
|
33 | u = irls_dn(A,b,p,lambda1); | |
30 | fid = np.linalg.norm(np.dot(A,u)-b)**2; |
|
34 | #print "u\n", u | |
31 |
|
35 | |||
|
36 | fid = norm(np.dot(A,u)-b)**2; | |||
|
37 | ||||
32 | print '----------------------------------\n'; |
|
38 | print '----------------------------------\n'; | |
33 |
|
39 | |||
34 | while (fid >= G): |
|
40 | while (fid >= G): | |
35 | lambda1 = lambda1 / alpha; # Balance between speed and accuracy |
|
41 | lambda1 = lambda1 / alpha; # Balance between speed and accuracy | |
36 | u = irls_dn(A,b,p,lambda1); |
|
42 | u = irls_dn(A,b,p,lambda1); | |
37 |
fid = |
|
43 | fid = norm(np.dot(A,u)-b)**2; | |
38 | print 'lambda = %2e \t' % lambda1, '||A*u-b||^2 = %.1f\n' % fid; |
|
44 | print 'lambda = %2e \t' % lambda1, '||A*u-b||^2 = %.1f\n' % fid; | |
39 |
|
45 | #print u | ||
40 | # Refinement using fzero |
|
46 | ||
|
47 | # Refinement using fzero/ brentq | |||
41 | lambda0 = np.array([lambda1,lambda1*alpha]); # interval with zero-crossing |
|
48 | lambda0 = np.array([lambda1,lambda1*alpha]); # interval with zero-crossing | |
42 |
|
49 | |||
|
50 | ||||
43 | def myfun(lambda1): |
|
51 | def myfun(lambda1): | |
44 | print "A = ", A.shape |
|
52 | temp1 = np.dot(A, irls_dn(A,b,p,lambda1)) | |
45 | print "b = ", b.shape |
|
53 | temp2 = norm(temp1-b) | |
46 | lambda1 |
|
54 | temp3 = temp2**2-G | |
47 |
return np.linalg.norm( |
|
55 | #return np.linalg.norm(np.dot(A, irls_dn(A,b,p,lambda1)) - b)**2 - G; | |
48 |
|
56 | return temp3 | ||
49 | #f = lambda lambda1: np.linalg.norm(A*irls_dn(A,b,p,lambda1) - b)**2 - G; NOOOOOO |
|
57 | ||
50 |
|
||||
51 |
|
||||
52 | # opts = optimset('fzero'); |
|
|||
53 | # # opts.Display = 'iter'; |
|
|||
54 | # opts.Display = 'none'; |
|
|||
55 | # opts.TolX = 0.01*lambda1; |
|
|||
56 |
|
||||
57 | #sol1 = fsolve(myfun,lambda0.ravel(), args=(), xtol=1e-14, maxfev=100000); |
|
|||
58 | print "tolerancia=", 0.01*lambda1 |
|
58 | print "tolerancia=", 0.01*lambda1 | |
59 |
|
59 | |||
60 |
#lambda1 = root(myfun,lambda |
|
60 | #lambda1 = root(myfun, lambda1, method='krylov', tol=0.01*lambda1); | |
|
61 | #lambda1 = lambda1.x | |||
61 |
|
62 | |||
62 |
|
63 | print "lambda0[0]", lambda0[0] | ||
63 |
print "lam |
|
64 | print "lambda0[1]", lambda0[1] | |
64 | print "lambda0=", lambda0 |
|
65 | ||
65 |
|
66 | lambda1 = brentq(myfun, lambda0[0], lambda0[1], xtol=0.01*lambda1) | ||
66 | lambda1 = fsolve(myfun,lambda0); # FALTA OPTIMIZE ESTO |
|
67 | ||
67 |
|
68 | print "lambda final=", lambda1 | ||
68 | print "A = ", A.shape |
|
69 | ||
69 | print "b = ", b.shape |
|
|||
70 | print "lambda1=", lambda1.shape |
|
|||
71 |
|
||||
72 | u = irls_dn(A,b,p,lambda1); |
|
70 | u = irls_dn(A,b,p,lambda1); | |
73 |
|
71 | |||
74 |
|
72 | |||
75 | return u; |
|
73 | return u; | |
76 |
|
74 |
@@ -1,60 +1,64 | |||||
1 | ''' |
|
1 | ''' | |
2 | Created on Jun 5, 2014 |
|
2 | Created on Jun 5, 2014 | |
3 |
|
3 | |||
4 | @author: Yolian Amaro |
|
4 | @author: Yolian Amaro | |
5 | ''' |
|
5 | ''' | |
6 |
|
6 | |||
7 | from multirate import * |
|
7 | from multirate import * | |
8 | import numpy as np |
|
8 | import numpy as np | |
9 | from cshift import * |
|
9 | from cshift import * | |
10 |
|
10 | |||
11 | def sfb(lo, hi, sf): |
|
11 | def sfb(lo, hi, sf): | |
12 |
|
12 | |||
13 | # Synthesis filter bank |
|
13 | # Synthesis filter bank | |
14 | # |
|
14 | # | |
15 | # USAGE: |
|
15 | # USAGE: | |
16 | # y = sfb(lo, hi, sf) |
|
16 | # y = sfb(lo, hi, sf) | |
17 | # INPUT: |
|
17 | # INPUT: | |
18 | # lo - low frqeuency input |
|
18 | # lo - low frqeuency input | |
19 | # hi - high frequency input |
|
19 | # hi - high frequency input | |
20 | # sf - synthesis filters |
|
20 | # sf - synthesis filters | |
21 | # sf(:, 1) - lowpass filter (even length) |
|
21 | # sf(:, 1) - lowpass filter (even length) | |
22 | # sf(:, 2) - highpass filter (even length) |
|
22 | # sf(:, 2) - highpass filter (even length) | |
23 | # OUTPUT: |
|
23 | # OUTPUT: | |
24 | # y - output signal |
|
24 | # y - output signal | |
25 | # See also afb |
|
25 | # See also afb | |
26 | # |
|
26 | # | |
27 | # WAVELET SOFTWARE AT POLYTECHNIC UNIVERSITY, BROOKLYN, NY |
|
27 | # WAVELET SOFTWARE AT POLYTECHNIC UNIVERSITY, BROOKLYN, NY | |
28 | # http://taco.poly.edu/WaveletSoftware/ |
|
28 | # http://taco.poly.edu/WaveletSoftware/ | |
29 |
|
29 | |||
30 | N = 2*lo.size; |
|
30 | N = 2*lo.size; | |
31 | L = sf.size/2; |
|
31 | L = sf.size/2; | |
32 |
|
32 | |||
33 | # Need to change format for upfirdn funct: |
|
33 | # Need to change format for upfirdn funct: | |
34 | lo = lo.T.conj() |
|
34 | lo = lo.T.conj() | |
35 | lo = lo.reshape(lo.size) |
|
35 | lo = lo.reshape(lo.size) | |
36 |
|
36 | |||
37 | #print 'sfb hi', hi |
|
37 | #print 'sfb hi', hi | |
38 |
|
38 | |||
39 | # Need to change format for upfirdn funct: |
|
39 | # Need to change format for upfirdn funct: | |
40 | hi = hi.T.conj() |
|
40 | hi = hi.T.conj() | |
41 | hi = hi.reshape(hi.size) |
|
41 | hi = hi.reshape(hi.size) | |
42 |
|
42 | |||
43 | #hi = hi.reshape(1, hi.size) |
|
43 | #hi = hi.reshape(1, hi.size) | |
44 |
|
44 | |||
45 |
|
45 | |||
46 | lo = upfirdn(lo, sf[:,0], 2, 1); |
|
46 | lo = upfirdn(lo, sf[:,0], 2, 1); | |
47 | hi = upfirdn(hi, sf[:,1], 2, 1); |
|
47 | hi = upfirdn(hi, sf[:,1], 2, 1); | |
|
48 | ||||
|
49 | lo = lo[0:lo.size-1] | |||
|
50 | hi = hi[0:hi.size-1] | |||
|
51 | ||||
48 | y = lo + hi; |
|
52 | y = lo + hi; | |
49 |
y[0:L- |
|
53 | y[0:L-2] = y[0:L-2] + y[N+ np.arange(0,L-2)]; #CHECK IF ARANGE IS CORRECT | |
50 | y = y[0:N]; |
|
54 | y = y[0:N]; | |
51 |
|
55 | |||
52 | #print 'y en sbf\n', y.shape |
|
56 | #print 'y en sbf\n', y.shape | |
53 |
|
57 | |||
54 | y = y.reshape(1, y.size) |
|
58 | y = y.reshape(1, y.size) | |
55 | #print 'y en sbf\n', y.shape |
|
59 | #print 'y en sbf\n', y.shape | |
56 |
|
60 | |||
57 | y = cshift(y, 1-L/2); |
|
61 | y = cshift(y, 1-L/2); | |
58 |
|
62 | |||
59 | return y; |
|
63 | return y; | |
60 |
|
64 |
General Comments 0
You need to be logged in to leave comments.
Login now