@@ -0,0 +1,46 | |||||
|
1 | ''' | |||
|
2 | Created on Jun 5, 2014 | |||
|
3 | ||||
|
4 | @author: Yolian Amaro | |||
|
5 | ''' | |||
|
6 | ||||
|
7 | from sfb import * | |||
|
8 | ||||
|
9 | def idualtree(w, J, Fsf, sf): | |||
|
10 | ||||
|
11 | # Inverse Dual-tree Complex DWT | |||
|
12 | # | |||
|
13 | # USAGE: | |||
|
14 | # y = idualtree(w, J, Fsf, sf) | |||
|
15 | # INPUT: | |||
|
16 | # w - DWT coefficients | |||
|
17 | # J - number of stages | |||
|
18 | # Fsf - synthesis filters for the last stage | |||
|
19 | # sf - synthesis filters for preceeding stages | |||
|
20 | # OUTUT: | |||
|
21 | # y - output signal | |||
|
22 | # See dualtree | |||
|
23 | # | |||
|
24 | # WAVELET SOFTWARE AT POLYTECHNIC UNIVERSITY, BROOKLYN, NY | |||
|
25 | # http://taco.poly.edu/WaveletSoftware/ | |||
|
26 | ||||
|
27 | # Tree 1 | |||
|
28 | y1 = w[J][0]; | |||
|
29 | ||||
|
30 | for j in range (J-1, 0, -1): | |||
|
31 | y1 = sfb(y1, w[j][0], sf[0,0]); | |||
|
32 | ||||
|
33 | y1 = sfb(y1, w[0][0], Fsf[0,0]); | |||
|
34 | ||||
|
35 | # Tree 2 | |||
|
36 | y2 = w[J][1]; | |||
|
37 | ||||
|
38 | for j in range (J-1, 0, -1): | |||
|
39 | y2 = sfb(y2, w[j][2], sf[0,1]); | |||
|
40 | ||||
|
41 | y2 = sfb(y2, w[0][1], Fsf[0,1]); | |||
|
42 | ||||
|
43 | # normalization | |||
|
44 | y = (y1 + y2)/np.sqrt(2); | |||
|
45 | ||||
|
46 | return y |
@@ -0,0 +1,68 | |||||
|
1 | ''' | |||
|
2 | Created on Jun 5, 2014 | |||
|
3 | ||||
|
4 | @author: Yolian Amaro | |||
|
5 | ''' | |||
|
6 | ||||
|
7 | from multirate import * | |||
|
8 | import numpy as np | |||
|
9 | from cshift import * | |||
|
10 | ||||
|
11 | def sfb(lo, hi, sf): | |||
|
12 | ||||
|
13 | # Synthesis filter bank | |||
|
14 | # | |||
|
15 | # USAGE: | |||
|
16 | # y = sfb(lo, hi, sf) | |||
|
17 | # INPUT: | |||
|
18 | # lo - low frqeuency input | |||
|
19 | # hi - high frequency input | |||
|
20 | # sf - synthesis filters | |||
|
21 | # sf(:, 1) - lowpass filter (even length) | |||
|
22 | # sf(:, 2) - highpass filter (even length) | |||
|
23 | # OUTPUT: | |||
|
24 | # y - output signal | |||
|
25 | # See also afb | |||
|
26 | # | |||
|
27 | # WAVELET SOFTWARE AT POLYTECHNIC UNIVERSITY, BROOKLYN, NY | |||
|
28 | # http://taco.poly.edu/WaveletSoftware/ | |||
|
29 | ||||
|
30 | N = 2*lo.size; | |||
|
31 | L = sf.size/2; | |||
|
32 | #print 'N', N | |||
|
33 | #print 'sf', sf | |||
|
34 | ||||
|
35 | ||||
|
36 | #print 'sf[:,0]', sf[:,0].shape | |||
|
37 | #print 'sf[:,1]', sf[:,1].shape | |||
|
38 | #print 'sbf hi', hi.shape | |||
|
39 | ||||
|
40 | ||||
|
41 | ||||
|
42 | # Need to change format for upfirdn funct: | |||
|
43 | lo = lo.T.conj() | |||
|
44 | lo = lo.reshape(lo.size) | |||
|
45 | ||||
|
46 | print 'sfb hi', hi | |||
|
47 | ||||
|
48 | # Need to change format for upfirdn funct: | |||
|
49 | hi = hi.T.conj() | |||
|
50 | hi = hi.reshape(hi.size) | |||
|
51 | ||||
|
52 | #hi = hi.reshape(1, hi.size) | |||
|
53 | ||||
|
54 | lo = upfirdn(lo, sf[:,0], 2, 1); | |||
|
55 | hi = upfirdn(hi, sf[:,1], 2, 1); | |||
|
56 | y = lo + hi; | |||
|
57 | y[0:L-1] = y[0:L-1] + y[N+ np.arange(0,L-1)]; #CHECK IF ARANGE IS CORRECT | |||
|
58 | y = y[0:N]; | |||
|
59 | ||||
|
60 | print 'y en sbf\n', y.shape | |||
|
61 | ||||
|
62 | y = y.reshape(1, y.size) | |||
|
63 | print 'y en sbf\n', y.shape | |||
|
64 | ||||
|
65 | y = cshift(y, 1-L/2); | |||
|
66 | ||||
|
67 | return y; | |||
|
68 |
@@ -26,7 +26,6 | |||||
26 | # Translated to Python by Yolian Amaro |
|
26 | # Translated to Python by Yolian Amaro | |
27 |
|
27 | |||
28 |
|
28 | |||
29 |
|
||||
30 | a1 = np.array( [ |
|
29 | a1 = np.array( [ | |
31 | [ 0, 0], |
|
30 | [ 0, 0], | |
32 | [-0.08838834764832, -0.01122679215254], |
|
31 | [-0.08838834764832, -0.01122679215254], | |
@@ -53,7 +52,6 | |||||
53 | [ 0, -0.01122679215254] |
|
52 | [ 0, -0.01122679215254] | |
54 | ]); |
|
53 | ]); | |
55 |
|
54 | |||
56 | #print a2.shape |
|
|||
57 |
|
55 | |||
58 | af = np.array([ [a1,a2] ], dtype=object) |
|
56 | af = np.array([ [a1,a2] ], dtype=object) | |
59 |
|
57 |
@@ -310,11 +310,14 | |||||
310 | chi2 = np.sum((es/sigma)**2); |
|
310 | chi2 = np.sum((es/sigma)**2); | |
311 |
|
311 | |||
312 |
|
312 | |||
313 | # CS inversion using irls ######################## |
|
313 | # CS inversion using Iteratively Reweighted Least Squares (IRLS)------------- | |
314 |
|
314 | |||
315 | # (Use Nr, thetar, gnz, and Hr from MaxEnt above) |
|
315 | # (Use Nr, thetar, gnz, and Hr from MaxEnt above) | |
316 |
|
316 | |||
317 | Psi = deb4_basis(Nr); ###### REPLACED BY LINE BELOW (?) |
|
317 | Psi = deb4_basis(Nr); ###### REPLACED BY LINEs BELOW (?) | |
|
318 | ||||
|
319 | print 'FINALLY!' | |||
|
320 | print Psi.shape | |||
318 |
|
321 | |||
319 | # REMOVE THIS?-------------------------------- |
|
322 | # REMOVE THIS?-------------------------------- | |
320 | #wavelet1 = pywt.Wavelet('db4') |
|
323 | #wavelet1 = pywt.Wavelet('db4') | |
@@ -322,15 +325,15 | |||||
322 | # -------------------------------------------- |
|
325 | # -------------------------------------------- | |
323 |
|
326 | |||
324 | # add "sum to 1" constraint |
|
327 | # add "sum to 1" constraint | |
325 | H2 = np.concatenate( (Hr, np.ones(shape=(1,Nr))), axis=0 ); |
|
328 | # H2 = np.concatenate( (Hr, np.ones(shape=(1,Nr))), axis=0 ); | |
326 | N_temp = np.array([[Nr/Nt]]); |
|
329 | # N_temp = np.array([[Nr/Nt]]); | |
327 | g2 = np.concatenate( (gnz, N_temp), axis=0 ); |
|
330 | # g2 = np.concatenate( (gnz, N_temp), axis=0 ); | |
328 | H2 = H2.T.conj(); |
|
331 | # H2 = H2.T.conj(); | |
329 |
|
332 | # | ||
330 | print 'H2 shape', H2.shape |
|
333 | # print 'H2 shape', H2.shape | |
331 | print 'Psi shape', Psi.shape |
|
334 | # print 'Psi shape', Psi.shape | |
332 |
|
335 | # | ||
333 |
s = irls_dn2( |
|
336 | # s = irls_dn2(np.dot(H2,Psi),g2,0.5,G); | |
334 | # f_cs = Psi*s; |
|
337 | # f_cs = Psi*s; | |
335 | # |
|
338 | # | |
336 | # # plot |
|
339 | # # plot |
@@ -5,7 +5,7 | |||||
5 | ''' |
|
5 | ''' | |
6 |
|
6 | |||
7 | #from sp import multirate |
|
7 | #from sp import multirate | |
8 | import cshift |
|
8 | from cshift import * | |
9 | from multirate import upfirdn |
|
9 | from multirate import upfirdn | |
10 |
|
10 | |||
11 | def afb(x, af): |
|
11 | def afb(x, af): | |
@@ -36,24 +36,37 | |||||
36 | # http://taco.poly.edu/WaveletSoftware/ |
|
36 | # http://taco.poly.edu/WaveletSoftware/ | |
37 |
|
37 | |||
38 | N = x.size; |
|
38 | N = x.size; | |
39 |
L = (af).size/ |
|
39 | L = (af).size/4; #L should be = 5 | |
40 | x = cshift(x,-L); |
|
40 | #print af | |
|
41 | #print 'L', L | |||
|
42 | x = cshift(x,-(L-1)); | |||
|
43 | ||||
|
44 | # print 'afb x', x.shape | |||
|
45 | # print 'af[:,0]',af[:,0].shape | |||
|
46 | # print 'af[:,1]',af[:,1].shape | |||
|
47 | # print '-----------------------' | |||
41 |
|
48 | |||
42 | # lowpass filter |
|
49 | # lowpass filter | |
43 | lo = upfirdn(x, af[:,0], 1, 2); |
|
50 | lo = upfirdn(x, af[:,0], 1, 2); | |
44 |
|
51 | |||
|
52 | ||||
45 | # VERIFY THIS!!!!!!!!!!!! |
|
53 | # VERIFY THIS!!!!!!!!!!!! | |
46 | for i in range(0, L): |
|
54 | for i in range(0, L): | |
47 |
lo[i] = lo[N/2+ |
|
55 | lo[i] = lo[N/2+i] + lo[i]; | |
48 |
|
56 | |||
49 |
lo = lo[ |
|
57 | lo = lo[0:N/2]; | |
|
58 | ||||
50 |
|
59 | |||
51 | # highpass filter |
|
60 | # highpass filter | |
52 |
hi = upfirdn(x, af[:, |
|
61 | hi = upfirdn(x, af[:,1], 1, 2); | |
53 |
|
62 | |||
54 | for j in range(0, L): |
|
63 | for j in range(0, L): | |
55 |
hi[j] = hi |
|
64 | hi[j] = hi[N/2+j] + hi[j]; | |
56 |
|
65 | |||
57 |
hi = hi[ |
|
66 | hi = hi[0:N/2]; | |
|
67 | ||||
|
68 | # Reshape from 1D to 2D | |||
|
69 | lo = lo.reshape(1, lo.size) | |||
|
70 | hi = hi.reshape(1, hi.size) | |||
58 |
|
71 | |||
59 | return lo, hi |
|
72 | return lo, hi |
@@ -14,16 +14,21 | |||||
14 | # y = cshift(x, m) |
|
14 | # y = cshift(x, m) | |
15 | # INPUT: |
|
15 | # INPUT: | |
16 | # x - N-point vector |
|
16 | # x - N-point vector | |
17 | # m - amount of shift |
|
17 | # m - amount of shift (pos=left, neg=right) | |
18 | # OUTPUT: |
|
18 | # OUTPUT: | |
19 | # y - vector x will be shifted by m samples to the left |
|
19 | # y - vector x will be shifted by m samples to the left | |
20 | # |
|
20 | # | |
21 | # WAVELET SOFTWARE AT POLYTECHNIC UNIVERSITY, BROOKLYN, NY |
|
21 | # WAVELET SOFTWARE AT POLYTECHNIC UNIVERSITY, BROOKLYN, NY | |
22 | # http://taco.poly.edu/WaveletSoftware/ |
|
22 | # http://taco.poly.edu/WaveletSoftware/ | |
|
23 | ||||
23 |
|
24 | |||
24 | N = x.size; |
|
25 | N = x.size; | |
25 |
n = np.arange(N |
|
26 | n = np.arange(N); | |
26 | n = np.mod(n-m, N); |
|
27 | n = np.mod(n-m, N); | |
27 | y = x[n]; |
|
28 | ||
|
29 | print x.shape | |||
|
30 | ||||
|
31 | y = x[0,n]; | |||
|
32 | ||||
28 |
|
33 | |||
29 | return y No newline at end of file |
|
34 | return y |
@@ -5,8 +5,10 | |||||
5 | ''' |
|
5 | ''' | |
6 |
|
6 | |||
7 | import numpy as np |
|
7 | import numpy as np | |
8 | import FSfarras |
|
8 | from FSfarras import * | |
9 | import dualfilt1 |
|
9 | from dualfilt1 import * | |
|
10 | from dualtree import * | |||
|
11 | from idualtree import * | |||
10 |
|
12 | |||
11 | def deb4_basis(N): |
|
13 | def deb4_basis(N): | |
12 |
|
14 | |||
@@ -14,25 +16,26 | |||||
14 | idx = 1; |
|
16 | idx = 1; | |
15 |
|
17 | |||
16 | J = 4; |
|
18 | J = 4; | |
17 | [Faf, Fsf] = FSfarras; |
|
19 | [Faf, Fsf] = FSfarras(); | |
18 | [af, sf] = dualfilt1; |
|
20 | [af, sf] = dualfilt1(); | |
19 |
|
21 | |||
20 | # compute transform of zero vector |
|
22 | # compute transform of zero vector | |
21 | x = np.zeros(shape=(1,N)); |
|
23 | x = np.zeros(shape=(1,N)); | |
22 |
|
|
24 | w = dualtree(x, J, Faf, af); | |
23 | # # |
|
25 | ||
24 | # # # Uses both real and imaginary wavelets |
|
26 | ||
25 | # # for i in range (1, J+1): |
|
27 | # Uses both real and imaginary wavelets | |
26 |
|
|
28 | for i in range (0, J): | |
27 |
|
|
29 | for j in range (0, 1): | |
28 | # # w[i][j](k) = 1; |
|
30 | for k in range (0, (w[i][j]).size): | |
29 | # # y = idualtree(w, J, Fsf, sf); |
|
31 | w[i][j][0,k] = 1; | |
30 | # # w[i][j](k) = 0; |
|
32 | y = idualtree(w, J, Fsf, sf); | |
31 | # # # store it |
|
33 | w[i][j][0,k] = 0; | |
32 | # # Psi(:,idx) = y.T.conj(); |
|
34 | # store it | |
33 | # # idx = idx + 1; |
|
35 | Psi[:,idx] = y.T.conj(); | |
34 | # # |
|
36 | idx = idx + 1; | |
35 | # # # Add uniform vector (seems to be useful if there's a background |
|
37 | ||
36 | # # Psi(:,2*N+1) = 1/np.sqrt(N); |
|
38 | # Add uniform vector (seems to be useful if there's a background | |
37 | # |
|
39 | Psi[:,2*N+1] = 1/np.sqrt(N); | |
38 | # return Psi No newline at end of file |
|
40 | ||
|
41 | return Psi No newline at end of file |
@@ -5,7 +5,7 | |||||
5 | ''' |
|
5 | ''' | |
6 |
|
6 | |||
7 | import numpy as np |
|
7 | import numpy as np | |
8 | import afb |
|
8 | from afb import * | |
9 |
|
9 | |||
10 | def dualtree(x, J, Faf, af): |
|
10 | def dualtree(x, J, Faf, af): | |
11 |
|
11 | |||
@@ -38,26 +38,39 | |||||
38 | # WAVELET SOFTWARE AT POLYTECHNIC UNIVERSITY, BROOKLYN, NY |
|
38 | # WAVELET SOFTWARE AT POLYTECHNIC UNIVERSITY, BROOKLYN, NY | |
39 | # http://taco.poly.edu/WaveletSoftware/ |
|
39 | # http://taco.poly.edu/WaveletSoftware/ | |
40 |
|
40 | |||
|
41 | # ---------Trees Structure---------------# | |||
|
42 | # w [ 0 1 2 .... J ] # | |||
|
43 | # | | | | # | |||
|
44 | # [0 1] [0 1] [0 1] [0 1] # | |||
|
45 | #----------------------------------------# | |||
|
46 | ||||
41 | # normalization |
|
47 | # normalization | |
42 | x = x/np.sqrt(2); |
|
48 | x = x/np.sqrt(2); | |
|
49 | ||||
43 |
|
50 | |||
44 | w = np.zeros(shape=(J,2)) ### VERIFY THIS DEFINITION |
|
51 | w = np.zeros(shape=(J+1), dtype=object) | |
45 |
|
52 | |||
|
53 | for j in range (0, w.size): | |||
|
54 | w[j] = np.zeros(shape=(J+1), dtype=object) | |||
|
55 | ||||
46 | # Tree 1 |
|
56 | # Tree 1 | |
47 |
[x1,w[ |
|
57 | [x1, w[0][0]] = afb(x, Faf[0,0]); # w{1}{1} | |
48 |
|
58 | |||
49 | for j in range (2,J): |
|
|||
50 | [x1,w[j,0]] = afb(x1, af[0,1]); #check this |
|
|||
51 |
|
||||
52 | w[J+1,1] = x1; |
|
|||
53 |
|
59 | |||
|
60 | for j in range (1,J): | |||
|
61 | [x1,w[j][0]] = afb(x1, af[0,0]); ### or 0,1???? | |||
|
62 | ||||
|
63 | ||||
|
64 | ||||
|
65 | w[J][0] = x1; | |||
|
66 | ||||
54 | # Tree 2 |
|
67 | # Tree 2 | |
55 |
[x2,w[1 |
|
68 | [x2,w[0][1]] = afb(x, Faf[0,1]); | |
56 |
|
69 | |||
57 |
for j in range ( |
|
70 | for j in range (1,J): | |
58 |
[x2,w[j |
|
71 | [x2,w[j][1]] = afb(x2, af[0,1]); | |
59 |
|
72 | |||
60 |
w[J |
|
73 | w[J][1] = x2; | |
61 |
|
74 | |||
62 | return w |
|
75 | return w | |
63 |
|
76 |
General Comments 0
You need to be logged in to leave comments.
Login now