##// END OF EJS Templates
codigo fuente de librería NMEAlib++ basado en el codigo original de:...
codigo fuente de librería NMEAlib++ basado en el codigo original de: NMEA library URL: http://nmea.sourceforge.net Author: Tim (xtimor@gmail.com) Licence: http://www.gnu.org/licenses/lgpl.html

File last commit:

r96:97
r96:97
Show More
utils.cpp
590 lines | 15.6 KiB | text/x-c | CppLexer
/*
* utils.cpp
*
* Created on: Oct 21, 2014
* Author: Alan Aguilar Sologuren
*/
#include <stdlib.h>
#include <stdarg.h>
#include "utils.h"
/**
* \fn code_degree2radian
* \brief Convert degree to radian
*/
double code_degree2radian(double val) {
return (val * code_PI180);
}
/**
* \fn code_radian2degree
* \brief Convert radian to degree
*/
double code_radian2degree(double val) {
return (val / code_PI180);
}
/**
* \brief Convert NDEG (NMEA degree) to fractional degree
*/
double code_ndeg2degree(double val) {
double deg = ((int)(val / 100));
val = deg + (val - deg * 100) / 60;
return val;
}
/**
* \brief Convert fractional degree to NDEG (NMEA degree)
*/
double code_degree2ndeg(double val) {
double int_part;
double fra_part;
fra_part = modf(val, &int_part);
val = int_part * 100 + fra_part * 60;
return val;
}
/**
* \fn code_ndeg2radian
* \brief Convert NDEG (NMEA degree) to radian
*/
double code_ndeg2radian(double val) {
return code_degree2radian(code_ndeg2degree(val));
}
/**
* \fn code_radian2ndeg
* \brief Convert radian to NDEG (NMEA degree)
*/
double code_radian2ndeg(double val) {
return code_degree2ndeg(code_radian2degree(val));
}
/**
* \brief Calculate PDOP (Position Dilution Of Precision) factor
*/
double code_calc_pdop(double hdop, double vdop) {
return sqrt(pow(hdop, 2) + pow(vdop, 2));
}
double code_dop2meters(double dop) {
return (dop * code_DOP_FACTOR);
}
double code_meters2dop(double meters) {
return (meters / code_DOP_FACTOR);
}
/**
* \brief Calculate distance between two points
* \return Distance in meters
*/
double code_distance(
const nmeaPOS *from_pos, /**< From position in radians */
const nmeaPOS *to_pos /**< To position in radians */
)
{
double dist = ((double)code_EARTHRADIUS_M) * acos(
sin(to_pos->lat) * sin(from_pos->lat) +
cos(to_pos->lat) * cos(from_pos->lat) * cos(to_pos->lon - from_pos->lon)
);
return dist;
}
/**
* \brief Calculate distance between two points
* This function uses an algorithm for an oblate spheroid earth model.
* The algorithm is described here:
* http://www.ngs.noaa.gov/PUBS_LIB/inverse.pdf
* \return Distance in meters
*/
double code_distance_ellipsoid(
const nmeaPOS *from_pos, /**< From position in radians */
const nmeaPOS *to_pos, /**< To position in radians */
double *from_azimuth, /**< (O) azimuth at "from" position in radians */
double *to_azimuth /**< (O) azimuth at "to" position in radians */
)
{
/* All variables */
double f, a, b, sqr_a, sqr_b;
double L, phi1, phi2, U1, U2, sin_U1, sin_U2, cos_U1, cos_U2;
double sigma, sin_sigma, cos_sigma, cos_2_sigmam, sqr_cos_2_sigmam, sqr_cos_alpha, lambda, sin_lambda, cos_lambda, delta_lambda;
int remaining_steps;
double sqr_u, A, B, delta_sigma;
/* Check input */
NMEA_ASSERT(from_pos != 0);
NMEA_ASSERT(to_pos != 0);
if ((from_pos->lat == to_pos->lat) && (from_pos->lon == to_pos->lon))
{ /* Identical points */
if ( from_azimuth != 0 )
*from_azimuth = 0;
if ( to_azimuth != 0 )
*to_azimuth = 0;
return 0;
} /* Identical points */
/* Earth geometry */
f = code_EARTH_FLATTENING;
a = code_EARTH_SEMIMAJORAXIS_M;
b = (1 - f) * a;
sqr_a = a * a;
sqr_b = b * b;
/* Calculation */
L = to_pos->lon - from_pos->lon;
phi1 = from_pos->lat;
phi2 = to_pos->lat;
U1 = atan((1 - f) * tan(phi1));
U2 = atan((1 - f) * tan(phi2));
sin_U1 = sin(U1);
sin_U2 = sin(U2);
cos_U1 = cos(U1);
cos_U2 = cos(U2);
/* Initialize iteration */
sigma = 0;
sin_sigma = sin(sigma);
cos_sigma = cos(sigma);
cos_2_sigmam = 0;
sqr_cos_2_sigmam = cos_2_sigmam * cos_2_sigmam;
sqr_cos_alpha = 0;
lambda = L;
sin_lambda = sin(lambda);
cos_lambda = cos(lambda);
delta_lambda = lambda;
remaining_steps = 20;
while ((delta_lambda > 1e-12) && (remaining_steps > 0))
{ /* Iterate */
/* Variables */
double tmp1, tmp2, tan_sigma, sin_alpha, cos_alpha, C, lambda_prev;
/* Calculation */
tmp1 = cos_U2 * sin_lambda;
tmp2 = cos_U1 * sin_U2 - sin_U1 * cos_U2 * cos_lambda;
sin_sigma = sqrt(tmp1 * tmp1 + tmp2 * tmp2);
cos_sigma = sin_U1 * sin_U2 + cos_U1 * cos_U2 * cos_lambda;
tan_sigma = sin_sigma / cos_sigma;
sin_alpha = cos_U1 * cos_U2 * sin_lambda / sin_sigma;
cos_alpha = cos(asin(sin_alpha));
sqr_cos_alpha = cos_alpha * cos_alpha;
cos_2_sigmam = cos_sigma - 2 * sin_U1 * sin_U2 / sqr_cos_alpha;
sqr_cos_2_sigmam = cos_2_sigmam * cos_2_sigmam;
C = f / 16 * sqr_cos_alpha * (4 + f * (4 - 3 * sqr_cos_alpha));
lambda_prev = lambda;
sigma = asin(sin_sigma);
lambda = L +
(1 - C) * f * sin_alpha
* (sigma + C * sin_sigma * (cos_2_sigmam + C * cos_sigma * (-1 + 2 * sqr_cos_2_sigmam)));
delta_lambda = lambda_prev - lambda;
if ( delta_lambda < 0 ) delta_lambda = -delta_lambda;
sin_lambda = sin(lambda);
cos_lambda = cos(lambda);
remaining_steps--;
} /* Iterate */
/* More calculation */
sqr_u = sqr_cos_alpha * (sqr_a - sqr_b) / sqr_b;
A = 1 + sqr_u / 16384 * (4096 + sqr_u * (-768 + sqr_u * (320 - 175 * sqr_u)));
B = sqr_u / 1024 * (256 + sqr_u * (-128 + sqr_u * (74 - 47 * sqr_u)));
delta_sigma = B * sin_sigma * (
cos_2_sigmam + B / 4 * (
cos_sigma * (-1 + 2 * sqr_cos_2_sigmam) -
B / 6 * cos_2_sigmam * (-3 + 4 * sin_sigma * sin_sigma) * (-3 + 4 * sqr_cos_2_sigmam)
));
/* Calculate result */
if ( from_azimuth != 0 )
{
double tan_alpha_1 = cos_U2 * sin_lambda / (cos_U1 * sin_U2 - sin_U1 * cos_U2 * cos_lambda);
*from_azimuth = atan(tan_alpha_1);
}
if ( to_azimuth != 0 )
{
double tan_alpha_2 = cos_U1 * sin_lambda / (-sin_U1 * cos_U2 + cos_U1 * sin_U2 * cos_lambda);
*to_azimuth = atan(tan_alpha_2);
}
return b * A * (sigma - delta_sigma);
}
/**
* \brief Horizontal move of point position
*/
int code_move_horz(
const nmeaPOS *start_pos, /**< Start position in radians */
nmeaPOS *end_pos, /**< Result position in radians */
double azimuth, /**< Azimuth (degree) [0, 359] */
double distance /**< Distance (km) */
)
{
nmeaPOS p1 = *start_pos;
int RetVal = 1;
distance /= code_EARTHRADIUS_KM; /* Angular distance covered on earth's surface */
azimuth = code_degree2radian(azimuth);
end_pos->lat = asin(
sin(p1.lat) * cos(distance) + cos(p1.lat) * sin(distance) * cos(azimuth));
end_pos->lon = p1.lon + atan2(
sin(azimuth) * sin(distance) * cos(p1.lat), cos(distance) - sin(p1.lat) * sin(end_pos->lat));
if(NMEA_POSIX(isnan)(end_pos->lat) || NMEA_POSIX(isnan)(end_pos->lon))
{
end_pos->lat = 0; end_pos->lon = 0;
RetVal = 0;
}
return RetVal;
}
/**
* \brief Horizontal move of point position
* This function uses an algorithm for an oblate spheroid earth model.
* The algorithm is described here:
* http://www.ngs.noaa.gov/PUBS_LIB/inverse.pdf
*/
int code_move_horz_ellipsoid(
const nmeaPOS *start_pos, /**< Start position in radians */
nmeaPOS *end_pos, /**< (O) Result position in radians */
double azimuth, /**< Azimuth in radians */
double distance, /**< Distance (km) */
double *end_azimuth /**< (O) Azimuth at end position in radians */
)
{
/* Variables */
double f, a, b, sqr_a, sqr_b;
double phi1, tan_U1, sin_U1, cos_U1, s, alpha1, sin_alpha1, cos_alpha1;
double tan_sigma1, sigma1, sin_alpha, cos_alpha, sqr_cos_alpha, sqr_u, A, B;
double sigma_initial, sigma, sigma_prev, sin_sigma, cos_sigma, cos_2_sigmam, sqr_cos_2_sigmam, delta_sigma;
int remaining_steps;
double tmp1, phi2, lambda, C, L;
/* Check input */
NMEA_ASSERT(start_pos != 0);
NMEA_ASSERT(end_pos != 0);
if (fabs(distance) < 1e-12)
{ /* No move */
*end_pos = *start_pos;
if ( end_azimuth != 0 ) *end_azimuth = azimuth;
return ! (NMEA_POSIX(isnan)(end_pos->lat) || NMEA_POSIX(isnan)(end_pos->lon));
} /* No move */
/* Earth geometry */
f = code_EARTH_FLATTENING;
a = code_EARTH_SEMIMAJORAXIS_M;
b = (1 - f) * a;
sqr_a = a * a;
sqr_b = b * b;
/* Calculation */
phi1 = start_pos->lat;
tan_U1 = (1 - f) * tan(phi1);
cos_U1 = 1 / sqrt(1 + tan_U1 * tan_U1);
sin_U1 = tan_U1 * cos_U1;
s = distance;
alpha1 = azimuth;
sin_alpha1 = sin(alpha1);
cos_alpha1 = cos(alpha1);
tan_sigma1 = tan_U1 / cos_alpha1;
sigma1 = atan2(tan_U1, cos_alpha1);
sin_alpha = cos_U1 * sin_alpha1;
sqr_cos_alpha = 1 - sin_alpha * sin_alpha;
cos_alpha = sqrt(sqr_cos_alpha);
sqr_u = sqr_cos_alpha * (sqr_a - sqr_b) / sqr_b;
A = 1 + sqr_u / 16384 * (4096 + sqr_u * (-768 + sqr_u * (320 - 175 * sqr_u)));
B = sqr_u / 1024 * (256 + sqr_u * (-128 + sqr_u * (74 - 47 * sqr_u)));
/* Initialize iteration */
sigma_initial = s / (b * A);
sigma = sigma_initial;
sin_sigma = sin(sigma);
cos_sigma = cos(sigma);
cos_2_sigmam = cos(2 * sigma1 + sigma);
sqr_cos_2_sigmam = cos_2_sigmam * cos_2_sigmam;
delta_sigma = 0;
sigma_prev = 2 * code_PI;
remaining_steps = 20;
while ((fabs(sigma - sigma_prev) > 1e-12) && (remaining_steps > 0))
{ /* Iterate */
cos_2_sigmam = cos(2 * sigma1 + sigma);
sqr_cos_2_sigmam = cos_2_sigmam * cos_2_sigmam;
sin_sigma = sin(sigma);
cos_sigma = cos(sigma);
delta_sigma = B * sin_sigma * (
cos_2_sigmam + B / 4 * (
cos_sigma * (-1 + 2 * sqr_cos_2_sigmam) -
B / 6 * cos_2_sigmam * (-3 + 4 * sin_sigma * sin_sigma) * (-3 + 4 * sqr_cos_2_sigmam)
));
sigma_prev = sigma;
sigma = sigma_initial + delta_sigma;
remaining_steps --;
} /* Iterate */
/* Calculate result */
tmp1 = (sin_U1 * sin_sigma - cos_U1 * cos_sigma * cos_alpha1);
phi2 = atan2(
sin_U1 * cos_sigma + cos_U1 * sin_sigma * cos_alpha1,
(1 - f) * sqrt(sin_alpha * sin_alpha + tmp1 * tmp1)
);
lambda = atan2(
sin_sigma * sin_alpha1,
cos_U1 * cos_sigma - sin_U1 * sin_sigma * cos_alpha1
);
C = f / 16 * sqr_cos_alpha * (4 + f * (4 - 3 * sqr_cos_alpha));
L = lambda -
(1 - C) * f * sin_alpha * (
sigma + C * sin_sigma *
(cos_2_sigmam + C * cos_sigma * (-1 + 2 * sqr_cos_2_sigmam))
);
/* Result */
end_pos->lon = start_pos->lon + L;
end_pos->lat = phi2;
if ( end_azimuth != 0 )
{
*end_azimuth = atan2(
sin_alpha, -sin_U1 * sin_sigma + cos_U1 * cos_sigma * cos_alpha1
);
}
return ! (NMEA_POSIX(isnan)(end_pos->lat) || NMEA_POSIX(isnan)(end_pos->lon));
}
/**
* \brief Calculate control sum of binary buffer
*/
int code_calc_crc(const char *buff, int buff_sz)
{
int chsum = 0,
it;
for(it = 0; it < buff_sz; ++it)
chsum ^= (int)buff[it];
return chsum;
}
/**
* \brief Convert string to number
*/
int code_atoi(const char *str, int str_sz, int radix)
{
char *tmp_ptr;
char buff[NMEA_CONVSTR_BUF];
int res = 0;
if(str_sz < NMEA_CONVSTR_BUF)
{
memcpy(&buff[0], str, str_sz);
buff[str_sz] = '\0';
res = strtol(&buff[0], &tmp_ptr, radix);
}
return res;
}
/**
* \brief Convert string to fraction number
*/
double code_atof(const char *str, int str_sz)
{
char *tmp_ptr;
char buff[NMEA_CONVSTR_BUF];
double res = 0;
if(str_sz < NMEA_CONVSTR_BUF)
{
memcpy(&buff[0], str, str_sz);
buff[str_sz] = '\0';
res = strtod(&buff[0], &tmp_ptr);
}
return res;
}
/**
* \brief Formating string (like standart printf) with CRC tail (*CRC)
*/
int code_printf(char *buff, int buff_sz, const char *format, ...)
{
int retval, add = 0;
va_list arg_ptr;
if(buff_sz <= 0)
return 0;
va_start(arg_ptr, format);
retval = NMEA_POSIX(vsnprintf)(buff, buff_sz, format, arg_ptr);
if(retval > 0)
{
add = NMEA_POSIX(snprintf)(
buff + retval, buff_sz - retval, "*%02x\r\n",
code_calc_crc(buff + 1, retval - 1));
}
retval += add;
if(retval < 0 || retval > buff_sz)
{
memset(buff, ' ', buff_sz);
retval = buff_sz;
}
va_end(arg_ptr);
return retval;
}
/**
* \brief Analyse string (specificate for NMEA sentences)
*/
int code_scanf(const char *buff, int buff_sz, const char *format, ...)
{
const char *beg_tok;
const char *end_buf = buff + buff_sz;
va_list arg_ptr;
int tok_type = NMEA_TOKS_COMPARE;
int width = 0;
const char *beg_fmt = 0;
int snum = 0, unum = 0;
int tok_count = 0;
void *parg_target;
va_start(arg_ptr, format);
for(; *format && buff < end_buf; ++format)
{
switch(tok_type)
{
case NMEA_TOKS_COMPARE:
if('%' == *format)
tok_type = NMEA_TOKS_PERCENT;
else if(*buff++ != *format)
goto fail;
break;
case NMEA_TOKS_PERCENT:
width = 0;
beg_fmt = format;
tok_type = NMEA_TOKS_WIDTH;
case NMEA_TOKS_WIDTH:
if(isdigit(*format))
break;
{
tok_type = NMEA_TOKS_TYPE;
if(format > beg_fmt)
width = code_atoi(beg_fmt, (int)(format - beg_fmt), 10);
}
case NMEA_TOKS_TYPE:
beg_tok = buff;
if(!width && ('c' == *format || 'C' == *format) && *buff != format[1])
width = 1;
if(width)
{
if(buff + width <= end_buf)
buff += width;
else
goto fail;
}
else
{
if(!format[1] || (0 == (buff = (char *)memchr(buff, format[1], end_buf - buff))))
buff = end_buf;
}
if(buff > end_buf)
goto fail;
tok_type = NMEA_TOKS_COMPARE;
tok_count++;
parg_target = 0; width = (int)(buff - beg_tok);
switch(*format)
{
case 'c':
case 'C':
parg_target = (void *)va_arg(arg_ptr, char *);
if(width && 0 != (parg_target))
*((char *)parg_target) = *beg_tok;
break;
case 's':
case 'S':
parg_target = (void *)va_arg(arg_ptr, char *);
if(width && 0 != (parg_target))
{
memcpy(parg_target, beg_tok, width);
((char *)parg_target)[width] = '\0';
}
break;
case 'f':
case 'g':
case 'G':
case 'e':
case 'E':
parg_target = (void *)va_arg(arg_ptr, double *);
if(width && 0 != (parg_target))
*((double *)parg_target) = code_atof(beg_tok, width);
break;
};
if(parg_target)
break;
if(0 == (parg_target = (void *)va_arg(arg_ptr, int *)))
break;
if(!width)
break;
switch(*format)
{
case 'd':
case 'i':
snum = code_atoi(beg_tok, width, 10);
memcpy(parg_target, &snum, sizeof(int));
break;
case 'u':
unum = code_atoi(beg_tok, width, 10);
memcpy(parg_target, &unum, sizeof(unsigned int));
break;
case 'x':
case 'X':
unum = code_atoi(beg_tok, width, 16);
memcpy(parg_target, &unum, sizeof(unsigned int));
break;
case 'o':
unum = code_atoi(beg_tok, width, 8);
memcpy(parg_target, &unum, sizeof(unsigned int));
break;
default:
goto fail;
};
break;
};
}
fail:
va_end(arg_ptr);
return tok_count;
}
double nmeaGenerator::nmea_random(double min, double max)
{
static double rand_max = RAND_MAX;
double rand_val = rand();
double bounds = max - min;
return min + (rand_val * bounds) / rand_max;
}