@@ -1,2019 +1,2019 | |||
|
1 | 1 | import gc |
|
2 | 2 | import os |
|
3 | 3 | import io |
|
4 | 4 | import cv2 |
|
5 | 5 | import json |
|
6 | 6 | import pytz |
|
7 | 7 | import busio |
|
8 | 8 | import board |
|
9 | 9 | import gzip |
|
10 | 10 | import random |
|
11 | 11 | import numpy |
|
12 | 12 | import base64 |
|
13 | 13 | import requests |
|
14 | 14 | import traceback |
|
15 | 15 | import subprocess |
|
16 | 16 | import adafruit_ina219 |
|
17 | 17 | import RPi.GPIO as GPIO |
|
18 | 18 | import adafruit_lidarlite |
|
19 | 19 | import paho.mqtt.client as mqtt |
|
20 | 20 | import urllib.request |
|
21 | 21 | |
|
22 | 22 | from functools import wraps |
|
23 | 23 | from time import sleep |
|
24 | 24 | from copy import deepcopy |
|
25 | 25 | from PIL import Image, ImageOps |
|
26 | 26 | from datetime import datetime,time |
|
27 | 27 | from contextlib import contextmanager |
|
28 | 28 | from requests.auth import HTTPDigestAuth |
|
29 | 29 | from adafruit_ina219 import ADCResolution, BusVoltageRange |
|
30 | 30 | |
|
31 | 31 | |
|
32 | 32 | |
|
33 | 33 | |
|
34 | 34 | #---------------------------------------# |
|
35 | 35 | def load_version(): |
|
36 | 36 | try: |
|
37 | 37 | model = None |
|
38 | 38 | with open('/proc/cpuinfo', 'r') as cpuinfo: |
|
39 | 39 | for line in cpuinfo: |
|
40 | 40 | if line.startswith('Hardware'): |
|
41 | 41 | hardware = line.split(':')[1].strip() |
|
42 | 42 | elif line.startswith('Revision'): |
|
43 | 43 | revision = line.split(':')[1].strip() |
|
44 | 44 | elif line.startswith('Model'): |
|
45 | 45 | model = line.split(':')[1].strip() |
|
46 | 46 | |
|
47 | 47 | return model |
|
48 | 48 | except: |
|
49 | 49 | return False |
|
50 | 50 | |
|
51 | 51 | |
|
52 | 52 | model = load_version() |
|
53 | 53 | |
|
54 | 54 | |
|
55 | 55 | |
|
56 | 56 | if 'Raspberry Pi Zero' in model : |
|
57 | 57 | |
|
58 | 58 | ''' |
|
59 | 59 | Importamos la versión simple |
|
60 | 60 | ''' |
|
61 | 61 | |
|
62 | 62 | TOTAL_BUFFER_VIDEO = 10 |
|
63 | 63 | import tflite_runtime.interpreter as lite |
|
64 | 64 | |
|
65 | 65 | |
|
66 | 66 | elif 'Raspberry Pi 4' in model : |
|
67 | 67 | ''' |
|
68 | 68 | |
|
69 | 69 | Agregar más dispositivos si es necesario |
|
70 | 70 | |
|
71 | 71 | ''' |
|
72 | 72 | TOTAL_BUFFER_VIDEO = 150 |
|
73 | 73 | ###################################################################### |
|
74 | 74 | ###################################################################### |
|
75 | 75 | ###################################################################### |
|
76 | 76 | |
|
77 | 77 | # import tqdm |
|
78 | 78 | # import keras |
|
79 | 79 | # import random |
|
80 | 80 | # import einops |
|
81 | 81 | # import pathlib |
|
82 | 82 | # import itertools |
|
83 | 83 | # import collections |
|
84 | 84 | # import tensorflow as tf |
|
85 | 85 | |
|
86 | 86 | TOTAL_BUFFER_VIDEO = 10 |
|
87 | 87 | import tflite_runtime.interpreter as lite |
|
88 | 88 | |
|
89 | 89 | |
|
90 | 90 | ################################################################################################################################################################################################################## |
|
91 | 91 | ################################################################################################################################################################################################################## |
|
92 | 92 | ################################################################################################################################################################################################################## |
|
93 | 93 | ################################################################################################################################################################################################################## |
|
94 | 94 | ################################################################################################################################################################################################################## |
|
95 | 95 | ################################################################################################################################################################################################################## |
|
96 | 96 | #---------------------------------------# |
|
97 | 97 | |
|
98 | 98 | |
|
99 | 99 | #------------------------------------# |
|
100 | 100 | i2c = busio.I2C(board.SCL, board.SDA) |
|
101 | 101 | #------------------------------------# |
|
102 | 102 | |
|
103 | 103 | |
|
104 | 104 | @contextmanager |
|
105 | 105 | def locked(lock): |
|
106 | 106 | lock.acquire() |
|
107 | 107 | try: |
|
108 | 108 | yield |
|
109 | 109 | finally: |
|
110 | 110 | lock.release() |
|
111 | 111 | |
|
112 | 112 | |
|
113 | 113 | |
|
114 | 114 | def format_frames(frame, output_size): |
|
115 | 115 | """ |
|
116 | 116 | Pad and resize an image from a video. |
|
117 | 117 | |
|
118 | 118 | Args: |
|
119 | 119 | frame: Image that needs to resized and padded. |
|
120 | 120 | output_size: Pixel size of the output frame image. |
|
121 | 121 | |
|
122 | 122 | Return: |
|
123 | 123 | Formatted frame with padding of specified output size. |
|
124 | 124 | """ |
|
125 | 125 | ########frame = tf.image.convert_image_dtype(frame, tf.float32) |
|
126 | 126 | ########frame = tf.image.resize_with_pad(frame, *output_size) |
|
127 | 127 | |
|
128 | 128 | |
|
129 | 129 | frame = Image.fromarray(frame) |
|
130 | 130 | frame = ImageOps.pad(frame,output_size,method=Image.Resampling.BILINEAR) |
|
131 | 131 | |
|
132 | 132 | frame = numpy.array(frame)/255.0 |
|
133 | 133 | |
|
134 | 134 | return frame |
|
135 | 135 | |
|
136 | 136 | |
|
137 | 137 | def frames_from_video_file(video, n_frames, output_size = (224,224), frame_step = 15): |
|
138 | 138 | """ |
|
139 | 139 | Creates frames from each video file present for each category. |
|
140 | 140 | |
|
141 | 141 | Args: |
|
142 | 142 | video_path: File path to the video. |
|
143 | 143 | n_frames: Number of frames to be created per video file. |
|
144 | 144 | output_size: Pixel size of the output frame image. |
|
145 | 145 | |
|
146 | 146 | Return: |
|
147 | 147 | An NumPy array of frames in the shape of (n_frames, height, width, channels). |
|
148 | 148 | """ |
|
149 | 149 | # Read each video frame by frame |
|
150 | 150 | result = [] |
|
151 | 151 | #src = cv2.VideoCapture(str(video_path)) |
|
152 | 152 | |
|
153 | 153 | src = video |
|
154 | 154 | |
|
155 | 155 | video_length = len(src) |
|
156 | 156 | |
|
157 | 157 | need_length = 1 + (n_frames - 1) * frame_step |
|
158 | 158 | |
|
159 | 159 | if need_length > video_length: |
|
160 | 160 | start = 0 |
|
161 | 161 | else: |
|
162 | 162 | max_start = video_length - need_length |
|
163 | 163 | start = random.randint(0, max_start + 1) |
|
164 | 164 | |
|
165 | 165 | # ret is a boolean indicating whether read was successful, frame is the image itself |
|
166 | 166 | |
|
167 | 167 | |
|
168 | 168 | for _ in range(n_frames): |
|
169 | 169 | frame = video[start] |
|
170 | 170 | frame = format_frames(frame, output_size) |
|
171 | 171 | result.append(frame) |
|
172 | 172 | start += frame_step |
|
173 | 173 | if start >= video_length: |
|
174 | 174 | break |
|
175 | 175 | |
|
176 | 176 | result = numpy.array(result)[..., [2, 1, 0]] |
|
177 | 177 | |
|
178 | 178 | result = result.reshape((1,result.shape[0],result.shape[1],result.shape[2],result.shape[3])) |
|
179 | 179 | |
|
180 | 180 | return result |
|
181 | 181 | |
|
182 | 182 | def throttle(seconds): |
|
183 | 183 | def decorator(func): |
|
184 | 184 | last_called = {} |
|
185 | 185 | |
|
186 | 186 | @wraps(func) |
|
187 | 187 | def wrapper(self, *args, **kwargs): |
|
188 | 188 | current_time = datetime.now().timestamp() |
|
189 | 189 | if self not in last_called: |
|
190 | 190 | last_called[self] = 0 |
|
191 | 191 | |
|
192 | 192 | if current_time - last_called[self] >= seconds: |
|
193 | 193 | last_called[self] = current_time |
|
194 | 194 | return func(self, *args, **kwargs) |
|
195 | 195 | else: |
|
196 | 196 | return |
|
197 | 197 | return wrapper |
|
198 | 198 | return decorator |
|
199 | 199 | |
|
200 | 200 | |
|
201 | 201 | class MyErrorForManage(Exception): |
|
202 | 202 | def __init__(self, mensaje): |
|
203 | 203 | super().__init__(mensaje) |
|
204 | 204 | self.mensaje = mensaje |
|
205 | 205 | |
|
206 | 206 | |
|
207 | 207 | class BytesEncoder(json.JSONEncoder): |
|
208 | 208 | def default(self, obj): |
|
209 | 209 | if isinstance(obj, bytes): |
|
210 | 210 | return obj.decode('utf-8') |
|
211 | 211 | return json.JSONEncoder.default(self, obj) |
|
212 | 212 | |
|
213 | 213 | |
|
214 | 214 | |
|
215 | 215 | def on_connect(client, userdata, flags, rc): |
|
216 | 216 | print("Connected with result code " + str(rc)) |
|
217 | 217 | print("UserData= " + str(userdata)) |
|
218 | 218 | print("flags= " + str(flags)) |
|
219 | 219 | print("") |
|
220 | 220 | |
|
221 | 221 | |
|
222 | 222 | class VarsJons(object): |
|
223 | 223 | |
|
224 | 224 | id = None |
|
225 | 225 | location = None |
|
226 | 226 | data = None |
|
227 | 227 | debug = False |
|
228 | 228 | type_weights = None |
|
229 | 229 | store_data = False |
|
230 | 230 | latitude = None |
|
231 | 231 | longitude = None |
|
232 | 232 | |
|
233 | 233 | vars_mqtt = None |
|
234 | 234 | vars_gpio = None |
|
235 | 235 | vars = None |
|
236 | 236 | weights = None |
|
237 | 237 | |
|
238 | 238 | def __init__(self): |
|
239 | 239 | |
|
240 | 240 | self.path_file = '/others/vars.json' |
|
241 | 241 | |
|
242 | 242 | self.load_auth_data() |
|
243 | 243 | |
|
244 | 244 | def load_auth_data(self): |
|
245 | 245 | try: |
|
246 | 246 | with open(self.path_file, 'r') as file: |
|
247 | 247 | self.data = json.load(file) |
|
248 | 248 | |
|
249 | 249 | except FileNotFoundError: |
|
250 | 250 | |
|
251 | 251 | raise FileNotFoundError("Archivo auth.json no encontrado en el directorio.") |
|
252 | 252 | |
|
253 | 253 | else: |
|
254 | 254 | |
|
255 | 255 | self.vars = self.data["vars"] |
|
256 | 256 | self.vars_mqtt = self.data['mqtt'] |
|
257 | 257 | self.vars_gpio = self.data['gpio'] |
|
258 | 258 | self.vars_inference = self.data['inference'] |
|
259 | 259 | self.debug = self.data['debug'] |
|
260 | 260 | self.latitude = self.data["latitude"] |
|
261 | 261 | self.longitude = self.data["longitude"] |
|
262 | 262 | self.weights = self.data['weights'] |
|
263 | 263 | self.id = self.data['id_device'] |
|
264 | 264 | self.vars_router = self.data.get("router",None) |
|
265 | 265 | self.location = self.data["location"] |
|
266 | 266 | self.router = self.data['router'] |
|
267 | 267 | self.type_weights = self.data['type_weights'] |
|
268 | 268 | self.store_data = self.data['store_data'] |
|
269 | 269 | self.river_width = self.data['river_width'] |
|
270 | 270 | self.camera = self.data['camera'] |
|
271 | 271 | |
|
272 | 272 | def save_json(self): |
|
273 | 273 | |
|
274 | 274 | try: |
|
275 | 275 | self.data["vars"] = self.vars |
|
276 | 276 | #self.data["location"] = self.location |
|
277 | 277 | self.data['mqtt'] = self.vars_mqtt |
|
278 | 278 | self.data["gpio"] = self.vars_gpio |
|
279 | 279 | self.data['inference'] = self.vars_inference |
|
280 | 280 | #self.data['debug'] = self.debug |
|
281 | 281 | self.data["weights"] = self.weights |
|
282 | 282 | self.data["id_device"] = self.id |
|
283 | 283 | #self.data["type_weights"] = self.type_weights |
|
284 | 284 | self.data['camera'] = self.camera |
|
285 | 285 | self.data['router'] = self.router |
|
286 | 286 | except: |
|
287 | 287 | |
|
288 | 288 | pass |
|
289 | 289 | |
|
290 | 290 | else: |
|
291 | 291 | |
|
292 | 292 | try: |
|
293 | 293 | with open(self.path_file,'w') as file: |
|
294 | 294 | json.dump(self.data,file,indent=7) |
|
295 | 295 | |
|
296 | 296 | except: |
|
297 | 297 | pass |
|
298 | 298 | |
|
299 | 299 | def on_disconnect(client,userdata,rc): |
|
300 | 300 | def write_status(chain): |
|
301 | 301 | now = datetime.now() |
|
302 | 302 | |
|
303 | 303 | formatted_date_time = now.strftime("%d/%m/%Y %H:%M:%S") |
|
304 | 304 | |
|
305 | 305 | filename = '/logs/log.txt' |
|
306 | 306 | |
|
307 | 307 | if not os.path.isdir(os.path.dirname(filename)): |
|
308 | 308 | os.makedirs(os.path.dirname(filename)) |
|
309 | 309 | |
|
310 | 310 | chain = formatted_date_time + " " + chain |
|
311 | 311 | |
|
312 | 312 | try: |
|
313 | 313 | with open(filename,'a') as file: |
|
314 | 314 | |
|
315 | 315 | file.write(chain + '\n') |
|
316 | 316 | except: |
|
317 | 317 | pass |
|
318 | 318 | |
|
319 | 319 | return |
|
320 | 320 | |
|
321 | 321 | write_status("Se ha desconectado el MQTT, recuperando conexión.") |
|
322 | 322 | sleep(0.5) |
|
323 | 323 | |
|
324 | 324 | if rc != 0: |
|
325 | 325 | count_attempts = 0 |
|
326 | 326 | |
|
327 | 327 | |
|
328 | 328 | while 1: |
|
329 | 329 | |
|
330 | 330 | if count_attempts > 10000: |
|
331 | 331 | count_attempts = 0 |
|
332 | 332 | |
|
333 | 333 | try: |
|
334 | 334 | client.reconnect() |
|
335 | 335 | except: |
|
336 | 336 | |
|
337 | 337 | error = traceback.format_exc() |
|
338 | 338 | |
|
339 | 339 | write_status(f"Error al reconectar MQTT broker. Intento {count_attempts+1}. Copia del error: {error}") |
|
340 | 340 | |
|
341 | 341 | count_attempts +=1 |
|
342 | 342 | |
|
343 | 343 | time.sleep(5) |
|
344 | 344 | |
|
345 | 345 | |
|
346 | 346 | else: |
|
347 | 347 | write_status(f"Broker MQTT reconectado con exito.") |
|
348 | 348 | return |
|
349 | 349 | |
|
350 | 350 | MAX_NUMBER_SENSORS = 4 |
|
351 | 351 | |
|
352 | 352 | class estimator(object): |
|
353 | 353 | ''' |
|
354 | 354 | Clase que permite estimar si hay un evento de huayco o lahar |
|
355 | 355 | Solo conserva los ultimos valores |
|
356 | 356 | ''' |
|
357 | 357 | |
|
358 | 358 | timestamp_alert = 0 |
|
359 | 359 | flag_load_weights = False |
|
360 | 360 | |
|
361 | 361 | _dataOut = None |
|
362 | 362 | _image = None |
|
363 | 363 | _share = 10 |
|
364 | 364 | _video = None |
|
365 | 365 | |
|
366 | 366 | _string_status = None |
|
367 | 367 | |
|
368 | 368 | activate = False |
|
369 | 369 | activate_count = 0 |
|
370 | 370 | |
|
371 | 371 | count_hb = 0 |
|
372 | 372 | count_HFS = 0 |
|
373 | 373 | count_RCWL = 0 |
|
374 | 374 | status_lidar = 0 |
|
375 | 375 | |
|
376 | 376 | flag_internet = False |
|
377 | 377 | |
|
378 | 378 | inference_value = None |
|
379 | 379 | |
|
380 | 380 | list_HB = numpy.empty(MAX_NUMBER_SENSORS,dtype=float) |
|
381 | 381 | list_HB.fill(numpy.nan) |
|
382 | 382 | |
|
383 | 383 | list_HFS = numpy.empty(MAX_NUMBER_SENSORS,dtype=float) |
|
384 | 384 | list_HFS.fill(numpy.nan) |
|
385 | 385 | |
|
386 | 386 | list_RCWL = numpy.empty(MAX_NUMBER_SENSORS,dtype=float) |
|
387 | 387 | list_RCWL.fill(numpy.nan) |
|
388 | 388 | timestamp = None |
|
389 | 389 | |
|
390 | 390 | #Para inferencia por imagen |
|
391 | 391 | TH_UMBRAL = 0.8 |
|
392 | 392 | |
|
393 | 393 | values_dict = {'photo':{'0':'no_huayco','1':'huayco','10':'Camera Not Working'}, |
|
394 | 394 | 'video':{'1':'huayco','0':'no_huayco','10':'Camera Not Working'}, |
|
395 | 395 | 'server':{'1':'huayco','0':'no_huayco','10':'Camera Not Working'}} |
|
396 | 396 | |
|
397 | 397 | def __init__(self,obj): |
|
398 | 398 | |
|
399 | 399 | self.obj_vars = obj |
|
400 | 400 | self.id = self.obj_vars.id |
|
401 | 401 | self.path_save_json = obj.vars.get("path_save",os.path.join(os.getcwd(),'data')) |
|
402 |
self.weights = obj. |
|
|
402 | self.weights = obj.get(obj.type_weights,None) | |
|
403 | 403 | |
|
404 | 404 | self.vars_mqtt = self.obj_vars.vars_mqtt |
|
405 | 405 | |
|
406 | 406 | self.vars_inference = self.obj_vars.vars_inference |
|
407 | 407 | self.inference_mode = self.vars_inference.get("inference_mode",None) |
|
408 | 408 | |
|
409 | 409 | if self.weights is None: |
|
410 | 410 | self.write_status("[ERROR] El atributo weights no puede ser None en el objeto Estimator. Porfavor, asegure de configurar correctamente la variable.") |
|
411 | 411 | raise AttributeError("El atributo weights no puede ser None en el objeto Estimator. Porfavor, asegure de configurar correctamente la variable.") |
|
412 | 412 | |
|
413 | 413 | |
|
414 | 414 | def reset_values(self): |
|
415 | 415 | |
|
416 | 416 | |
|
417 | 417 | self.list_HFS.fill(numpy.nan) |
|
418 | 418 | self.list_RCWL.fill(numpy.nan) |
|
419 | 419 | self.list_HB.fill(numpy.nan) |
|
420 | 420 | |
|
421 | 421 | self.count_hb = 0 |
|
422 | 422 | self.count_HFS = 0 |
|
423 | 423 | self.count_RCWL = 0 |
|
424 | 424 | |
|
425 | 425 | gc.collect() |
|
426 | 426 | |
|
427 | 427 | @property |
|
428 | 428 | def video(self): |
|
429 | 429 | return self._video |
|
430 | 430 | |
|
431 | 431 | @property |
|
432 | 432 | def share(self): |
|
433 | 433 | return self._share |
|
434 | 434 | |
|
435 | 435 | @property |
|
436 | 436 | def dataOut(self): |
|
437 | 437 | return self._dataOut |
|
438 | 438 | |
|
439 | 439 | @property |
|
440 | 440 | def image(self): |
|
441 | 441 | return self._image |
|
442 | 442 | |
|
443 | 443 | @property |
|
444 | 444 | def string_status(self): |
|
445 | 445 | tmp = self.values_dict[self.inference_mode] |
|
446 | 446 | |
|
447 | 447 | if self._share > 0.5 and self._share<= 2: |
|
448 | 448 | |
|
449 | 449 | self._string_status = tmp['1'] |
|
450 | 450 | elif self._share <= 0.5: |
|
451 | 451 | |
|
452 | 452 | self._string_status = tmp['0'] |
|
453 | 453 | else: |
|
454 | 454 | |
|
455 | 455 | self._string_status = tmp['10'] |
|
456 | 456 | |
|
457 | 457 | |
|
458 | 458 | return self._string_status |
|
459 | 459 | |
|
460 | 460 | @image.setter |
|
461 | 461 | def image(self,value): |
|
462 | 462 | |
|
463 | 463 | self._image = deepcopy(value['image']) |
|
464 | 464 | self.timestamp = deepcopy(value['timestamp']) |
|
465 | 465 | |
|
466 | 466 | @video.setter |
|
467 | 467 | def video(self,value): |
|
468 | 468 | self._video = deepcopy(value['video']) |
|
469 | 469 | self.timestamp = deepcopy(value['timestamp']) |
|
470 | 470 | |
|
471 | 471 | |
|
472 | 472 | |
|
473 | 473 | @share.setter |
|
474 | 474 | def share(self,value): |
|
475 | 475 | |
|
476 | 476 | self._share = value |
|
477 | 477 | |
|
478 | 478 | if self._share>=0.1 and self._share <5 : |
|
479 | 479 | self._share = value |
|
480 | 480 | else: |
|
481 | 481 | self._share = 0 |
|
482 | 482 | |
|
483 | 483 | |
|
484 | 484 | #------------- Realizamos la ponderación ----------------- |
|
485 | 485 | count = 0 |
|
486 | 486 | |
|
487 | 487 | tmp_count = round(self.weights['camara']*self._share,2) |
|
488 | 488 | |
|
489 | 489 | if tmp_count>1.1: |
|
490 | 490 | tmp_count = 0 |
|
491 | 491 | |
|
492 | 492 | count = tmp_count + count |
|
493 | 493 | |
|
494 | 494 | tmp = numpy.nanmean(self.list_HFS) |
|
495 | 495 | |
|
496 | 496 | if numpy.isnan(tmp): |
|
497 | 497 | tmp = 0 |
|
498 | 498 | if tmp>1: |
|
499 | 499 | tmp = 0 |
|
500 | 500 | |
|
501 | 501 | count += self.weights['HFS']*tmp |
|
502 | 502 | |
|
503 | 503 | if numpy.isnan(self.status_lidar): |
|
504 | 504 | self.status_lidar = 0 |
|
505 | 505 | |
|
506 | 506 | if self.status_lidar>1: |
|
507 | 507 | self.status_lidar = 1 |
|
508 | 508 | |
|
509 | 509 | count += self.weights['LIDAR']*(self.status_lidar) |
|
510 | 510 | |
|
511 | 511 | tmp = numpy.nanmean(self.list_HB) |
|
512 | 512 | |
|
513 | 513 | if numpy.isnan(tmp): |
|
514 | 514 | tmp = 0 |
|
515 | 515 | |
|
516 | 516 | if tmp>1: |
|
517 | 517 | tmp = 0 |
|
518 | 518 | count += self.weights['HB100']*tmp |
|
519 | 519 | |
|
520 | 520 | if count>0.7: |
|
521 | 521 | |
|
522 | 522 | self.activate = True |
|
523 | 523 | self.activate_count = count |
|
524 | 524 | self.__send_alert_mqtt() |
|
525 | 525 | |
|
526 | 526 | else: |
|
527 | 527 | |
|
528 | 528 | self.activate = False |
|
529 | 529 | self.activate_count = count |
|
530 | 530 | |
|
531 | 531 | |
|
532 | 532 | |
|
533 | 533 | |
|
534 | 534 | def __send_alert_mqtt(self,): |
|
535 | 535 | |
|
536 | 536 | now = datetime.now().timestamp() |
|
537 | 537 | |
|
538 | 538 | |
|
539 | 539 | if (now - self.timestamp_alert > 60 ): |
|
540 | 540 | |
|
541 | 541 | try: |
|
542 | 542 | #Para no generar repetibilidad de las alertas |
|
543 | 543 | #Se enviará alertas cada minuto |
|
544 | 544 | |
|
545 | 545 | CLIENT_MQTT = str(self.id + "_ALERT") |
|
546 | 546 | mqtt_user = self.vars_mqtt.get("mqtt_user") |
|
547 | 547 | mqtt_pass = self.vars_mqtt.get("mqtt_pass") |
|
548 | 548 | mqtt_broker = self.vars_mqtt.get("mqtt_broker") |
|
549 | 549 | mqtt_port = self.vars_mqtt.get("mqtt_port") |
|
550 | 550 | |
|
551 | 551 | alert_topic = os.path.join(self.vars_mqtt.get("alert_topic","igp/roj/alert"),self.id) |
|
552 | 552 | |
|
553 | 553 | |
|
554 | 554 | client = mqtt.Client(CLIENT_MQTT) |
|
555 | 555 | |
|
556 | 556 | client.on_connect = on_connect |
|
557 | 557 | client.on_disconnect = on_disconnect |
|
558 | 558 | |
|
559 | 559 | client.username_pw_set(mqtt_user,mqtt_pass) |
|
560 | 560 | client.connect(mqtt_broker,mqtt_port,keepalive=300) |
|
561 | 561 | |
|
562 | 562 | message = dict() |
|
563 | 563 | |
|
564 | 564 | message['timestamp'] = datetime.now().timestamp() |
|
565 | 565 | message['type'] = 'alert' |
|
566 | 566 | message['id'] = self.id |
|
567 | 567 | |
|
568 | 568 | client.publish(alert_topic,json.dumps(message),qos=2) |
|
569 | 569 | |
|
570 | 570 | client.disconnect() |
|
571 | 571 | |
|
572 | 572 | self.write_status("[ALERT] Datos de alerta se han enviado.") |
|
573 | 573 | |
|
574 | 574 | |
|
575 | 575 | self.timestamp_alert = datetime.now().timestamp() |
|
576 | 576 | |
|
577 | 577 | except: |
|
578 | 578 | |
|
579 | 579 | self.write_status(f"[ERROR] Error enviado alerta de activación al servidor MQTT: {traceback.format_exc()}") |
|
580 | 580 | |
|
581 | 581 | |
|
582 | 582 | |
|
583 | 583 | |
|
584 | 584 | @dataOut.setter |
|
585 | 585 | def dataOut(self,value): |
|
586 | 586 | |
|
587 | 587 | self._dataOut = value |
|
588 | 588 | |
|
589 | 589 | list_keys = self._dataOut.keys() |
|
590 | 590 | |
|
591 | 591 | self.reset_values() |
|
592 | 592 | |
|
593 | 593 | for key in list_keys: |
|
594 | 594 | |
|
595 | 595 | obj = self._dataOut[key] |
|
596 | 596 | |
|
597 | 597 | y = obj.get_latest()[1] |
|
598 | 598 | |
|
599 | 599 | if 'sensor_HFS' in key: |
|
600 | 600 | self.list_HFS[self.count_HFS%MAX_NUMBER_SENSORS] = y |
|
601 | 601 | |
|
602 | 602 | self.count_HFS +=1 |
|
603 | 603 | |
|
604 | 604 | if 'sensor_HB' in key: |
|
605 | 605 | self.list_HB[self.count_hb%MAX_NUMBER_SENSORS] = y |
|
606 | 606 | self.count_hb +=1 |
|
607 | 607 | |
|
608 | 608 | if 'sensor_RCWL' in key: |
|
609 | 609 | self.list_RCWL[self.count_RCWL%MAX_NUMBER_SENSORS] = y |
|
610 | 610 | |
|
611 | 611 | self.count_RCWL +=1 |
|
612 | 612 | |
|
613 | 613 | if 'lidar' in key: |
|
614 | 614 | |
|
615 | 615 | #Solo contamos con un lidar |
|
616 | 616 | #Asi que nos es suficiente manejarlo como una variable |
|
617 | 617 | |
|
618 | 618 | self.status_lidar = obj.activate |
|
619 | 619 | |
|
620 | 620 | if self.status_lidar: |
|
621 | 621 | self.status_lidar = 1 |
|
622 | 622 | else: |
|
623 | 623 | self.status_lidar = 0 |
|
624 | 624 | |
|
625 | 625 | def __load_model_photo(self,path_model): |
|
626 | 626 | |
|
627 | 627 | try: |
|
628 | 628 | self.model_IA = lite.Interpreter(model_path=path_model) |
|
629 | 629 | self.model_IA.allocate_tensors() |
|
630 | 630 | |
|
631 | 631 | except Exception as e: |
|
632 | 632 | #Modelo IA no se pudo cargar |
|
633 | 633 | self.write_status(f"No se pudo cargar el modelo IA de foto. Error: {e}") |
|
634 | 634 | self.flag_load_weights = False |
|
635 | 635 | |
|
636 | 636 | else: |
|
637 | 637 | self.write_status("Modelo IA de photo cargado con éxito.") |
|
638 | 638 | self.flag_load_weights = True |
|
639 | 639 | |
|
640 | 640 | def __load_model_video(self,path): |
|
641 | 641 | |
|
642 | 642 | try: |
|
643 | 643 | |
|
644 | 644 | |
|
645 | 645 | HEIGHT = 224 |
|
646 | 646 | WIDTH = 224 |
|
647 | 647 | input_shape = (None, 10, HEIGHT, WIDTH, 3) |
|
648 | 648 | input = layers.Input(shape=(input_shape[1:])) |
|
649 | 649 | x = input |
|
650 | 650 | |
|
651 | 651 | x = Conv2Plus1D(filters=16, kernel_size=(3, 7, 7), padding='same')(x) |
|
652 | 652 | x = layers.BatchNormalization()(x) |
|
653 | 653 | x = layers.ReLU()(x) |
|
654 | 654 | x = Dropout(0.1)(x) |
|
655 | 655 | x = ResizeVideo(HEIGHT // 2, WIDTH // 2)(x) |
|
656 | 656 | |
|
657 | 657 | # Block 1 |
|
658 | 658 | x = add_residual_block(x, 16, (3, 3, 3)) |
|
659 | 659 | x = Dropout(0.1)(x) |
|
660 | 660 | x = ResizeVideo(HEIGHT // 4, WIDTH // 4)(x) |
|
661 | 661 | |
|
662 | 662 | # Block 2 |
|
663 | 663 | x = add_residual_block(x, 32, (3, 3, 3)) |
|
664 | 664 | x = Dropout(0.1)(x) |
|
665 | 665 | x = ResizeVideo(HEIGHT // 8, WIDTH // 8)(x) |
|
666 | 666 | |
|
667 | 667 | # Block 3 |
|
668 | 668 | x = add_residual_block(x, 64, (3, 3, 3)) |
|
669 | 669 | x = Dropout(0.1)(x) |
|
670 | 670 | x = ResizeVideo(HEIGHT // 16, WIDTH // 16)(x) |
|
671 | 671 | |
|
672 | 672 | # Block 4 |
|
673 | 673 | x = add_residual_block(x, 128, (3, 3, 3)) |
|
674 | 674 | x = Dropout(0.1)(x) |
|
675 | 675 | x = ResizeVideo(HEIGHT // 32, WIDTH // 32)(x) |
|
676 | 676 | |
|
677 | 677 | |
|
678 | 678 | x = layers.AveragePooling3D((10,1,1))(x) |
|
679 | 679 | x = layers.Reshape((x.shape[1]*x.shape[2]*x.shape[3],-1))(x) |
|
680 | 680 | x = layers.LSTM(128,return_sequences=True)(x) |
|
681 | 681 | x = layers.Flatten()(x) |
|
682 | 682 | x = layers.Dense(512)(x) |
|
683 | 683 | x = Dropout(0.1)(x) |
|
684 | 684 | x = layers.Dense(256)(x) |
|
685 | 685 | |
|
686 | 686 | x = layers.Dense(1, activation='sigmoid')(x) |
|
687 | 687 | |
|
688 | 688 | |
|
689 | 689 | self.model_IA = keras.Model(input, x) |
|
690 | 690 | |
|
691 | 691 | self.model_IA.load_weights(path) |
|
692 | 692 | |
|
693 | 693 | except: |
|
694 | 694 | |
|
695 | 695 | self.write_status(f"[ERROR] No se pudo cargar el modelo IA de video. Error: {traceback.format_exc()}") |
|
696 | 696 | self.flag_load_weights = False |
|
697 | 697 | |
|
698 | 698 | else: |
|
699 | 699 | |
|
700 | 700 | self.write_status("Modelo IA de video cargado con exito.") |
|
701 | 701 | self.flag_load_weights = True |
|
702 | 702 | |
|
703 | 703 | |
|
704 | 704 | |
|
705 | 705 | def load_weights(self): |
|
706 | 706 | #Usar mobilnet debido a su reducido tamaño |
|
707 | 707 | if self.inference_mode == 'photo': |
|
708 | 708 | path_model = "/tools/models/mobilnet.tflite" |
|
709 | 709 | |
|
710 | 710 | self.__load_model_photo(path_model) |
|
711 | 711 | |
|
712 | 712 | elif self.inference_mode == 'video': |
|
713 | 713 | #Peso de videos |
|
714 | 714 | path_model = "/tools/models/weights_video.h5" |
|
715 | 715 | |
|
716 | 716 | self.__load_model_video(path_model) |
|
717 | 717 | |
|
718 | 718 | elif self.inference_mode == 'server': |
|
719 | 719 | ''' |
|
720 | 720 | Aqui se realizará inferencias a la IP publica del OVS |
|
721 | 721 | - La inferencia al OVS se realizará mientras se cuente con internet. |
|
722 | 722 | - Si no se cuenta con internet, se realizará inferencias con el pequeño modelo siempre y |
|
723 | 723 | cuando sea una RPI 4 o superior. |
|
724 | 724 | ''' |
|
725 | 725 | |
|
726 | 726 | self.__model_less_complexity() |
|
727 | 727 | |
|
728 | 728 | |
|
729 | 729 | |
|
730 | 730 | def __model_less_complexity(self,): |
|
731 | 731 | |
|
732 | 732 | self.model_IA = True |
|
733 | 733 | |
|
734 | 734 | return |
|
735 | 735 | |
|
736 | 736 | |
|
737 | 737 | |
|
738 | 738 | def check_internet(self,verbose=True): |
|
739 | 739 | |
|
740 | 740 | count = 0 |
|
741 | 741 | |
|
742 | 742 | while 1: |
|
743 | 743 | |
|
744 | 744 | try: |
|
745 | 745 | urllib.request.urlopen('http://www.google.com', timeout=1) |
|
746 | 746 | |
|
747 | 747 | except: |
|
748 | 748 | count +=1 |
|
749 | 749 | if (count ==3): |
|
750 | 750 | self.flag_internet = False |
|
751 | 751 | break |
|
752 | 752 | |
|
753 | 753 | sleep(0.5) |
|
754 | 754 | else: |
|
755 | 755 | if verbose: |
|
756 | 756 | self.write_status("Se cuenta con conexión a internet.") |
|
757 | 757 | |
|
758 | 758 | if self.debug: |
|
759 | 759 | print("Se cuenta con conexión a internet") |
|
760 | 760 | |
|
761 | 761 | self.flag_internet = True |
|
762 | 762 | |
|
763 | 763 | return |
|
764 | 764 | |
|
765 | 765 | return |
|
766 | 766 | |
|
767 | 767 | |
|
768 | 768 | def get_inference(self,): |
|
769 | 769 | |
|
770 | 770 | |
|
771 | 771 | self.check_internet(False) |
|
772 | 772 | |
|
773 | 773 | if self.inference_mode == 'video': |
|
774 | 774 | |
|
775 | 775 | ''' |
|
776 | 776 | Se realiza predicción con el modelo de baja complejidad. |
|
777 | 777 | ''' |
|
778 | 778 | |
|
779 | 779 | n_frames = 10 |
|
780 | 780 | |
|
781 | 781 | if self._video != None: |
|
782 | 782 | |
|
783 | 783 | self.write_status("Realizando inferencia del modelo IA con video.") |
|
784 | 784 | |
|
785 | 785 | try: |
|
786 | 786 | |
|
787 | 787 | self._video = frames_from_video_file(self._video,n_frames)#result.reshape((1,result.shape[0],result.shape[1],result.shape[2],result.shape[3])) |
|
788 | 788 | result = 1- self.model_IA.predict(self._video)[0][0] |
|
789 | 789 | |
|
790 | 790 | except: |
|
791 | 791 | |
|
792 | 792 | self.write_status(f"[ERROR] Error en la estimación del video. {traceback.format_exc()} ") |
|
793 | 793 | self._video = None |
|
794 | 794 | |
|
795 | 795 | return None |
|
796 | 796 | else: |
|
797 | 797 | |
|
798 | 798 | #------------------ Guardamos las inferencias en video ---------------------# |
|
799 | 799 | ############################################################################# |
|
800 | 800 | |
|
801 | 801 | self.__save_inferences(result) |
|
802 | 802 | self._video = None |
|
803 | 803 | return result |
|
804 | 804 | |
|
805 | 805 | else: |
|
806 | 806 | |
|
807 | 807 | self.write_status("No se puede realizar la inferencia porque el batch es None.") |
|
808 | 808 | |
|
809 | 809 | elif self.inference_mode == 'photo': |
|
810 | 810 | |
|
811 | 811 | ''' |
|
812 | 812 | Se realiza inferencias mediante el modelo ML mediante foto. |
|
813 | 813 | Se va a deprecar este modo debido a que no es suficiente una foto para la estimación |
|
814 | 814 | de huaycos. |
|
815 | 815 | ''' |
|
816 | 816 | |
|
817 | 817 | if self._image is not None: |
|
818 | 818 | self.write_status("Realizando inferencia del modelo IA con photo.") |
|
819 | 819 | |
|
820 | 820 | try: |
|
821 | 821 | input_details = self.model_IA.get_input_details() |
|
822 | 822 | output_details = self.model_IA.get_output_details() |
|
823 | 823 | |
|
824 | 824 | input_data = deepcopy(self._image) |
|
825 | 825 | |
|
826 | 826 | input_data = Image.fromarray(input_data) |
|
827 | 827 | |
|
828 | 828 | resize = input_data.resize((256,256)) |
|
829 | 829 | |
|
830 | 830 | resize = numpy.array(resize) |
|
831 | 831 | |
|
832 | 832 | resize = numpy.expand_dims(resize,axis=0) |
|
833 | 833 | |
|
834 | 834 | resize = resize.astype(numpy.float32) |
|
835 | 835 | |
|
836 | 836 | self.model_IA.set_tensor(input_details[0]['index'], resize) |
|
837 | 837 | self.model_IA.invoke() |
|
838 | 838 | |
|
839 | 839 | output_data = self.model_IA.get_tensor(output_details[0]['index'])[0][0] |
|
840 | 840 | |
|
841 | 841 | self.write_status(f"Inferencia realizado con exito. Valor de inferencia: {output_data}.") |
|
842 | 842 | |
|
843 | 843 | if output_data>=0.6: |
|
844 | 844 | fpath = r'/data/inferences/img/01' |
|
845 | 845 | else: |
|
846 | 846 | fpath = r'/data/inferences/img/00' |
|
847 | 847 | |
|
848 | 848 | if not os.path.isdir: |
|
849 | 849 | os.makedirs(fpath) |
|
850 | 850 | |
|
851 | 851 | name = f'{self.timestamp}.png' |
|
852 | 852 | |
|
853 | 853 | fpath = os.path.join(fpath,name) |
|
854 | 854 | original_image = Image.fromarray(self._image) |
|
855 | 855 | original_image.save(fpath) |
|
856 | 856 | |
|
857 | 857 | |
|
858 | 858 | |
|
859 | 859 | return output_data |
|
860 | 860 | |
|
861 | 861 | except: |
|
862 | 862 | exc = traceback.format_exc() |
|
863 | 863 | |
|
864 | 864 | self.write_status(f"[ERROR] Error al realizar inferencia. Copia del error {exc}") |
|
865 | 865 | |
|
866 | 866 | return None |
|
867 | 867 | |
|
868 | 868 | else: |
|
869 | 869 | self.write_status("No se puede realizar la inferencia porque la imagen es None.") |
|
870 | 870 | |
|
871 | 871 | |
|
872 | 872 | elif self.inference_mode == 'server': |
|
873 | 873 | |
|
874 | 874 | ''' |
|
875 | 875 | Se realizará la inferencia al servidor. |
|
876 | 876 | Solo se envía los datos comprimidos en formato json. El servidor se encargará |
|
877 | 877 | de darle formato a la imagen. |
|
878 | 878 | ''' |
|
879 | 879 | |
|
880 | 880 | try: |
|
881 | 881 | ip_inference = self.vars_inference.get("server_inference_ML","38.10.105.243") |
|
882 | 882 | port_inference = self.vars_inference.get("port_inference_ML",7777) |
|
883 | 883 | |
|
884 | 884 | |
|
885 | 885 | url = f"http://{ip_inference}:{port_inference}/predict" |
|
886 | 886 | |
|
887 | 887 | |
|
888 | 888 | input_data = {'instances':base64.b64encode(self._video.getvalue()).decode('utf-8'), |
|
889 | 889 | 'id_user':str(self.id), |
|
890 | 890 | 'request_format':True, |
|
891 | 891 | 'shape':(360,640)} |
|
892 | 892 | |
|
893 | 893 | headers = { |
|
894 | 894 | 'Content-Type': 'application/json', |
|
895 | 895 | 'Content-Encoding': 'gzip-B64', |
|
896 | 896 | } |
|
897 | 897 | input_data = json.dumps(input_data) |
|
898 | 898 | |
|
899 | 899 | compress = io.BytesIO() |
|
900 | 900 | |
|
901 | 901 | with gzip.GzipFile(fileobj=compress, mode='wb', compresslevel=9) as gz2: |
|
902 | 902 | gz2.write(input_data.encode('utf-8')) |
|
903 | 903 | |
|
904 | 904 | |
|
905 | 905 | if self.flag_internet: |
|
906 | 906 | |
|
907 | 907 | ''' |
|
908 | 908 | Se cuenta con internet para enviar el video al servidor a fin de realizar la inferencia. |
|
909 | 909 | ''' |
|
910 | 910 | |
|
911 | 911 | try: |
|
912 | 912 | resp = requests.post(url,data=compress.getvalue(),headers=headers,timeout=15) |
|
913 | 913 | except: |
|
914 | 914 | self._video = None |
|
915 | 915 | compress = None |
|
916 | 916 | gc.collect() |
|
917 | 917 | self.write_status(f"Error ocurrido al realizar la inferencia al servidor. {traceback.format_exc()}") |
|
918 | 918 | |
|
919 | 919 | else: |
|
920 | 920 | |
|
921 | 921 | if resp.status_code == 200: |
|
922 | 922 | time1= datetime.now().timestamp() |
|
923 | 923 | |
|
924 | 924 | value_inference = round(1-resp.json()['predictions'][0][0],4) # El modelo actual requiere una resta de 1. Debido a que 0 es evento y 1 es no evento. |
|
925 | 925 | |
|
926 | 926 | self.write_status(f"Inferencia al servidor realizado con exito. Valor de inferencia: {value_inference}.") |
|
927 | 927 | self.__save_inferences(value_inference) |
|
928 | 928 | self._video = None |
|
929 | 929 | compress = None |
|
930 | 930 | gc.collect() |
|
931 | 931 | |
|
932 | 932 | return value_inference |
|
933 | 933 | else: |
|
934 | 934 | |
|
935 | 935 | |
|
936 | 936 | self.write_status(f"Se obtuvo otro codigo de respuesta al realizar inferencia al servidor. {resp.status_code}") |
|
937 | 937 | self._video = None |
|
938 | 938 | compress = None |
|
939 | 939 | gc.collect() |
|
940 | 940 | |
|
941 | 941 | return None |
|
942 | 942 | |
|
943 | 943 | else: |
|
944 | 944 | |
|
945 | 945 | ''' |
|
946 | 946 | Probamos con el modelo de menor complejidad. |
|
947 | 947 | - No se encuentra desarrollado por el momento. |
|
948 | 948 | ''' |
|
949 | 949 | |
|
950 | 950 | self.write_status("[IA] Metodo IA de menor complejidad no ha sido implementado para este modo.") |
|
951 | 951 | |
|
952 | 952 | return None |
|
953 | 953 | |
|
954 | 954 | except: |
|
955 | 955 | |
|
956 | 956 | self.write_status(f"[Estimator] Existió un error al realizar la inferencia al servidor. Error:{traceback.format_exc()}") |
|
957 | 957 | return NotImplementedError |
|
958 | 958 | def __save_inferences(self,result): |
|
959 | 959 | |
|
960 | 960 | return |
|
961 | 961 | frame_width, frame_height = self._video.shape[1],self._video.shape[2] |
|
962 | 962 | |
|
963 | 963 | if result>=0.6: |
|
964 | 964 | fpath = r'/data/inferences/video/01' |
|
965 | 965 | else: |
|
966 | 966 | fpath = r'/data/inferences/video/00' |
|
967 | 967 | |
|
968 | 968 | if not os.path.isdir(fpath): |
|
969 | 969 | os.makedirs(fpath) |
|
970 | 970 | try: |
|
971 | 971 | name = f'{self.timestamp}.mp4' |
|
972 | 972 | fpath = os.path.join(fpath,name) |
|
973 | 973 | out = cv2.VideoWriter(fpath, cv2.VideoWriter_fourcc(*'mp4v'), 10, (frame_width, frame_height)) |
|
974 | 974 | |
|
975 | 975 | batch = self._video[0] |
|
976 | 976 | |
|
977 | 977 | for frame in batch: |
|
978 | 978 | if frame.dtype != numpy.uint8: |
|
979 | 979 | frame = frame.astype(numpy.uint8) |
|
980 | 980 | out.write(frame) |
|
981 | 981 | |
|
982 | 982 | out.release() |
|
983 | 983 | except: |
|
984 | 984 | |
|
985 | 985 | self.write_status(traceback.format_exc()) |
|
986 | 986 | |
|
987 | 987 | |
|
988 | 988 | def write_status(self,chain): |
|
989 | 989 | |
|
990 | 990 | now = datetime.now() |
|
991 | 991 | |
|
992 | 992 | formatted_date_time = now.strftime("%d/%m/%Y %H:%M:%S") |
|
993 | 993 | |
|
994 | 994 | filename = '/logs/log.txt' |
|
995 | 995 | |
|
996 | 996 | if not os.path.isdir(os.path.dirname(filename)): |
|
997 | 997 | os.makedirs(os.path.dirname(filename)) |
|
998 | 998 | |
|
999 | 999 | chain = formatted_date_time + " " + chain |
|
1000 | 1000 | |
|
1001 | 1001 | try: |
|
1002 | 1002 | with open(filename,'a') as file: |
|
1003 | 1003 | |
|
1004 | 1004 | file.write(chain + '\n') |
|
1005 | 1005 | except: |
|
1006 | 1006 | |
|
1007 | 1007 | if self.debug: |
|
1008 | 1008 | print("Ocurrió un error al guardar datos logs.") |
|
1009 | 1009 | |
|
1010 | 1010 | return |
|
1011 | 1011 | |
|
1012 | 1012 | |
|
1013 | 1013 | def write_data(self,data): |
|
1014 | 1014 | |
|
1015 | 1015 | now = datetime.now() |
|
1016 | 1016 | formatted_date_time = now.strftime("%d/%m/%Y %H:%M:%S") + " |" |
|
1017 | 1017 | |
|
1018 | 1018 | try: |
|
1019 | 1019 | name = 'data.txt' |
|
1020 | 1020 | filename = os.path.join(self.path_save_json,name) |
|
1021 | 1021 | |
|
1022 | 1022 | with open(filename,'a') as file: |
|
1023 | 1023 | |
|
1024 | 1024 | file.write(formatted_date_time + str(json.dumps(data)) + '\n') |
|
1025 | 1025 | |
|
1026 | 1026 | except: |
|
1027 | 1027 | |
|
1028 | 1028 | if self.debug: |
|
1029 | 1029 | |
|
1030 | 1030 | print(f"Ocurrió un error al guardar los datos en el archivo {name}") |
|
1031 | 1031 | |
|
1032 | 1032 | self.write_status(f"[ERROR] Ocurrió un error al guardar los datos en el archivo {name}.") |
|
1033 | 1033 | |
|
1034 | 1034 | |
|
1035 | 1035 | def run(self,): |
|
1036 | 1036 | |
|
1037 | 1037 | ''' |
|
1038 | 1038 | ----------------------------------------------------------------------------------- |
|
1039 | 1039 | Se ha obtenido un promedio de 0.303 segundos por inferencia para foto con RPI Zero. |
|
1040 | 1040 | Se ha obtenido un promedio de 2.4 segundos de inferencia para videos con RPI 4 |
|
1041 | 1041 | ----------------------------------------------------------------------------------- |
|
1042 | 1042 | ''' |
|
1043 | 1043 | value = None |
|
1044 | 1044 | |
|
1045 | 1045 | if self.flag_load_weights or self.inference_mode == 'server': |
|
1046 | 1046 | |
|
1047 | 1047 | #--------------- Realizamos la inferencia ---------------# |
|
1048 | 1048 | |
|
1049 | 1049 | self.inference_value = self.get_inference() |
|
1050 | 1050 | |
|
1051 | 1051 | #Por ahora solo copiamos los datos |
|
1052 | 1052 | |
|
1053 | 1053 | |
|
1054 | 1054 | self.write_data("Inferencia:" + str(self.inference_value) + " Timestamp: " + str(self.timestamp) ) |
|
1055 | 1055 | self.write_status("Inferencia:" + str(self.inference_value) + " Timestamp: " + str(self.timestamp) ) |
|
1056 | 1056 | |
|
1057 | 1057 | |
|
1058 | 1058 | |
|
1059 | 1059 | |
|
1060 | 1060 | |
|
1061 | 1061 | class camera(object): |
|
1062 | 1062 | |
|
1063 | 1063 | data = None |
|
1064 | 1064 | |
|
1065 | 1065 | flag = False |
|
1066 | 1066 | activity = False |
|
1067 | 1067 | _status = False |
|
1068 | 1068 | url_rstp = None |
|
1069 | 1069 | |
|
1070 | 1070 | camera_available = False |
|
1071 | 1071 | camera_config = False |
|
1072 | 1072 | brightness = False |
|
1073 | 1073 | __count_available = 0 |
|
1074 | 1074 | |
|
1075 | 1075 | __timestamp_time_available = 0 |
|
1076 | 1076 | |
|
1077 | 1077 | flag_brightness = False |
|
1078 | 1078 | |
|
1079 | 1079 | def __check_if_available(self,): |
|
1080 | 1080 | ''' |
|
1081 | 1081 | Revisamos por ping si la cámara se encuentra disponible o no. Esto es para evitar menor tipo de errores. |
|
1082 | 1082 | ''' |
|
1083 | 1083 | try: |
|
1084 | 1084 | result = subprocess.run(["ping", "-c", "1", self.camera_ip], |
|
1085 | 1085 | stdout=subprocess.DEVNULL, |
|
1086 | 1086 | stderr=subprocess.DEVNULL, |
|
1087 | 1087 | timeout=2) # Dos segundos de timeout |
|
1088 | 1088 | |
|
1089 | 1089 | if result.returncode == 0: |
|
1090 | 1090 | |
|
1091 | 1091 | self.__count_available = 0 |
|
1092 | 1092 | |
|
1093 | 1093 | if (datetime.now().timestamp() - self.__timestamp_time_available > 120): |
|
1094 | 1094 | self.write_status("La cámara se encuentra conectada a la red.") |
|
1095 | 1095 | self.__timestamp_time_available = datetime.now().timestamp() |
|
1096 | 1096 | |
|
1097 | 1097 | self.camera_available = True |
|
1098 | 1098 | else: |
|
1099 | 1099 | self.camera_available = False |
|
1100 | 1100 | self.__count_available +=1 |
|
1101 | 1101 | |
|
1102 | 1102 | |
|
1103 | 1103 | if (datetime.now().timestamp() - self.__timestamp_time_available > 120): |
|
1104 | 1104 | self.write_status("No se encontró la cámara en la red.") |
|
1105 | 1105 | self.__timestamp_time_available = datetime.now().timestamp() |
|
1106 | 1106 | |
|
1107 | 1107 | |
|
1108 | 1108 | except: |
|
1109 | 1109 | |
|
1110 | 1110 | self.write_status(f"Hubo un error al realizar el ping a la cámara: {traceback.format_exc()}") |
|
1111 | 1111 | self.camera_available = False |
|
1112 | 1112 | self.__count_available +=1 |
|
1113 | 1113 | |
|
1114 | 1114 | else: |
|
1115 | 1115 | |
|
1116 | 1116 | if self.camera_available == True and self.camera_config == False: |
|
1117 | 1117 | self.__config() #La cámara se encuentra lista para realizar la configuración |
|
1118 | 1118 | |
|
1119 | 1119 | finally: |
|
1120 | 1120 | |
|
1121 | 1121 | if self.__count_available == 3: |
|
1122 | 1122 | self.__count_available = 0 |
|
1123 | 1123 | |
|
1124 | 1124 | if self.camera_config == True: |
|
1125 | 1125 | self.camera_config = False |
|
1126 | 1126 | |
|
1127 | 1127 | self.write_status("Es necesario volver a configurar la cámara por desconexión.") |
|
1128 | 1128 | |
|
1129 | 1129 | |
|
1130 | 1130 | def write_status(self,chain): |
|
1131 | 1131 | |
|
1132 | 1132 | now = datetime.now() |
|
1133 | 1133 | |
|
1134 | 1134 | formatted_date_time = now.strftime("%d/%m/%Y %H:%M:%S") |
|
1135 | 1135 | |
|
1136 | 1136 | filename = '/logs/log.txt' |
|
1137 | 1137 | |
|
1138 | 1138 | chain = formatted_date_time + " |" + chain |
|
1139 | 1139 | |
|
1140 | 1140 | if not os.path.isdir(os.path.dirname(filename)): |
|
1141 | 1141 | os.makedirs(os.path.dirname(filename)) |
|
1142 | 1142 | |
|
1143 | 1143 | try: |
|
1144 | 1144 | with open(filename,'a') as file: |
|
1145 | 1145 | |
|
1146 | 1146 | file.write(chain + '\n') |
|
1147 | 1147 | except: |
|
1148 | 1148 | |
|
1149 | 1149 | if self.debug: |
|
1150 | 1150 | print("Ocurrió un error al guardar datos logs.") |
|
1151 | 1151 | |
|
1152 | 1152 | return |
|
1153 | 1153 | |
|
1154 | 1154 | def __init__(self,flag=False, pin= 26,obj=None): |
|
1155 | 1155 | |
|
1156 | 1156 | ''' |
|
1157 | 1157 | Definiciones |
|
1158 | 1158 | ------------ |
|
1159 | 1159 | flag -> Bandera que condiciona la adquisición de fotografías por la cámara. Permite decidir si se usa o no la cámara. |
|
1160 | 1160 | pin -> Pin que controla el relé de alimentación hacia la cámara. |
|
1161 | 1161 | camara always on -> Modo que permite capturar en cualquier estación del año, pero es condicionado por el flag. |
|
1162 | 1162 | |
|
1163 | 1163 | 08-08-24 |
|
1164 | 1164 | -------- |
|
1165 | 1165 | Se agregan nuevas funciones para la camara HIKVISION usando ISAPI |
|
1166 | 1166 | ''' |
|
1167 | 1167 | |
|
1168 | 1168 | |
|
1169 | 1169 | |
|
1170 | 1170 | self.flag = flag |
|
1171 | 1171 | self.pin = pin |
|
1172 | 1172 | |
|
1173 | 1173 | |
|
1174 | 1174 | self.debug = obj.debug |
|
1175 | 1175 | self.vars = obj.vars |
|
1176 | 1176 | self.vars_mqtt = obj.vars_mqtt |
|
1177 | 1177 | self.store_data = obj.store_data |
|
1178 | 1178 | self.vars_gpio = obj.vars_gpio |
|
1179 | 1179 | self.camera_keys = obj.camera |
|
1180 | 1180 | |
|
1181 | 1181 | |
|
1182 | 1182 | self.camera_always_on = self.vars_gpio.get("camera_always_on",False) |
|
1183 | 1183 | |
|
1184 | 1184 | self.camera_ip = self.camera_keys.get("ip") |
|
1185 | 1185 | self.username_camera = self.camera_keys.get("username") |
|
1186 | 1186 | self.password_camera = self.camera_keys.get("password") |
|
1187 | 1187 | self.port_camera = self.camera_keys.get("port") |
|
1188 | 1188 | |
|
1189 | 1189 | self.__check_if_available() |
|
1190 | 1190 | |
|
1191 | 1191 | |
|
1192 | 1192 | def __config(self,): |
|
1193 | 1193 | |
|
1194 | 1194 | self.__gen__rstp() # Generamos el link rstp |
|
1195 | 1195 | self.__update_time() #Actualizamos la hora del sistema de la cámara |
|
1196 | 1196 | self.__switch_mode_to_night() #Modificamos a modo noche de la cámara. |
|
1197 | 1197 | self.__update_brightness(brightness=0) #Apagamos la luz de la cámara |
|
1198 | 1198 | |
|
1199 | 1199 | self.camera_config = True |
|
1200 | 1200 | |
|
1201 | 1201 | def __update_time(self,): |
|
1202 | 1202 | |
|
1203 | 1203 | if self.camera_ip != None: |
|
1204 | 1204 | url_supplement_light = f'http://{self.camera_ip}/ISAPI/System/time' |
|
1205 | 1205 | |
|
1206 | 1206 | |
|
1207 | 1207 | now = datetime.now(pytz.utc).astimezone(pytz.timezone('Etc/GMT+5')) |
|
1208 | 1208 | hora_actual = now.strftime('%Y-%m-%dT%H:%M:%S') |
|
1209 | 1209 | zona_horaria = "EST5" |
|
1210 | 1210 | |
|
1211 | 1211 | xml_data = f"""<Time> |
|
1212 | 1212 | <timeMode>manual</timeMode> |
|
1213 | 1213 | <localTime>{hora_actual}</localTime> |
|
1214 | 1214 | <timeZone>{zona_horaria}</timeZone> |
|
1215 | 1215 | </Time>""" |
|
1216 | 1216 | try: |
|
1217 | 1217 | response = requests.put( |
|
1218 | 1218 | url_supplement_light, |
|
1219 | 1219 | data=xml_data, |
|
1220 | 1220 | headers={'Content-Type': 'application/xml'}, |
|
1221 | 1221 | auth=HTTPDigestAuth(self.username_camera, self.password_camera), |
|
1222 | 1222 | timeout=5 |
|
1223 | 1223 | ) |
|
1224 | 1224 | |
|
1225 | 1225 | if response.status_code == 200: |
|
1226 | 1226 | print(f"Hora actualizada.") |
|
1227 | 1227 | else: |
|
1228 | 1228 | raise RuntimeError(f"Error {response.status_code}: {response.text}") |
|
1229 | 1229 | |
|
1230 | 1230 | except: |
|
1231 | 1231 | |
|
1232 | 1232 | self.write_status(f"[Camera] Error producido al actualizar la fecha. Error: {traceback.format_exc()}.") |
|
1233 | 1233 | |
|
1234 | 1234 | else: |
|
1235 | 1235 | |
|
1236 | 1236 | self.write_status(f"[Camera] Fecha actualizada.") |
|
1237 | 1237 | |
|
1238 | 1238 | |
|
1239 | 1239 | |
|
1240 | 1240 | def __gen__rstp(self): |
|
1241 | 1241 | self.url_rstp = f'rtsp://{self.username_camera}:{self.password_camera}@{self.camera_ip}:{self.port_camera}/streaming/channels/1' |
|
1242 | 1242 | |
|
1243 | 1243 | def __update_brightness(self,brightness=100): |
|
1244 | 1244 | |
|
1245 | 1245 | |
|
1246 | 1246 | if self.camera_ip != None: |
|
1247 | 1247 | url_supplement_light = f'http://{self.camera_ip}/ISAPI/Image/channels/1/supplementLight' |
|
1248 | 1248 | |
|
1249 | 1249 | xml_data = f''' |
|
1250 | 1250 | <SupplementLight> |
|
1251 | 1251 | <supplementLightMode>colorVuWhiteLight</supplementLightMode> |
|
1252 | 1252 | <mixedLightBrightnessRegulatMode>manual</mixedLightBrightnessRegulatMode> |
|
1253 | 1253 | <whiteLightBrightness>{brightness}</whiteLightBrightness> |
|
1254 | 1254 | </SupplementLight> |
|
1255 | 1255 | ''' |
|
1256 | 1256 | |
|
1257 | 1257 | try: |
|
1258 | 1258 | response = requests.put( |
|
1259 | 1259 | url_supplement_light, |
|
1260 | 1260 | data=xml_data, |
|
1261 | 1261 | headers={'Content-Type': 'application/xml'}, |
|
1262 | 1262 | auth=HTTPDigestAuth(self.username_camera, self.password_camera), |
|
1263 | 1263 | timeout=7 |
|
1264 | 1264 | ) |
|
1265 | 1265 | |
|
1266 | 1266 | if response.status_code == 200: |
|
1267 | 1267 | print(f"Brillo ajustado a {brightness}%.") |
|
1268 | 1268 | else: |
|
1269 | 1269 | raise RuntimeError(f"Error {response.status_code}: {response.text}") |
|
1270 | 1270 | |
|
1271 | 1271 | except: |
|
1272 | 1272 | |
|
1273 | 1273 | self.write_status(f"[Camera] Error producido al actualizar el brillo. Error {traceback.format_exc()}.") |
|
1274 | 1274 | |
|
1275 | 1275 | else: |
|
1276 | 1276 | |
|
1277 | 1277 | self.write_status(f"[Camera] Brillo de luz actualizado a {brightness}.") |
|
1278 | 1278 | if brightness >50: |
|
1279 | 1279 | sleep(3) |
|
1280 | 1280 | |
|
1281 | 1281 | |
|
1282 | 1282 | |
|
1283 | 1283 | |
|
1284 | 1284 | |
|
1285 | 1285 | |
|
1286 | 1286 | def __switch_mode_to_night(self,): |
|
1287 | 1287 | |
|
1288 | 1288 | ''' |
|
1289 | 1289 | En este modulo, se configura a la cámara para que pueda cambiar el modo switch a modo noche. |
|
1290 | 1290 | ''' |
|
1291 | 1291 | xml_data = """ |
|
1292 | 1292 | <?xml version:"1.0" encoding="UTF-8"?> |
|
1293 | 1293 | <IrcutFilter> |
|
1294 | 1294 | <IrcutFilterType>night</IrcutFilterType> |
|
1295 | 1295 | </IrcutFilter> |
|
1296 | 1296 | """ |
|
1297 | 1297 | |
|
1298 | 1298 | headers ={'Content-Type': 'application/xml'} |
|
1299 | 1299 | url = f'http://{self.camera_ip}/ISAPI/Image/channels/1/ircutFilter' |
|
1300 | 1300 | |
|
1301 | 1301 | username = self.username_camera |
|
1302 | 1302 | password = self.password_camera |
|
1303 | 1303 | |
|
1304 | 1304 | |
|
1305 | 1305 | if self.camera_ip != None: |
|
1306 | 1306 | |
|
1307 | 1307 | try: |
|
1308 | 1308 | response = requests.put(url, data=xml_data, auth=HTTPDigestAuth(username, password), headers=headers,timeout=7) |
|
1309 | 1309 | except: |
|
1310 | 1310 | |
|
1311 | 1311 | self.write_status(f"[ERROR] Error al cambiar modo de la camara a noche. Error: {traceback.format_exc()}") |
|
1312 | 1312 | else: |
|
1313 | 1313 | if response.status_code == 200: |
|
1314 | 1314 | self.write_status("[Camera] Modo ha sido cambiado a Noche.") |
|
1315 | 1315 | |
|
1316 | 1316 | else: |
|
1317 | 1317 | self.write_status("[Camera] Error al cambiar a modo noche.") |
|
1318 | 1318 | |
|
1319 | 1319 | |
|
1320 | 1320 | |
|
1321 | 1321 | def __on_camera(self,): |
|
1322 | 1322 | |
|
1323 | 1323 | GPIO.setmode(GPIO.BCM) |
|
1324 | 1324 | GPIO.setwarnings(False) |
|
1325 | 1325 | GPIO.setup(self.pin,GPIO.OUT) |
|
1326 | 1326 | GPIO.output(self.pin,GPIO.LOW) |
|
1327 | 1327 | |
|
1328 | 1328 | self.activity = True |
|
1329 | 1329 | |
|
1330 | 1330 | def __off_camera(self,): |
|
1331 | 1331 | |
|
1332 | 1332 | GPIO.setmode(GPIO.BCM) |
|
1333 | 1333 | GPIO.setwarnings(False) |
|
1334 | 1334 | GPIO.setup(self.pin,GPIO.OUT) |
|
1335 | 1335 | GPIO.output(self.pin,GPIO.HIGH) |
|
1336 | 1336 | |
|
1337 | 1337 | self.activity = False |
|
1338 | 1338 | |
|
1339 | 1339 | |
|
1340 | 1340 | def __is_night(self): |
|
1341 | 1341 | |
|
1342 | 1342 | ''' |
|
1343 | 1343 | Se establecen las condiciones para que tiempos sea declarado noche |
|
1344 | 1344 | ''' |
|
1345 | 1345 | |
|
1346 | 1346 | now = datetime.now(pytz.utc).astimezone(pytz.timezone('Etc/GMT+5')).time() |
|
1347 | 1347 | |
|
1348 | 1348 | flag = False |
|
1349 | 1349 | flag = (time(9,0)<=now<=time(23,59)) or (time(0,0)<=now<=time(6,50)) |
|
1350 | 1350 | |
|
1351 | 1351 | return flag |
|
1352 | 1352 | |
|
1353 | 1353 | @property |
|
1354 | 1354 | def status(self): |
|
1355 | 1355 | |
|
1356 | 1356 | if self.flag == False: |
|
1357 | 1357 | |
|
1358 | 1358 | self.__off_camera() |
|
1359 | 1359 | return False |
|
1360 | 1360 | |
|
1361 | 1361 | if self.camera_always_on: |
|
1362 | 1362 | |
|
1363 | 1363 | '''La cámara siempre estará prendida''' |
|
1364 | 1364 | |
|
1365 | 1365 | self.__on_camera() |
|
1366 | 1366 | self.__process_on() |
|
1367 | 1367 | |
|
1368 | 1368 | return True |
|
1369 | 1369 | |
|
1370 | 1370 | #------ Establecemos UTC -5 ---------# |
|
1371 | 1371 | utc_minus_5 = pytz.timezone('Etc/GMT+5') |
|
1372 | 1372 | |
|
1373 | 1373 | now = datetime.now(pytz.utc).astimezone(utc_minus_5).time() |
|
1374 | 1374 | |
|
1375 | 1375 | ''' |
|
1376 | 1376 | Aqui establecemos criterío de activación de la cámara |
|
1377 | 1377 | ----------------------------------------------------- |
|
1378 | 1378 | - Por ejemplo, aqui se define que la cámara funciona entre las 6 am y 18pm |
|
1379 | 1379 | de cada día. La activación y desactivación de la cámara será controlada mediante un relé. |
|
1380 | 1380 | |
|
1381 | 1381 | - Se puede establecer otros criterios como activar la cámara durante ciertos |
|
1382 | 1382 | periodos de meses por inactividad o menor radiación. |
|
1383 | 1383 | ''' |
|
1384 | 1384 | |
|
1385 | 1385 | #------------------- Criterio ----------------------------# |
|
1386 | 1386 | # self._status = False |
|
1387 | 1387 | # self._status = time(6, 00) <= now <= time(7, 10) |
|
1388 | 1388 | # self._status = time(10, 00) <= now <= time(10, 10) |
|
1389 | 1389 | # self._status = time(12, 00) <= now <= time(12, 10) |
|
1390 | 1390 | # self._status = time(16, 00) <= now <= time(16, 10) |
|
1391 | 1391 | # self._status = time(17, 30) <= now <= time(18,30) |
|
1392 | 1392 | # self._status = time(21, 00) <= now <= time(21,10) |
|
1393 | 1393 | # self._status = time(1, 00) <= now <= time(1,10) |
|
1394 | 1394 | # self._status = time(4, 00) <= now <= time(4,10) |
|
1395 | 1395 | |
|
1396 | 1396 | self._status = True |
|
1397 | 1397 | |
|
1398 | 1398 | #-------------------- Condiciones ------------------------# |
|
1399 | 1399 | |
|
1400 | 1400 | |
|
1401 | 1401 | |
|
1402 | 1402 | if self._status ==True and self.pin != None and self.activity == False: |
|
1403 | 1403 | |
|
1404 | 1404 | #Prendemos la cámara del relé. |
|
1405 | 1405 | |
|
1406 | 1406 | self._status = True |
|
1407 | 1407 | |
|
1408 | 1408 | self.__on_camera() |
|
1409 | 1409 | |
|
1410 | 1410 | |
|
1411 | 1411 | |
|
1412 | 1412 | self.write_status("[CAMERA] Se prendió la cámara.") |
|
1413 | 1413 | |
|
1414 | 1414 | elif self._status == False and self.pin != None and self.activity == True: |
|
1415 | 1415 | |
|
1416 | 1416 | # Operaciones para desactivar la salida del relé |
|
1417 | 1417 | |
|
1418 | 1418 | self.__off_camera() |
|
1419 | 1419 | |
|
1420 | 1420 | self.write_status("[CAMERA] Se apagó la cámara.") |
|
1421 | 1421 | |
|
1422 | 1422 | ############################################################### |
|
1423 | 1423 | |
|
1424 | 1424 | self.__check_if_available() |
|
1425 | 1425 | |
|
1426 | 1426 | self._status = self._status & self.camera_available |
|
1427 | 1427 | |
|
1428 | 1428 | return self._status |
|
1429 | 1429 | |
|
1430 | 1430 | def control_brightness(self,brightness=100): |
|
1431 | 1431 | |
|
1432 | 1432 | try: |
|
1433 | 1433 | flag_night = self.__is_night() |
|
1434 | 1434 | |
|
1435 | 1435 | if flag_night == True and brightness>0: |
|
1436 | 1436 | |
|
1437 | 1437 | |
|
1438 | 1438 | #Realizamos el cambio de brillo |
|
1439 | 1439 | self.brightness = True |
|
1440 | 1440 | self.__update_brightness(brightness=brightness) |
|
1441 | 1441 | |
|
1442 | 1442 | elif brightness == 0: |
|
1443 | 1443 | self.brightness = False |
|
1444 | 1444 | self.__update_brightness(brightness=0) |
|
1445 | 1445 | except: |
|
1446 | 1446 | |
|
1447 | 1447 | self.write_status("[CAMERA_ERROR] Ocurrió un error al controlar el brillo de la camara.") |
|
1448 | 1448 | |
|
1449 | 1449 | return |
|
1450 | 1450 | |
|
1451 | 1451 | |
|
1452 | 1452 | def __process_on(self,): |
|
1453 | 1453 | |
|
1454 | 1454 | ''' |
|
1455 | 1455 | Procesos que se ejecutan o validan cuando la cámara está prendida. |
|
1456 | 1456 | ''' |
|
1457 | 1457 | |
|
1458 | 1458 | flag_night = self.__is_night() |
|
1459 | 1459 | |
|
1460 | 1460 | if flag_night == True and self.flag_brightness == False: |
|
1461 | 1461 | |
|
1462 | 1462 | |
|
1463 | 1463 | self.flag_brightness = True |
|
1464 | 1464 | self.__update_brightness(brightness=100) |
|
1465 | 1465 | |
|
1466 | 1466 | if flag_night==False and self.flag_brightness == True: |
|
1467 | 1467 | |
|
1468 | 1468 | self.flag_brightness = False |
|
1469 | 1469 | self.__update_brightness(brightness=0) |
|
1470 | 1470 | |
|
1471 | 1471 | class sensor(object): |
|
1472 | 1472 | |
|
1473 | 1473 | max_size = 300 |
|
1474 | 1474 | name = "" |
|
1475 | 1475 | key = None |
|
1476 | 1476 | |
|
1477 | 1477 | H0 = None |
|
1478 | 1478 | |
|
1479 | 1479 | y_value = list() |
|
1480 | 1480 | x_value = list() |
|
1481 | 1481 | |
|
1482 | 1482 | FLAG_CALIBRATION_LIDAR = False |
|
1483 | 1483 | |
|
1484 | 1484 | array_calibration = list() |
|
1485 | 1485 | |
|
1486 | 1486 | def write_status(self,chain): |
|
1487 | 1487 | |
|
1488 | 1488 | now = datetime.now() |
|
1489 | 1489 | |
|
1490 | 1490 | formatted_date_time = now.strftime("%d/%m/%Y %H:%M:%S") |
|
1491 | 1491 | |
|
1492 | 1492 | filename = '/logs/log.txt' |
|
1493 | 1493 | |
|
1494 | 1494 | chain = formatted_date_time + " |" + chain |
|
1495 | 1495 | |
|
1496 | 1496 | if not os.path.isdir(os.path.dirname(filename)): |
|
1497 | 1497 | os.makedirs(os.path.dirname(filename)) |
|
1498 | 1498 | |
|
1499 | 1499 | try: |
|
1500 | 1500 | with open(filename,'a') as file: |
|
1501 | 1501 | |
|
1502 | 1502 | file.write(chain + '\n') |
|
1503 | 1503 | except: |
|
1504 | 1504 | |
|
1505 | 1505 | if self.debug: |
|
1506 | 1506 | print("Ocurrió un error al guardar datos logs.") |
|
1507 | 1507 | |
|
1508 | 1508 | return |
|
1509 | 1509 | |
|
1510 | 1510 | |
|
1511 | 1511 | def __init__(self,name,key): |
|
1512 | 1512 | |
|
1513 | 1513 | self.name = name |
|
1514 | 1514 | self.key = key |
|
1515 | 1515 | |
|
1516 | 1516 | |
|
1517 | 1517 | |
|
1518 | 1518 | def __logic(self,value): |
|
1519 | 1519 | |
|
1520 | 1520 | ''' |
|
1521 | 1521 | Se implementará en las clases hijas. |
|
1522 | 1522 | ''' |
|
1523 | 1523 | self.write_status("[ERROR SENSOR] No se encuentra implementado el método lógic.") |
|
1524 | 1524 | |
|
1525 | 1525 | raise NotImplementedError("No se encuentra implementado el método logic.") |
|
1526 | 1526 | |
|
1527 | 1527 | |
|
1528 | 1528 | def insert_value(self,value): |
|
1529 | 1529 | |
|
1530 | 1530 | |
|
1531 | 1531 | if 'lidar' in self.name: |
|
1532 | 1532 | |
|
1533 | 1533 | self.__load_H0() |
|
1534 | 1534 | |
|
1535 | 1535 | if self.FLAG_CALIBRATION_LIDAR == False: |
|
1536 | 1536 | self.__calibration(value) |
|
1537 | 1537 | |
|
1538 | 1538 | |
|
1539 | 1539 | timestamp = datetime.now().timestamp() |
|
1540 | 1540 | |
|
1541 | 1541 | size = len(self.x_value) |
|
1542 | 1542 | |
|
1543 | 1543 | if(size>self.max_size): |
|
1544 | 1544 | |
|
1545 | 1545 | self.x_value = self.x_value[1:] |
|
1546 | 1546 | self.y_value = self.y_value[1:] |
|
1547 | 1547 | |
|
1548 | 1548 | self.x_value.append(timestamp) |
|
1549 | 1549 | self.y_value.append(value) |
|
1550 | 1550 | |
|
1551 | 1551 | gc.collect() |
|
1552 | 1552 | |
|
1553 | 1553 | |
|
1554 | 1554 | def get_values(self,): |
|
1555 | 1555 | |
|
1556 | 1556 | return numpy.array(self.x_value,dtype=float), numpy.array(self.y_value,dtype=float) |
|
1557 | 1557 | |
|
1558 | 1558 | def get_latest(self,): |
|
1559 | 1559 | |
|
1560 | 1560 | if len(self.x_value)>0: |
|
1561 | 1561 | return self.x_value[-1], self.y_value[-1] |
|
1562 | 1562 | else: |
|
1563 | 1563 | return None,None |
|
1564 | 1564 | |
|
1565 | 1565 | class sensor_HFS(sensor): |
|
1566 | 1566 | |
|
1567 | 1567 | |
|
1568 | 1568 | activate = False |
|
1569 | 1569 | timestamp_init = 0 |
|
1570 | 1570 | timestamp_fin = 0 |
|
1571 | 1571 | timestamp = 0 |
|
1572 | 1572 | |
|
1573 | 1573 | timestamp_off = 0 |
|
1574 | 1574 | status = False |
|
1575 | 1575 | prev_status = False |
|
1576 | 1576 | THRESHOLD_BETWEEN_OFF_SENSOR = 3 |
|
1577 | 1577 | THRESHOLD_BETWEEN_ON_SENSOR = 5 |
|
1578 | 1578 | |
|
1579 | 1579 | |
|
1580 | 1580 | pull_down = True |
|
1581 | 1581 | |
|
1582 | 1582 | def __init__(self,name,key,pin,**kwargs): |
|
1583 | 1583 | |
|
1584 | 1584 | self.name = name |
|
1585 | 1585 | self.key = key |
|
1586 | 1586 | self.pin = pin |
|
1587 | 1587 | |
|
1588 | 1588 | if pin == None: |
|
1589 | 1589 | self.write_status("[ERROR] Pin no debe de ser None para el sensor HFS.") |
|
1590 | 1590 | raise AttributeError("Valor de Pin es None.") |
|
1591 | 1591 | |
|
1592 | 1592 | self.pull_down = False |
|
1593 | 1593 | |
|
1594 | 1594 | |
|
1595 | 1595 | self.__config() |
|
1596 | 1596 | |
|
1597 | 1597 | def __config(self,): |
|
1598 | 1598 | |
|
1599 | 1599 | GPIO.setwarnings(False) |
|
1600 | 1600 | GPIO.setmode(GPIO.BCM) |
|
1601 | 1601 | |
|
1602 | 1602 | if self.pull_down: |
|
1603 | 1603 | GPIO.setup(self.pin,GPIO.IN,pull_up_down=GPIO.PUD_DOWN) |
|
1604 | 1604 | else: |
|
1605 | 1605 | GPIO.setup(self.pin,GPIO.IN) |
|
1606 | 1606 | |
|
1607 | 1607 | chain = f"[Settings] Sensor HFS configurado con valores key:{self.key} name:{self.name} pin{self.pin}" |
|
1608 | 1608 | self.write_status(chain) |
|
1609 | 1609 | |
|
1610 | 1610 | def run(self,): |
|
1611 | 1611 | |
|
1612 | 1612 | value = GPIO.input(self.pin) |
|
1613 | 1613 | |
|
1614 | 1614 | self.__logic(value) |
|
1615 | 1615 | |
|
1616 | 1616 | def current_sensor(self,): |
|
1617 | 1617 | |
|
1618 | 1618 | return GPIO.input(self.pin) |
|
1619 | 1619 | |
|
1620 | 1620 | def __logic(self,status): |
|
1621 | 1621 | |
|
1622 | 1622 | timestamp = datetime.now().timestamp() |
|
1623 | 1623 | |
|
1624 | 1624 | self.prev_status = self.status |
|
1625 | 1625 | |
|
1626 | 1626 | self.status = status |
|
1627 | 1627 | self.timestamp = timestamp |
|
1628 | 1628 | |
|
1629 | 1629 | if(self.prev_status == False and self.status == True): |
|
1630 | 1630 | |
|
1631 | 1631 | self.timestamp_init = timestamp |
|
1632 | 1632 | |
|
1633 | 1633 | elif(self.prev_status == False and self.status == False): |
|
1634 | 1634 | #sensor desactivado |
|
1635 | 1635 | if self.activate: |
|
1636 | 1636 | if ((timestamp - self.timestamp_off)>=self.THRESHOLD_BETWEEN_OFF_SENSOR): |
|
1637 | 1637 | self.activate = False |
|
1638 | 1638 | |
|
1639 | 1639 | |
|
1640 | 1640 | elif(self.prev_status == True and self.status == False): |
|
1641 | 1641 | #se desactivó el sensor |
|
1642 | 1642 | if self.activate: |
|
1643 | 1643 | self.timestamp_off = timestamp |
|
1644 | 1644 | |
|
1645 | 1645 | elif(self.prev_status == True and self.status == True): |
|
1646 | 1646 | if (timestamp - self.timestamp_init>=self.THRESHOLD_BETWEEN_ON_SENSOR): |
|
1647 | 1647 | #sensor activado |
|
1648 | 1648 | self.activate = True |
|
1649 | 1649 | |
|
1650 | 1650 | |
|
1651 | 1651 | |
|
1652 | 1652 | class ina(sensor): |
|
1653 | 1653 | |
|
1654 | 1654 | |
|
1655 | 1655 | bus_voltage = 0 |
|
1656 | 1656 | shunt_voltage = 0 |
|
1657 | 1657 | current = 0 |
|
1658 | 1658 | |
|
1659 | 1659 | def __init__(self,name,key,address): |
|
1660 | 1660 | |
|
1661 | 1661 | if address == None: |
|
1662 | 1662 | |
|
1663 | 1663 | self.write_status("[ERROR] Se debe de asignar la dirección al atributo INA.") |
|
1664 | 1664 | raise AttributeError("Se debe de asignar la dirección al atributo INA.") |
|
1665 | 1665 | |
|
1666 | 1666 | self.address = address |
|
1667 | 1667 | self.name = name |
|
1668 | 1668 | self.key = key |
|
1669 | 1669 | |
|
1670 | 1670 | self.__config() |
|
1671 | 1671 | |
|
1672 | 1672 | def __config(self,): |
|
1673 | 1673 | |
|
1674 | 1674 | |
|
1675 | 1675 | self.sensor = adafruit_ina219.INA219(i2c,self.address) |
|
1676 | 1676 | #Aumentamos resolución del ina219 |
|
1677 | 1677 | self.sensor.bus_adc_resolution = ADCResolution.ADCRES_12BIT_32S |
|
1678 | 1678 | self.sensor.shunt_adc_resolution = ADCResolution.ADCRES_12BIT_32S |
|
1679 | 1679 | #self.sensor.bus_voltage_range = BusVoltageRange.RANGE_16V |
|
1680 | 1680 | |
|
1681 | 1681 | |
|
1682 | 1682 | def run(self,): |
|
1683 | 1683 | |
|
1684 | 1684 | self.bus_voltage = self.sensor.bus_voltage #V |
|
1685 | 1685 | self.shunt_voltage = self.sensor.shunt_voltage / 1000 #mV |
|
1686 | 1686 | self.current = self.sensor.current #mA |
|
1687 | 1687 | |
|
1688 | 1688 | |
|
1689 | 1689 | |
|
1690 | 1690 | class lidar(sensor): |
|
1691 | 1691 | |
|
1692 | 1692 | |
|
1693 | 1693 | |
|
1694 | 1694 | H0 = 0 |
|
1695 | 1695 | dH_ = None |
|
1696 | 1696 | |
|
1697 | 1697 | minus_H = -6 #Desnivel para realizar una nueva calibración. |
|
1698 | 1698 | |
|
1699 | 1699 | TIME_LIDAR_ON = 30 #Segundos para considerar activado el sensor. |
|
1700 | 1700 | TIME_LIDAR_OFF = 60 #Segundos para considerar desactivado el sensor |
|
1701 | 1701 | |
|
1702 | 1702 | TIME_RARE_EVENT = 60 #Silenciamos la activación por 1 minutos |
|
1703 | 1703 | NUM_SAMPLES_CALIBRATION = 15 |
|
1704 | 1704 | NUM_SAMPLES_MEAN = 10 |
|
1705 | 1705 | |
|
1706 | 1706 | TIMEOUT_CALIBRATION = 60*60*24*1 #Se calibrará automaticamente cada 1 dia. |
|
1707 | 1707 | rare_height = 60 |
|
1708 | 1708 | min_H = 10 # Centimetros como minimo de columna de agua |
|
1709 | 1709 | |
|
1710 | 1710 | |
|
1711 | 1711 | #---------------------------------------------------------------------------------# |
|
1712 | 1712 | mode_calibration = False |
|
1713 | 1713 | ERROR_WIRE = False |
|
1714 | 1714 | activate = False |
|
1715 | 1715 | FLAG_RARE_EVENT = False |
|
1716 | 1716 | |
|
1717 | 1717 | timestamp_init = None |
|
1718 | 1718 | timestamp_fin = None |
|
1719 | 1719 | timestamp_calibrate = None |
|
1720 | 1720 | timestamp_rare_event = None |
|
1721 | 1721 | timestamp_init_calibration = 0 #Aseguramos de calibrar el sensor en cada encendido. |
|
1722 | 1722 | #---------------------------------------------------------------------------------# |
|
1723 | 1723 | |
|
1724 | 1724 | array_samples = list() |
|
1725 | 1725 | |
|
1726 | 1726 | def __load_H0(self,): |
|
1727 | 1727 | |
|
1728 | 1728 | try: |
|
1729 | 1729 | timestamp = datetime.now().timestamp() |
|
1730 | 1730 | path = "/others/h0.txt" |
|
1731 | 1731 | |
|
1732 | 1732 | flag = os.path.exists(path) |
|
1733 | 1733 | |
|
1734 | 1734 | if (flag): |
|
1735 | 1735 | |
|
1736 | 1736 | with open(path,'r') as file: |
|
1737 | 1737 | |
|
1738 | 1738 | string_ = (file.readline()) |
|
1739 | 1739 | values = string_.split("|") |
|
1740 | 1740 | |
|
1741 | 1741 | self.timestamp_init_calibration = float(values[0]) |
|
1742 | 1742 | self.H0 = float(values[1].strip()) |
|
1743 | 1743 | |
|
1744 | 1744 | if(timestamp - self.timestamp_init_calibration>self.TIMEOUT_CALIBRATION): |
|
1745 | 1745 | |
|
1746 | 1746 | self.FLAG_CALIBRATION_LIDAR = False |
|
1747 | 1747 | |
|
1748 | 1748 | elif self.H0 > 10000: |
|
1749 | 1749 | self.FLAG_CALIBRATION_LIDAR = False |
|
1750 | 1750 | else: |
|
1751 | 1751 | |
|
1752 | 1752 | self.FLAG_CALIBRATION_LIDAR = True |
|
1753 | 1753 | |
|
1754 | 1754 | else: |
|
1755 | 1755 | # Se debe de realizar su calibración de H0 |
|
1756 | 1756 | self.FLAG_CALIBRATION_LIDAR = False |
|
1757 | 1757 | |
|
1758 | 1758 | except Exception as e: |
|
1759 | 1759 | |
|
1760 | 1760 | print(f"Error producido al leer H0 del lidar. Copia del error {e}.") |
|
1761 | 1761 | |
|
1762 | 1762 | def __calibration(self,value): |
|
1763 | 1763 | |
|
1764 | 1764 | self.array_calibration.append(value) |
|
1765 | 1765 | |
|
1766 | 1766 | if(len(self.array_calibration)==self.NUM_SAMPLES_CALIBRATION): |
|
1767 | 1767 | |
|
1768 | 1768 | self.H0 = numpy.nanmedian(numpy.array(self.array_calibration)) |
|
1769 | 1769 | self.FLAG_CALIBRATION_LIDAR = True |
|
1770 | 1770 | self.array_calibration = list() |
|
1771 | 1771 | |
|
1772 | 1772 | |
|
1773 | 1773 | #Guardamos el archivo de calibración |
|
1774 | 1774 | |
|
1775 | 1775 | try: |
|
1776 | 1776 | path = "/others/h0.txt" |
|
1777 | 1777 | |
|
1778 | 1778 | flag = os.path.exists(path) |
|
1779 | 1779 | |
|
1780 | 1780 | if flag: |
|
1781 | 1781 | try: |
|
1782 | 1782 | os.remove(path) |
|
1783 | 1783 | except: |
|
1784 | 1784 | pass |
|
1785 | 1785 | |
|
1786 | 1786 | with open(path,"w") as file: |
|
1787 | 1787 | |
|
1788 | 1788 | timestamp = datetime.now().timestamp() |
|
1789 | 1789 | file.write(str(timestamp)+"|"+str(self.H0)) |
|
1790 | 1790 | |
|
1791 | 1791 | |
|
1792 | 1792 | self.timestamp_init_calibration = timestamp |
|
1793 | 1793 | |
|
1794 | 1794 | self.timestamp_calibrate = None |
|
1795 | 1795 | self.timestamp_init = None |
|
1796 | 1796 | self.timestamp_fin = None |
|
1797 | 1797 | self.timestamp_rare_event= None |
|
1798 | 1798 | |
|
1799 | 1799 | self.FLAG_RARE_EVENT = False |
|
1800 | 1800 | self.activate = False |
|
1801 | 1801 | self.mode_calibration = False |
|
1802 | 1802 | |
|
1803 | 1803 | except: |
|
1804 | 1804 | pass |
|
1805 | 1805 | |
|
1806 | 1806 | finally: |
|
1807 | 1807 | gc.collect() |
|
1808 | 1808 | |
|
1809 | 1809 | |
|
1810 | 1810 | def __config(self,): |
|
1811 | 1811 | |
|
1812 | 1812 | |
|
1813 | 1813 | self.sensor_lidar = adafruit_lidarlite.LIDARLite(i2c, sensor_type=adafruit_lidarlite.TYPE_V3HP) |
|
1814 | 1814 | |
|
1815 | 1815 | |
|
1816 | 1816 | |
|
1817 | 1817 | def __init__(self,name,key): |
|
1818 | 1818 | |
|
1819 | 1819 | super().__init__(name,key) |
|
1820 | 1820 | |
|
1821 | 1821 | self.__config() |
|
1822 | 1822 | self.__load_H0() |
|
1823 | 1823 | |
|
1824 | 1824 | if self.FLAG_CALIBRATION_LIDAR == False: |
|
1825 | 1825 | |
|
1826 | 1826 | self.mode_calibration = True |
|
1827 | 1827 | |
|
1828 | 1828 | else: |
|
1829 | 1829 | self.mode_calibration = False |
|
1830 | 1830 | |
|
1831 | 1831 | def run(self,): |
|
1832 | 1832 | timestamp = datetime.now().timestamp() |
|
1833 | 1833 | |
|
1834 | 1834 | diff = timestamp- self.timestamp_init_calibration |
|
1835 | 1835 | |
|
1836 | 1836 | value = self.sensor_lidar.distance |
|
1837 | 1837 | |
|
1838 | 1838 | if self.mode_calibration: |
|
1839 | 1839 | self.__calibration(value) |
|
1840 | 1840 | |
|
1841 | 1841 | elif (diff> self.TIMEOUT_CALIBRATION): |
|
1842 | 1842 | #Es necesario realizar una calibración |
|
1843 | 1843 | self.mode_calibration = True |
|
1844 | 1844 | |
|
1845 | 1845 | else: |
|
1846 | 1846 | |
|
1847 | 1847 | if (value > 10000 and self.ERROR_WIRE == False): |
|
1848 | 1848 | |
|
1849 | 1849 | ''' |
|
1850 | 1850 | Error de sensor lidar en la obtención de datos. Puede ser problema de cables |
|
1851 | 1851 | Se desabilita hasta que sea corregido manualmente. |
|
1852 | 1852 | ''' |
|
1853 | 1853 | |
|
1854 | 1854 | self.ERROR_WIRE = True |
|
1855 | 1855 | self.dH_ = None |
|
1856 | 1856 | |
|
1857 | 1857 | |
|
1858 | 1858 | path = "/others/h0.txt" |
|
1859 | 1859 | |
|
1860 | 1860 | with open(path,"w") as file: |
|
1861 | 1861 | |
|
1862 | 1862 | timestamp = datetime.now().timestamp() |
|
1863 | 1863 | file.write(str(0)+"|"+str(0)) |
|
1864 | 1864 | |
|
1865 | 1865 | elif (value < 10000 ): |
|
1866 | 1866 | if(self.ERROR_WIRE): |
|
1867 | 1867 | self.ERROR_WIRE = False |
|
1868 | 1868 | self.mode_calibration = True |
|
1869 | 1869 | else: |
|
1870 | 1870 | |
|
1871 | 1871 | self.array_samples.append(value) |
|
1872 | 1872 | self.array_samples.append(self.sensor_lidar.distance) |
|
1873 | 1873 | |
|
1874 | 1874 | if(len(self.array_samples)>=self.NUM_SAMPLES_MEAN): |
|
1875 | 1875 | |
|
1876 | 1876 | value = numpy.nanmedian(numpy.array(self.array_samples)) |
|
1877 | 1877 | |
|
1878 | 1878 | self.array_samples = list() |
|
1879 | 1879 | size = len(self.x_value) |
|
1880 | 1880 | |
|
1881 | 1881 | if(size>self.max_size): |
|
1882 | 1882 | |
|
1883 | 1883 | self.x_value = self.x_value[1:] |
|
1884 | 1884 | self.y_value = self.y_value[1:] |
|
1885 | 1885 | |
|
1886 | 1886 | self.x_value.append(timestamp) |
|
1887 | 1887 | self.y_value.append(value) |
|
1888 | 1888 | |
|
1889 | 1889 | #---------------------- logica -------------------------# |
|
1890 | 1890 | |
|
1891 | 1891 | self.__logic(value) |
|
1892 | 1892 | |
|
1893 | 1893 | def __logic(self,value): |
|
1894 | 1894 | |
|
1895 | 1895 | |
|
1896 | 1896 | timestamp = datetime.now().timestamp() |
|
1897 | 1897 | |
|
1898 | 1898 | dH = self.H0 - value |
|
1899 | 1899 | |
|
1900 | 1900 | self.dH_ = dH |
|
1901 | 1901 | |
|
1902 | 1902 | ''' |
|
1903 | 1903 | Si dH>0, entonces el sistema ha detectado evento |
|
1904 | 1904 | Si dH<0, hay un desnivel en el suelo o referencia por lo que es necesario volver a calibrar |
|
1905 | 1905 | ''' |
|
1906 | 1906 | |
|
1907 | 1907 | if dH>= self.min_H and self.timestamp_init == None: |
|
1908 | 1908 | |
|
1909 | 1909 | ''' |
|
1910 | 1910 | Comienza el evento |
|
1911 | 1911 | ''' |
|
1912 | 1912 | self.timestamp_init = timestamp |
|
1913 | 1913 | |
|
1914 | 1914 | elif dH<self.min_H and dH>=0 : |
|
1915 | 1915 | |
|
1916 | 1916 | if self.timestamp_init != None: |
|
1917 | 1917 | |
|
1918 | 1918 | diff_timestamp = datetime.now().timestamp() - self.timestamp_init # Calculamos cuanto tiempo va activado la señal. |
|
1919 | 1919 | |
|
1920 | 1920 | if self.timestamp_init != None and dH>1 and diff_timestamp<15: |
|
1921 | 1921 | ''' |
|
1922 | 1922 | Al inicio del evento se puede considerar pequeñas variaciones |
|
1923 | 1923 | ''' |
|
1924 | 1924 | pass |
|
1925 | 1925 | |
|
1926 | 1926 | elif self.timestamp_init !=None and self.timestamp_fin == None: |
|
1927 | 1927 | |
|
1928 | 1928 | ''' |
|
1929 | 1929 | El tiempo que lleva activado la señal de alerta es más de 15 segundos. |
|
1930 | 1930 | ''' |
|
1931 | 1931 | |
|
1932 | 1932 | self.timestamp_fin = timestamp |
|
1933 | 1933 | |
|
1934 | 1934 | elif self.timestamp_init!=None and self.timestamp_fin !=None: |
|
1935 | 1935 | |
|
1936 | 1936 | ''' |
|
1937 | 1937 | En caso la diferencia de altura es menor a lo establecido como emergencia, |
|
1938 | 1938 | entonces se desactiva la señal de alerta pero ya pasado un tiempo. |
|
1939 | 1939 | |
|
1940 | 1940 | ''' |
|
1941 | 1941 | |
|
1942 | 1942 | if (timestamp - self.timestamp_fin>=self.TIME_LIDAR_OFF): |
|
1943 | 1943 | |
|
1944 | 1944 | self.timestamp_fin = None |
|
1945 | 1945 | self.timestamp_init = None |
|
1946 | 1946 | self.timestamp_rare_event = None |
|
1947 | 1947 | |
|
1948 | 1948 | self.activate = False |
|
1949 | 1949 | |
|
1950 | 1950 | |
|
1951 | 1951 | elif dH>= self.min_H and self.timestamp_init != None: |
|
1952 | 1952 | |
|
1953 | 1953 | #Consideramos que debe de ser constante tal cambio al menos 30 segundos |
|
1954 | 1954 | #Se puede configurar en el archivo vars.json |
|
1955 | 1955 | timestamp = datetime.now().timestamp() |
|
1956 | 1956 | |
|
1957 | 1957 | diff_timestamp = timestamp - self.timestamp_init |
|
1958 | 1958 | |
|
1959 | 1959 | if dH>= self.rare_height and diff_timestamp<=10: |
|
1960 | 1960 | |
|
1961 | 1961 | ''' |
|
1962 | 1962 | En este caso consideramos que la altura aumentó rapidamente en menos de 10 segundos. |
|
1963 | 1963 | Este suceso puede ser producido por un mantenimiento o por seres vivos en el cauce. |
|
1964 | 1964 | ''' |
|
1965 | 1965 | |
|
1966 | 1966 | self.FLAG_RARE_EVENT = True |
|
1967 | 1967 | self.timestamp_rare_event = timestamp |
|
1968 | 1968 | self.timestamp_init = None |
|
1969 | 1969 | self.timestamp_fin = None |
|
1970 | 1970 | self.activate = False |
|
1971 | 1971 | |
|
1972 | 1972 | |
|
1973 | 1973 | elif diff_timestamp >= self.TIME_LIDAR_ON: |
|
1974 | 1974 | |
|
1975 | 1975 | ''' |
|
1976 | 1976 | El tiempo de activación fue superado, por lo que se validará la activación. |
|
1977 | 1977 | ''' |
|
1978 | 1978 | |
|
1979 | 1979 | if(self.timestamp_rare_event == None): |
|
1980 | 1980 | self.timestamp_rare_event = 0 |
|
1981 | 1981 | |
|
1982 | 1982 | diff = timestamp - self.timestamp_rare_event |
|
1983 | 1983 | |
|
1984 | 1984 | if (diff>self.TIME_RARE_EVENT): |
|
1985 | 1985 | self.timestamp_rare_event = 0 |
|
1986 | 1986 | self.FLAG_RARE_EVENT = False |
|
1987 | 1987 | |
|
1988 | 1988 | if not self.FLAG_RARE_EVENT: |
|
1989 | 1989 | self.activate = True |
|
1990 | 1990 | self.timestamp_rare_event = None |
|
1991 | 1991 | |
|
1992 | 1992 | elif dH <=self.minus_H and self.timestamp_calibrate == None: |
|
1993 | 1993 | ''' |
|
1994 | 1994 | Verificamos si es necesario realizar una calibración. |
|
1995 | 1995 | ''' |
|
1996 | 1996 | self.timestamp_calibrate = timestamp |
|
1997 | 1997 | |
|
1998 | 1998 | elif dH <=self.minus_H and self.timestamp_calibrate != None: |
|
1999 | 1999 | |
|
2000 | 2000 | ''' |
|
2001 | 2001 | Si se sobrepasa el tiempo necesario para una nueva calibración, |
|
2002 | 2002 | entonces se seleccion |
|
2003 | 2003 | ''' |
|
2004 | 2004 | diff = timestamp - self.timestamp_calibrate |
|
2005 | 2005 | if diff >= 30: |
|
2006 | 2006 | self.mode_calibration = True |
|
2007 | 2007 | |
|
2008 | 2008 | |
|
2009 | 2009 | else: |
|
2010 | 2010 | ''' |
|
2011 | 2011 | En el unico caso que el lidar marque dH=0. |
|
2012 | 2012 | ''' |
|
2013 | 2013 | self.timestamp_calibrate = None |
|
2014 | 2014 | self.timestamp_init = None |
|
2015 | 2015 | self.timestamp_fin = None |
|
2016 | 2016 | self.timestamp_rare_event= None |
|
2017 | 2017 | |
|
2018 | 2018 | gc.collect() |
|
2019 | 2019 | No newline at end of file |
General Comments 0
You need to be logged in to leave comments.
Login now