C $Id: conduct.f 3304 2011-01-17 15:25:59Z brideout $ C Code originally written by Shunrong Zhang/Phil Erickson C Oct 25, 2006 C SUBROUTINE CONDUCT(NE,NI,N,TE,TI,TN,B,XH,XP) DOUBLE PRECISION NE,NI(2),NII(3),N(3),TE,TI,TN,B,XH,XP DOUBLE PRECISION E,EI(3),MI(3),M DOUBLE PRECISION TR,NUI(3),NUE DOUBLE PRECISION OE,XE,OE2NUE, OI,XI,OI2NUI DOUBLE PRECISION N_CM(3) C------------------------------------------------------------------------- C C INPUTS C NE: ELECTRON DENSITY, M3 C NI: ARRAY OF ION DENSITIES; C NI(1) = [O+]; NI(2) = [M+] MOLECULAR IONS, M^-3 C N: ARRAY OF NEUTRAL DENSITIES; C N(1) = [O]; N(2) = [N2]; N(3) = [O2], M^-3 C TE: ELECTRON TEMPERATURE, K C TI: ION TEMPERATURE, K C TN: NEUTRAL TEMPERATURE, K C B: MAGNETIC FIELD STRENGTH, TESLA C OUTPUTS C XH: HALL CONDUCTIVITY, (OHM M )^(-1) C XP: PEDERSEN CONDUCTIVITY (OHM M)^(-1) C REFERENCES C R. W. SCHUNK AND A F. NAGY, C IONOSPHERES: PHYSICS, PLASMA PHYSICS, AND CHEMISTRY C CAMBRIDGE UNIVERSITY PRESS, CAMBRIDGE, UK, 2000. C SEE P131 FOR CONDUCTIVITY FORMULA; C SEE P97 AND P99 FOR COLLISION FREQUENCIES C ASSUMPTIONS C IONS ARE O+ AND MOLECULAR IONS M+ WITH AVERAGE MASS 31 C COLLISION FREQUENCY OF M+-NEUTRALS CALCULATED ASSUMING C 50% NO+-NEUTRALS AND 50% O2+-NEUTRALS C O+-O COLLISION FREQUENCY INCREASED BY 1.3 OVER STANDARD BANKS C VALUE BANKS BASED ON RECENT STUDIES - CF. C C A. C. BENNETT AND K. OMIDVAR, ALTERNATIVE METHOD FOR THE C THERMOSPHERIC ATOMIC OXYGEN DENSITY DETERMINATION, ADVANCES IN C SPACE RESEARCH, VOLUME 27, ISSUE 10, , 2001, PAGES 1685-1690. C C WRITTEN BY SHUNRONG ZHANG, 2003 C MODIFIED BY PHIL ERICKSON 2006-10-24 (CHANGED MOLECULAR C ION ASSUMPTION TO 2-ION APPROACH, ADDED C BURNSIDE FACTOR TO O+-O COLLISION FREQ) C C------------------------------------------------------------------------- C CONSTANTS - SOURCE VALUES: NIST C AVOGAD = AVOGADRO'S NUMBER C E = ELEMENTARY CHARGE, COULOMBS C EI(3) ARE CHARGES FOR O+, NO+, O2+ IN COULOMBS C MI(3) ARE MASSES FOR O+, NO+, O2+ IN KG C M = ELECTRON MASS IN KG C AVOGAD = 6.0221415D23 E = 1.60217653D-19 M = 9.1093826D-31 EI(1) = E EI(2) = E EI(3) = E MI(1) = 16D-3 / AVOGAD MI(2) = 30D-3 / AVOGAD MI(3) = 32D-3 / AVOGAD C C APPLY 50% NO+ AND 50% O2+ ASSUMPTION FOR MOLECULARS C NII(3) = ION DENSITIES FOR O+, NO+, O2+ C NII(1) = NI(1) NII(2) = 0.5 * NI(2) NII(3) = 0.5 * NI(2) C C MSIS parameters need to be converted to cm^-3 C Modified by Bill Rideout to avoid modifying input parms C N_CM(1) = N(1) / 1.0E6 N_CM(2) = N(2) / 1.0E6 N_CM(3) = N(3) / 1.0E6 C C COLLISION FREQUENCIES C CC O+ VS O (RESONANT),N2 AND O2 (NONRESONANT) CC NOTE: O+/O INCREASED BY BURNSIDE FACTOR = 1.3 TR = (TI + TN)/2.D0 NUI(1) = 1.3*(3.67D-11*N_CM(1)*SQRT(TR)*(1-0.064*LOG10(TR))**2) * + 6.82D-10*N_CM(2) * + 6.64D-10*N_CM(3) CC NO+ VS O, N2, AND O2 (NONRESONANT) NUI(2) = 2.44D-10*N_CM(1) * + 4.34D-10*N_CM(2) * + 4.27D-10*N_CM(3) CC O2+ VS O, N2 (NONRESONANT) AND O2 (RESONANT) NUI(3) = 2.31D-10*N_CM(1) * + 4.13D-10*N_CM(2) * + 2.59D-11*N_CM(3)*SQRT(TR) * (1-0.073*LOG10(TR))**2 CC ELECTRONS VS O, N2 AND O2 NUE = 8.9D-11*N_CM(1)*(1+5.7D-4*TE)*SQRT(TE) * + 2.33D-11*N_CM(2)*(1-1.21D-4*TE)*TE * + 1.82D-10*N_CM(3)*(1+3.6D-2*SQRT(TE))*SQRT(TE) CC CC FINAL CONDUCTIVITY CALCULATION CC XH = 0 XP = 0 OE = (E/M)*B XE = (NE/NUE) * (E/M) * E OE2NUE = OE/NUE DO 1 I=1,3 XI = (NII(I)/NUI(I)) * (EI(I) / MI(I)) * EI(I) OI = ( EI(I)/MI(I) )*B OI2NUI = OI/NUI(I) XP = XP + XI / (1 + OI2NUI**2 ) XH = XH + XI /( OI2NUI + 1/OI2NUI ) 1 CONTINUE XP = XP + XE /(1 + OE2NUE**2) XH = - XH + XE /(OE2NUE + 1/OE2NUE) RETURN END