|
|
C $Id: conduct.f 3304 2011-01-17 15:25:59Z brideout $
|
|
|
C Code originally written by Shunrong Zhang/Phil Erickson
|
|
|
C Oct 25, 2006
|
|
|
C
|
|
|
SUBROUTINE CONDUCT(NE,NI,N,TE,TI,TN,B,XH,XP)
|
|
|
DOUBLE PRECISION NE,NI(2),NII(3),N(3),TE,TI,TN,B,XH,XP
|
|
|
DOUBLE PRECISION E,EI(3),MI(3),M
|
|
|
DOUBLE PRECISION TR,NUI(3),NUE
|
|
|
DOUBLE PRECISION OE,XE,OE2NUE, OI,XI,OI2NUI
|
|
|
DOUBLE PRECISION N_CM(3)
|
|
|
C-------------------------------------------------------------------------
|
|
|
C
|
|
|
C INPUTS
|
|
|
C NE: ELECTRON DENSITY, M3
|
|
|
C NI: ARRAY OF ION DENSITIES;
|
|
|
C NI(1) = [O+]; NI(2) = [M+] MOLECULAR IONS, M^-3
|
|
|
C N: ARRAY OF NEUTRAL DENSITIES;
|
|
|
C N(1) = [O]; N(2) = [N2]; N(3) = [O2], M^-3
|
|
|
C TE: ELECTRON TEMPERATURE, K
|
|
|
C TI: ION TEMPERATURE, K
|
|
|
C TN: NEUTRAL TEMPERATURE, K
|
|
|
C B: MAGNETIC FIELD STRENGTH, TESLA
|
|
|
C OUTPUTS
|
|
|
C XH: HALL CONDUCTIVITY, (OHM M )^(-1)
|
|
|
C XP: PEDERSEN CONDUCTIVITY (OHM M)^(-1)
|
|
|
C REFERENCES
|
|
|
C R. W. SCHUNK AND A F. NAGY,
|
|
|
C IONOSPHERES: PHYSICS, PLASMA PHYSICS, AND CHEMISTRY
|
|
|
C CAMBRIDGE UNIVERSITY PRESS, CAMBRIDGE, UK, 2000.
|
|
|
C SEE P131 FOR CONDUCTIVITY FORMULA;
|
|
|
C SEE P97 AND P99 FOR COLLISION FREQUENCIES
|
|
|
C ASSUMPTIONS
|
|
|
C IONS ARE O+ AND MOLECULAR IONS M+ WITH AVERAGE MASS 31
|
|
|
C COLLISION FREQUENCY OF M+-NEUTRALS CALCULATED ASSUMING
|
|
|
C 50% NO+-NEUTRALS AND 50% O2+-NEUTRALS
|
|
|
C O+-O COLLISION FREQUENCY INCREASED BY 1.3 OVER STANDARD BANKS
|
|
|
C VALUE BANKS BASED ON RECENT STUDIES - CF.
|
|
|
C
|
|
|
C A. C. BENNETT AND K. OMIDVAR, ALTERNATIVE METHOD FOR THE
|
|
|
C THERMOSPHERIC ATOMIC OXYGEN DENSITY DETERMINATION, ADVANCES IN
|
|
|
C SPACE RESEARCH, VOLUME 27, ISSUE 10, , 2001, PAGES 1685-1690.
|
|
|
C
|
|
|
C WRITTEN BY SHUNRONG ZHANG, 2003
|
|
|
C MODIFIED BY PHIL ERICKSON 2006-10-24 (CHANGED MOLECULAR
|
|
|
C ION ASSUMPTION TO 2-ION APPROACH, ADDED
|
|
|
C BURNSIDE FACTOR TO O+-O COLLISION FREQ)
|
|
|
C
|
|
|
C-------------------------------------------------------------------------
|
|
|
C CONSTANTS - SOURCE VALUES: NIST
|
|
|
C AVOGAD = AVOGADRO'S NUMBER
|
|
|
C E = ELEMENTARY CHARGE, COULOMBS
|
|
|
C EI(3) ARE CHARGES FOR O+, NO+, O2+ IN COULOMBS
|
|
|
C MI(3) ARE MASSES FOR O+, NO+, O2+ IN KG
|
|
|
C M = ELECTRON MASS IN KG
|
|
|
C
|
|
|
AVOGAD = 6.0221415D23
|
|
|
E = 1.60217653D-19
|
|
|
M = 9.1093826D-31
|
|
|
EI(1) = E
|
|
|
EI(2) = E
|
|
|
EI(3) = E
|
|
|
MI(1) = 16D-3 / AVOGAD
|
|
|
MI(2) = 30D-3 / AVOGAD
|
|
|
MI(3) = 32D-3 / AVOGAD
|
|
|
C
|
|
|
C APPLY 50% NO+ AND 50% O2+ ASSUMPTION FOR MOLECULARS
|
|
|
C NII(3) = ION DENSITIES FOR O+, NO+, O2+
|
|
|
C
|
|
|
NII(1) = NI(1)
|
|
|
NII(2) = 0.5 * NI(2)
|
|
|
NII(3) = 0.5 * NI(2)
|
|
|
C
|
|
|
C MSIS parameters need to be converted to cm^-3
|
|
|
C Modified by Bill Rideout to avoid modifying input parms
|
|
|
C
|
|
|
N_CM(1) = N(1) / 1.0E6
|
|
|
N_CM(2) = N(2) / 1.0E6
|
|
|
N_CM(3) = N(3) / 1.0E6
|
|
|
C
|
|
|
C COLLISION FREQUENCIES
|
|
|
C
|
|
|
CC O+ VS O (RESONANT),N2 AND O2 (NONRESONANT)
|
|
|
CC NOTE: O+/O INCREASED BY BURNSIDE FACTOR = 1.3
|
|
|
TR = (TI + TN)/2.D0
|
|
|
NUI(1) = 1.3*(3.67D-11*N_CM(1)*SQRT(TR)*(1-0.064*LOG10(TR))**2)
|
|
|
* + 6.82D-10*N_CM(2)
|
|
|
* + 6.64D-10*N_CM(3)
|
|
|
CC NO+ VS O, N2, AND O2 (NONRESONANT)
|
|
|
NUI(2) = 2.44D-10*N_CM(1)
|
|
|
* + 4.34D-10*N_CM(2)
|
|
|
* + 4.27D-10*N_CM(3)
|
|
|
CC O2+ VS O, N2 (NONRESONANT) AND O2 (RESONANT)
|
|
|
NUI(3) = 2.31D-10*N_CM(1)
|
|
|
* + 4.13D-10*N_CM(2)
|
|
|
* + 2.59D-11*N_CM(3)*SQRT(TR) * (1-0.073*LOG10(TR))**2
|
|
|
CC ELECTRONS VS O, N2 AND O2
|
|
|
NUE = 8.9D-11*N_CM(1)*(1+5.7D-4*TE)*SQRT(TE)
|
|
|
* + 2.33D-11*N_CM(2)*(1-1.21D-4*TE)*TE
|
|
|
* + 1.82D-10*N_CM(3)*(1+3.6D-2*SQRT(TE))*SQRT(TE)
|
|
|
CC
|
|
|
CC FINAL CONDUCTIVITY CALCULATION
|
|
|
CC
|
|
|
XH = 0
|
|
|
XP = 0
|
|
|
OE = (E/M)*B
|
|
|
XE = (NE/NUE) * (E/M) * E
|
|
|
OE2NUE = OE/NUE
|
|
|
DO 1 I=1,3
|
|
|
XI = (NII(I)/NUI(I)) * (EI(I) / MI(I)) * EI(I)
|
|
|
OI = ( EI(I)/MI(I) )*B
|
|
|
OI2NUI = OI/NUI(I)
|
|
|
XP = XP + XI / (1 + OI2NUI**2 )
|
|
|
XH = XH + XI /( OI2NUI + 1/OI2NUI )
|
|
|
1 CONTINUE
|
|
|
XP = XP + XE /(1 + OE2NUE**2)
|
|
|
XH = - XH + XE /(OE2NUE + 1/OE2NUE)
|
|
|
RETURN
|
|
|
END
|
|
|
|