vrecip.f
36 lines
| 894 B
| text/x-fortran
|
FortranFixedLexer
r0 | C $Id: vrecip.f 5093 2015-06-10 13:48:23Z brideout $ | |||
C | ||||
SUBROUTINE VRECIP(A,B,C,APR,BPR,CPR) | ||||
C | ||||
C JMH - 11/79 ANS FORTRAN 66 | ||||
C | ||||
C VRECIP CALCULATES THE RECIPROCAL VECTORS APR, BPR, CPR | ||||
C CORRESPONDING TO THREE LINEARLY INDEPENDENT VECTORS A, B, C. | ||||
C $Id: vrecip.f 5093 2015-06-10 13:48:23Z brideout $ | ||||
C | ||||
C .. Array Arguments .. | ||||
DOUBLE PRECISION A(3),APR(3),B(3),BPR(3),C(3),CPR(3) | ||||
C .. | ||||
C .. Local Scalars .. | ||||
DOUBLE PRECISION T | ||||
INTEGER I | ||||
C .. | ||||
C .. External Functions .. | ||||
DOUBLE PRECISION TPROD | ||||
EXTERNAL TPROD | ||||
C .. | ||||
C .. External Subroutines .. | ||||
EXTERNAL VPROD | ||||
C .. | ||||
T = TPROD(A,B,C) | ||||
CALL VPROD(B,C,APR) | ||||
CALL VPROD(C,A,BPR) | ||||
CALL VPROD(A,B,CPR) | ||||
DO 10 I = 1,3 | ||||
APR(I) = APR(I)/T | ||||
BPR(I) = BPR(I)/T | ||||
CPR(I) = CPR(I)/T | ||||
10 CONTINUE | ||||
RETURN | ||||
C | ||||
END | ||||