invar.f
83 lines
| 2.7 KiB
| text/x-fortran
|
FortranFixedLexer
r0 | C $Id: invar.f 3304 2011-01-17 15:25:59Z brideout $ | |||
C | ||||
SUBROUTINE INVAR(TM,FLAT,FLONG,ALT,ERR,BB,FL) | ||||
C | ||||
C Private/Internal subroutine. Part of Apex coordinate computation | ||||
C package. See COORD for public API. INVAR converts coordinates | ||||
C TM, FLAT, FLON and ALT to L-shell coordinates FL and BB. The | ||||
C uncertainty in FL is typically less than 10.*ERR*FL (percent) | ||||
C | ||||
C Input: | ||||
C TM - time in years for desired field (e.g. 1971.25) | ||||
C FLAT - geocentric latitude (degrees) | ||||
C FLONG - east longitude | ||||
C ALT - altitude (km) | ||||
C ERR - tolerance factor | ||||
C | ||||
C Output: | ||||
C BB - Magnetic Field strength at point. | ||||
C FL - McIlwain's L-shell parameter i.e. | ||||
C Invariant Latitude = ACOS(DSQRT(1.0D0/FL))/DTR | ||||
C | ||||
C .. Scalar Arguments .. | ||||
DOUBLE PRECISION ALT,BB,ERR,FL,FLAT,FLONG,TM | ||||
C .. | ||||
C .. Local Scalars .. | ||||
DOUBLE PRECISION ASUM,BCO,CCO,DCLT,DCO,DN,DX,FLINT,SA,SC | ||||
INTEGER I,J,JEP,JUP | ||||
C .. | ||||
C .. Local Arrays .. | ||||
DOUBLE PRECISION ARC(200),B(200),BEG(200),BEND(200),BLOG(200), | ||||
* ECO(200),R1(3),R2(3),R3(3),V(3,3),VN(3),VP(3) | ||||
C .. | ||||
C .. External Subroutines .. | ||||
EXTERNAL CARMEL,INTEG,LINES,STARTR | ||||
C .. | ||||
C .. Intrinsic Functions .. | ||||
INTRINSIC ABS,DCOS,DEXP,DLOG,DSQRT | ||||
C .. | ||||
V(1,2) = ALT/6371.2D0 | ||||
V(2,2) = (90.D0-FLAT)/57.2957795D0 | ||||
V(3,2) = FLONG/57.2957795D0 | ||||
ARC(1) = 0.D0 | ||||
ARC(2) = (1.0D0+V(1,2))*DSQRT(ERR)*0.3D0 | ||||
DCLT = 1.5708D0 - 0.2007D0*DCOS(V(3,2)+1.239D0) | ||||
IF (V(2,2).GT.DCLT) ARC(2) = -ARC(2) | ||||
CALL STARTR(R1,R2,R3,B,ARC,V,TM) | ||||
DO 10 I = 1,3 | ||||
VP(I) = V(I,2) | ||||
VN(I) = V(I,3) | ||||
10 CONTINUE | ||||
CALL LINES(R1,R2,R3,B,ARC,ERR,J,VP,VN,TM) | ||||
IF (J.LT.200) THEN | ||||
JUP = J | ||||
DO 20 J = 1,JUP | ||||
ARC(J) = ABS(ARC(J)) | ||||
BLOG(J) = DLOG(B(J)) | ||||
20 CONTINUE | ||||
JEP = JUP - 1 | ||||
DO 30 J = 2,JEP | ||||
ASUM = ARC(J) + ARC(J+1) | ||||
DX = BLOG(J-1) - BLOG(J) | ||||
DN = ASUM*ARC(J)*ARC(J+1) | ||||
BCO = ((BLOG(J-1)-BLOG(J+1))*ARC(J)**2-DX*ASUM**2)/DN | ||||
CCO = (DX*ARC(J+1)-(BLOG(J)-BLOG(J+1))*ARC(J))/DN | ||||
SA = .75D0*ARC(J) | ||||
SC = SA + .25D0*ASUM | ||||
DCO = BLOG(J-1) - CCO*SA*SC | ||||
ECO(J) = BCO + CCO*(SA+SC) | ||||
BEG(J) = DEXP(DCO+ECO(J)*.5D0*ARC(J)) | ||||
BEND(J) = DEXP(DCO+ECO(J)*.5D0*(ASUM+ARC(J))) | ||||
30 CONTINUE | ||||
BEG(JUP) = BEND(JEP) | ||||
BEND(JUP) = B(JUP) | ||||
ECO(JUP) = (2.0D0/ARC(JUP))*DLOG(BEND(JUP)/BEG(JUP)) | ||||
CALL INTEG(ARC,BEG,BEND,B,JEP,ECO,FLINT) | ||||
CALL CARMEL(B(2),FLINT,FL) | ||||
ELSE | ||||
FL = -1.0D0 | ||||
END IF | ||||
BB = B(2) | ||||
RETURN | ||||
C | ||||
END | ||||