conduct.f
118 lines
| 4.1 KiB
| text/x-fortran
|
FortranFixedLexer
r0 | C $Id: conduct.f 3304 2011-01-17 15:25:59Z brideout $ | |||
C Code originally written by Shunrong Zhang/Phil Erickson | ||||
C Oct 25, 2006 | ||||
C | ||||
SUBROUTINE CONDUCT(NE,NI,N,TE,TI,TN,B,XH,XP) | ||||
DOUBLE PRECISION NE,NI(2),NII(3),N(3),TE,TI,TN,B,XH,XP | ||||
DOUBLE PRECISION E,EI(3),MI(3),M | ||||
DOUBLE PRECISION TR,NUI(3),NUE | ||||
DOUBLE PRECISION OE,XE,OE2NUE, OI,XI,OI2NUI | ||||
DOUBLE PRECISION N_CM(3) | ||||
C------------------------------------------------------------------------- | ||||
C | ||||
C INPUTS | ||||
C NE: ELECTRON DENSITY, M3 | ||||
C NI: ARRAY OF ION DENSITIES; | ||||
C NI(1) = [O+]; NI(2) = [M+] MOLECULAR IONS, M^-3 | ||||
C N: ARRAY OF NEUTRAL DENSITIES; | ||||
C N(1) = [O]; N(2) = [N2]; N(3) = [O2], M^-3 | ||||
C TE: ELECTRON TEMPERATURE, K | ||||
C TI: ION TEMPERATURE, K | ||||
C TN: NEUTRAL TEMPERATURE, K | ||||
C B: MAGNETIC FIELD STRENGTH, TESLA | ||||
C OUTPUTS | ||||
C XH: HALL CONDUCTIVITY, (OHM M )^(-1) | ||||
C XP: PEDERSEN CONDUCTIVITY (OHM M)^(-1) | ||||
C REFERENCES | ||||
C R. W. SCHUNK AND A F. NAGY, | ||||
C IONOSPHERES: PHYSICS, PLASMA PHYSICS, AND CHEMISTRY | ||||
C CAMBRIDGE UNIVERSITY PRESS, CAMBRIDGE, UK, 2000. | ||||
C SEE P131 FOR CONDUCTIVITY FORMULA; | ||||
C SEE P97 AND P99 FOR COLLISION FREQUENCIES | ||||
C ASSUMPTIONS | ||||
C IONS ARE O+ AND MOLECULAR IONS M+ WITH AVERAGE MASS 31 | ||||
C COLLISION FREQUENCY OF M+-NEUTRALS CALCULATED ASSUMING | ||||
C 50% NO+-NEUTRALS AND 50% O2+-NEUTRALS | ||||
C O+-O COLLISION FREQUENCY INCREASED BY 1.3 OVER STANDARD BANKS | ||||
C VALUE BANKS BASED ON RECENT STUDIES - CF. | ||||
C | ||||
C A. C. BENNETT AND K. OMIDVAR, ALTERNATIVE METHOD FOR THE | ||||
C THERMOSPHERIC ATOMIC OXYGEN DENSITY DETERMINATION, ADVANCES IN | ||||
C SPACE RESEARCH, VOLUME 27, ISSUE 10, , 2001, PAGES 1685-1690. | ||||
C | ||||
C WRITTEN BY SHUNRONG ZHANG, 2003 | ||||
C MODIFIED BY PHIL ERICKSON 2006-10-24 (CHANGED MOLECULAR | ||||
C ION ASSUMPTION TO 2-ION APPROACH, ADDED | ||||
C BURNSIDE FACTOR TO O+-O COLLISION FREQ) | ||||
C | ||||
C------------------------------------------------------------------------- | ||||
C CONSTANTS - SOURCE VALUES: NIST | ||||
C AVOGAD = AVOGADRO'S NUMBER | ||||
C E = ELEMENTARY CHARGE, COULOMBS | ||||
C EI(3) ARE CHARGES FOR O+, NO+, O2+ IN COULOMBS | ||||
C MI(3) ARE MASSES FOR O+, NO+, O2+ IN KG | ||||
C M = ELECTRON MASS IN KG | ||||
C | ||||
AVOGAD = 6.0221415D23 | ||||
E = 1.60217653D-19 | ||||
M = 9.1093826D-31 | ||||
EI(1) = E | ||||
EI(2) = E | ||||
EI(3) = E | ||||
MI(1) = 16D-3 / AVOGAD | ||||
MI(2) = 30D-3 / AVOGAD | ||||
MI(3) = 32D-3 / AVOGAD | ||||
C | ||||
C APPLY 50% NO+ AND 50% O2+ ASSUMPTION FOR MOLECULARS | ||||
C NII(3) = ION DENSITIES FOR O+, NO+, O2+ | ||||
C | ||||
NII(1) = NI(1) | ||||
NII(2) = 0.5 * NI(2) | ||||
NII(3) = 0.5 * NI(2) | ||||
C | ||||
C MSIS parameters need to be converted to cm^-3 | ||||
C Modified by Bill Rideout to avoid modifying input parms | ||||
C | ||||
N_CM(1) = N(1) / 1.0E6 | ||||
N_CM(2) = N(2) / 1.0E6 | ||||
N_CM(3) = N(3) / 1.0E6 | ||||
C | ||||
C COLLISION FREQUENCIES | ||||
C | ||||
CC O+ VS O (RESONANT),N2 AND O2 (NONRESONANT) | ||||
CC NOTE: O+/O INCREASED BY BURNSIDE FACTOR = 1.3 | ||||
TR = (TI + TN)/2.D0 | ||||
NUI(1) = 1.3*(3.67D-11*N_CM(1)*SQRT(TR)*(1-0.064*LOG10(TR))**2) | ||||
* + 6.82D-10*N_CM(2) | ||||
* + 6.64D-10*N_CM(3) | ||||
CC NO+ VS O, N2, AND O2 (NONRESONANT) | ||||
NUI(2) = 2.44D-10*N_CM(1) | ||||
* + 4.34D-10*N_CM(2) | ||||
* + 4.27D-10*N_CM(3) | ||||
CC O2+ VS O, N2 (NONRESONANT) AND O2 (RESONANT) | ||||
NUI(3) = 2.31D-10*N_CM(1) | ||||
* + 4.13D-10*N_CM(2) | ||||
* + 2.59D-11*N_CM(3)*SQRT(TR) * (1-0.073*LOG10(TR))**2 | ||||
CC ELECTRONS VS O, N2 AND O2 | ||||
NUE = 8.9D-11*N_CM(1)*(1+5.7D-4*TE)*SQRT(TE) | ||||
* + 2.33D-11*N_CM(2)*(1-1.21D-4*TE)*TE | ||||
* + 1.82D-10*N_CM(3)*(1+3.6D-2*SQRT(TE))*SQRT(TE) | ||||
CC | ||||
CC FINAL CONDUCTIVITY CALCULATION | ||||
CC | ||||
XH = 0 | ||||
XP = 0 | ||||
OE = (E/M)*B | ||||
XE = (NE/NUE) * (E/M) * E | ||||
OE2NUE = OE/NUE | ||||
DO 1 I=1,3 | ||||
XI = (NII(I)/NUI(I)) * (EI(I) / MI(I)) * EI(I) | ||||
OI = ( EI(I)/MI(I) )*B | ||||
OI2NUI = OI/NUI(I) | ||||
XP = XP + XI / (1 + OI2NUI**2 ) | ||||
XH = XH + XI /( OI2NUI + 1/OI2NUI ) | ||||
1 CONTINUE | ||||
XP = XP + XE /(1 + OE2NUE**2) | ||||
XH = - XH + XE /(OE2NUE + 1/OE2NUE) | ||||
RETURN | ||||
END | ||||